首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Denitrification in the top and sub soil of grassland on peat soils   总被引:2,自引:0,他引:2  
Denitrification is an important process in the nitrogen (N) balance of intensively managed grassland, especially on poorly drained peat soils. Aim of this study was to quantify the N loss through denitrification in the top and sub soil of grassland on peat soils. Sampling took place at 2 sites with both control (0 N) and N fertilised (+ N) treatments. Main difference between the sites was the ground water level. Denitrification was measured on a weekly basis for 2 years with a soil core incubation technique using acetylene (C2H2) inhibition. Soil cores were taken from the top soil (0–20 cm depth) and the sub soil (20–40 cm depth) and incubated in containers for 24 hours. The denitrification rate was calculated from the nitrous oxide production between 4 and 24 hours of incubation. Denitrification capacities of the soils and the soil layers were also determined.The top soil was the major layer for denitrification with losses ranging from 9 to 26 kg N ha–1 yr–1 from the O N treatment. Losses from the top soil of the + N treatment ranged from 13 to 49 kg N ha–1 yr–1. The sub soil contributed, on average, 20% of the total denitrification losses from the 0–40 layer. Losses from the 0–40 cm layer were 2 times higher on the + N treatment than on the O N treatment and totalled up to 70 kg N ha–1 yr–1. Significant correlation coefficients were found between denitrification activity on the one hand, and ground water level, water filled pore space and nitrate content on the other, in the top soil but not in the sub soil. The denitrification capacity experiment showed that the availability of easily decomposable organic carbon was an important limiting factor for the denitrification activity in the sub soil of these peat soils.  相似文献   

2.
Effect of substrate-dependent microbial ethylene production on plant growth   总被引:1,自引:0,他引:1  
Various compounds have been identified as precursors/substrates for the synthesis of ethylene (C2H4) in soil. This study was designed to compare the efficiency of four substrates, namely L-methionine (L-MET), 2-keto-4-methylthiobutyric acid (KMBA), 1-aminocyclopropane-1-carboxylic acid (ACC), and calcium carbide (CaC2), for ethylene biosynthesis in a sandy clay loam soil by gas chromatography. The classic “triple” response in etiolated pea seedling was employed as a bioassay to demonstrate the effect of substrate-dependent microbial production of ethylene on plant growth. Results revealed that an amendment with L-MET, KMBA, ACC (up to 0.10 g/kg soil) and CaC2 (0.20 g/kg soil) significantly stimulated ethylene biosynthesis in soil. Overall, ACC proved to be the most effective substrate for ethylene production (1434 nmol/kg soil), followed by KMBA, L-MET, and CaC2 in descending order. Results further revealed that ethylene accumulation in soil from these substrates caused a classic “triple” response in etiolated pea seedlings with different degrees of efficacy. A more obvious classic “triple” response was observed at 0.15, 0.10, and 0.20 g/kg soil of L-MET, KMBA/ACC, and CaC2, respectively. Similarly, direct exposure of etiolated pea seedlings to commercial ethylene gas also modified the growth pattern in the same way. A significant direct correlation (r = 0.86 to 0.97) between substrate-derived C2H4 and the classic triple response in etiolated pea seedlings was observed. This study demonstrated that the presence of substrate(s) in soil may lead to increased ethylene concentration in the air of the soil, which may affect plant growth in a desired direction. Published in Russian in Mikrobiologiya, 2006, Vol. 75, No. 2, pp. 277–283. The text was submitted by the authors in English.  相似文献   

