首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Notch signal transduction is mediated by proteolysis of the receptor and translocation of the intracellular domain (IC) into the nucleus, where it functions as a regulator of HES gene expression after binding to the DNA-binding protein RBP-J kappa. The mammalian Notch receptors are structurally very similar, but have distinct functions. Most notably, Notch 1 IC is a potent activator of the HES promoter, while Notch 3 IC is a much weaker activator and can repress Notch 1 IC-mediated HES activation in certain contexts. In this report we explore the molecular basis for this functional difference between Notch 1 and Notch 3 IC. We find that Notch 3 IC, like Notch 1 IC, can bind the SKIP and PCAF proteins. Furthermore, both Notch 1 and Notch 3 ICs displace the co-repressor SMRT from the DNA-binding protein RBP-J kappa on the HES promoter. The latter observation suggests that both Notch 3 IC and Notch 1 IC can access RBP-J kappa in vivo, and that the difference in activation capacity instead stems from structural differences in the two ICs when positioned on RBP-J kappa. We show that two distinct regions in the Notch IC are critical for the difference between the Notch 1 and Notch 3 IC. First, the origin of the ankyrin repeat region is important, i.e. only chimeric ICs containing a Notch 1-derived ankyrin repeat region are potent activators. Second, we identify a novel important region in the Notch IC. This region, named the RE/AC region (for repression/activation), is located immediately C-terminal to the ankyrin repeat region, and is required for Notch 1 IC's ability to activate and for Notch 3 IC's ability to repress a HES promoter. The interplay between the RE/AC region and the ankyrin repeat region provides a basis to understand the difference in HES activation between structurally similar Notch receptors.  相似文献   

4.
5.
6.
The Caenorhabditis elegans sel-10 protein is structurally similar to E3 ubiquitin ligases and is a negative regulator of Notch (lin-12) and presenilin signaling. In this report, we characterize the mammalian Sel-10 homolog (mSel-10) and analyze its effects on Notch signaling. We find that mSel-10 localizes to the cell nucleus, and that it physically interacts with the Notch 1 intracellular domain (IC) and reduces Notch 1 IC-mediated activation of the HES 1 promoter. Notch 1 IC is ubiquitinated by mSel-10, and ubiquitination requires the presence of the most carboxyl-terminal region of the Notch IC, including the PEST domain. In the presence of the proteasome inhibitor MG132, the amount of Notch 1 IC and its level of ubiquitination are increased. Interestingly, this accumulation of Notch 1 IC in the presence of MG132 is accompanied by decreased activation of the HES 1 promoter, suggesting that ubiquitinated Notch 1 IC is a less potent transactivator. Finally, we show that mSel-10 itself is ubiquitinated and degraded by the proteasome. In conclusion, these data reveal the importance of ubiquitination and proteasome-mediated degradation for the activity and turnover of Notch ICs, and demonstrate that mSel-10 plays a key role in this process.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
CK2 is a Ser/Thr protein kinase that regulates the activity of the Drosophila basic-helix-loop-helix (bHLH) repressor M8 encoded by the Enhancer of split Complex (E(spl)C) during neurogenesis. Specifically, phosphorylation appears to elicit a conformational change in an autoinhibited state of M8 to one that is permissive for repression. We describe biochemical and molecular modeling studies that provide new insights into repression by M8. Our studies implicate the phosphorylation domain in autoinhibition, and indicate that binding of the co-repressor Groucho (Gro) is context-dependent. Molecular modeling indicates that the Orange domain, proposed to be a specificity-determinant, may instead play a structural role, and that a conformational rearrangement of this domain may be necessary for repression. This model also provides a structural mechanism for the behavior of mutant alleles of the m8 gene. The insights gained from these studies should be applicable to the conserved metazoan bHLH repressors of the Hairy and Enhancer of Split (HES) family that are related to Drosophila M8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号