3.
Ambus  Per  Jensen  Erik Steen 《Plant and Soil》1997,197(2):261-270
Managing the crop residue particle size has the potential to affect N conservation in agricultural systems. We investigated the influence of barley (Hordeum vulgare) and pea (Pisum sativum) crop residue particle size on N mineralization and denitrification in two laboratory experiments. Experiment 1: 15N-labelled ground (3 mm) and cut (25 mm) barley residue, and microcrystalline cellulose+glucose were mixed into a sandy loam soil with additional inorganic N. Experiment 2: inorganic15 N and C2H2 were added to soils with barley and pea material after 3, 26, and 109 days for measuring gross N mineralization and denitrification.Net N immobilization over 60 days in Experiment 1 cumulated to 63 mg N kg-1 soil (ground barley), 42 (cut barley), and 122 (cellulose+glucose). More N was seemingly net mineralized from ground barley (3.3 mg N kg-1 soil) than from cut barley (2.7 mg N kg-1 soil). Microbial biomass peaked at day 4 with the barley treatments and at day 14 with the cellulose+glucose whereafter the biomass leveled out at values 79 mg C kg-1 (ground), 104 (cut), and 242 (cellulose+glucose) higher than for the control soil. Microbial growth yields were similar for the two barley treatments, ca. 60 mg C g-1 substrate C added, which was lower than the 142 mg C g-1 C added with cellulose+glucose. This suggests that the 75% (w/w) holocelluloses and sugars contained with the barley material remained physically protected despite grinding. In Experiment 2 gross mineralization on day 3 was 4.8 mg N kg-1 d-1 with ground pea, twice as much as for all other treatments. On day 26 the treatment with ground barley had the greatest gross N mineralization. In static cores ground barley denitrified 11-fold more than did cut barley, whereas denitrification was similar for the two pea treatments. In suspensions denitrification was similar for the two treatments both with barley and pea residue.We conclude that the higher microbial activity associated with the initial decomposition of ground plant material is due to a more intimate plant residue-soil contact. On the long term, grinding the plant residues has no significant effect on N dynamics.  相似文献   

4.
The source of N2O produced in soil is often uncertain because denitrification and nitrification can occur simultaneously in the same soil aggregate. A technique which exploits the differential sensitivity of these processes to C2H2 inhibition is proposed for distinguishing among gaseous N losses from soils. Denitrification N2O was estimated from 24-h laboratory incubations in which nitrification was inhibited by 10-Pa C2H2. Nitrification N2O was estimated from the difference between N2O production under no C2H2 and that determined for denitrification. Denitrification N2 was estimated from the difference between N2O production under 10-kPa C2H2 and that under 10 Pa. Laboratory estimates of N2O production were significantly correlated with in situ N2O diffusion measurements made during a 10-month period in two forested watersheds. Nitrous oxide production from nitrification was most important on well-drained sites of a disturbed watershed where ambient NO3 was high. In contrast, denitrification N2O was most important on poorly drained sites near the stream of the same watershed. Distinction between N2O production from nitrification and denitrification was corroborated by correlations between denitrification N2O and water-filled pore space and between nitrification N2O and ambient NO3. This technique permits qualitative study of environmental parameters that regulate gaseous N losses via denitrification and nitrification.  相似文献   

5.
Summary To examine the effect of barley roots on denitrification, a pot experiment was designed to compare N2O production and denitrification in soils with and without barley plants. Denitrification, N2O resulting from denitrification and nitrification, and respiration were estimated by incubating pots with soil with and without intact plants in plastic bags at high moisture levels. C2H2-inhibition of nitrous oxide reductase (partial pressure of 10 kPa C2H2) was used to determine total denitrification rates while incubations with ambient air and with C2H2 at partial pressures of 2.5–5 Pa were used to estimate the amounts of N2O released from autotrophic nitrification and from denitrification processes. Other sources of N2O were presumed to be negligible. Potential denitrification, nitrification and root biomass were measured in subsamples collected from four soil depths. A positive correlation was found between denitrification rates and root biomass. N2 was the predominant denitrification product found close to roots; N2O formed by non autotrophic nitrifiers, assumed to be denitrifiers originated in soil not affected by growing roots. Apparently, roots promote denitrification because they consumed oxygen, thereby increasing the anaerobic volume of the soil. The ratio of actual to potential denitrification rates increased over time, especially in the presence of roots.  相似文献   

6.
Hagedorn  Frank  Bucher  Jürg B.  Tarjan  David  Rusert  Peter  Bucher-Wallin  Inga 《Plant and Soil》2000,224(2):273-286
The objectives of this study were to estimate how soil type, elevated N deposition (0.7 vs. 7 g N m–2y–1) and tree species influence the potential effects of elevated CO2 (370 vs. 570 mol CO2 mol–1) on N pools and fluxes in forest soils. Model spruce-beech forest ecosystems were established on a nutrient-rich calcareous sand and on a nutrient-poor acidic loam in large open-top chambers. In the fourth year of treatment, we measured N concentrations in the soil solution at different depths, estimated N accumulation by ion exchange resin (IER) bags, and quantified N export in drainage water, denitrification, and net N uptake by trees. Under elevated CO2, concentrations of N in the soil solution were significantly reduced. In the nutrient-rich calcareous sand, CO2 enrichment decreased N concentrations in the soil solution at all depths (–45 to –100%). In the nutrient-poor acidic loam, the negative CO2 effect was restricted to the uppermost 5 cm of the soil. Increasing the N deposition stimulated the negative impact of CO2 enrichment on soil solution N in the acidic loam at 5 cm depth from –20% at low N inputs to –70% at high N inputs. In the nutrient-rich calcareous sand, N additions did not influence the CO2 effect on soil solution N. Accumulation of N by IER bags, which were installed under individual trees, was decreased at high CO2 levels under spruce in both soil types. Under beech, this decrease occurred only in the calcareous sand. N accumulation by IER bags was negatively correlated with current-years foliage biomass, suggesting that the reduction of soil N availability indices was related to a CO2-induced growth enhancement. However, the net N uptake by trees was not significantly increased by elevated CO2. Thus, we suppose that the reduced N concentrations in the soil solution at elevated CO2 concentrations were rather caused by an increased N immobilisation in the soil. Denitrification was not influenced by atmospheric CO2 concentrations. CO2 enrichment decreased nitrate leaching in drainage by 65%, which suggests that rising atmospheric CO2 potentially increases the N retention capacity of forest ecosystems.  相似文献   

7.
The effects of C2H2 metabolism on N2O production were examined in soil slurries. Enrichment of C2H2 consumption activity occurred only in aerobic incubations. Rapid disappearance of subsequent C2H2 additions, stimulation of CO2 production, and most-probable-number enumerations of C2H2 utilizers indicated enrichment of the population responsible. During C2H2 consumption in slurries incubated statically under air, maximal rates of N2O evolution were 19 times higher than those in anaerobic incubations. After 20 days of enrichment with C2H2, the production of N2O by slurries supplemented with C2H2 and nitrate was 10 times higher than that in the unenriched controls. A Nocardia- or Arthrobacter-like bacterium was isolated that grew on C2H2 but did not denitrify. The behavior of soil inoculated with this bacterium became similar to that of C2H2-enriched soil incubated aerobically. Ethanol, acetate, and acetaldehyde were identified in enrichment experiments, and denitrification in soil slurries was stimulated by addition of the supernatant from a pure culture grown on mineral medium with C2H2. These results indicate that denitrification can be stimulated by the actions of an aerobic, nondenitrifying C2H2-metabolizing population. Utilization of intermediate metabolites by denitrifiers and enhanced O2 consumption are two possible mechanisms for this stimulation.  相似文献   

8.
Factors influencing the seasonal and daily variation in denitrification rates in grazed swards were examined at 5 experimental sites in England with wide ranging environmental/geographic conditions. There was a wide range of fertilizer inputs at each site. Rates of denitrification were estimated by a coring and field incubation technique using acetylene to inhibit the reduction of N2O to N2. Major features of the detailed results from two of the sites were: (i) the large ranges in rates of loss, (ii) the relatively low contributions to total annual loss during autumn and winter, (iii) the apparent association of high rates of loss with fertilizer additions made when the soil was wet or immediately preceding a rainfall event, and (iv) significant losses from soil at 10–30 cm in the profile. Multiple quadratic regression analysis of the effects of soil NO3 --N, soil temperature and water was used to explain variability in rates of loss. When separate regressions were fitted within each site × year × season × fertilizer level subset, 51% of the variation in loss was explained on a poorly drained fine loam/silt but only 38% on a freely drained loam.  相似文献   

9.
Potential denitrification rates were determined for predominantly acid (pH ≥ 3.6) horizons of forestal, miry, and agricultural soils from 22 locations in southern Finland. The acetylene inhibition method was used with nitrate-amended water-logged soils incubated in an N2 atmosphere containing 2.5 or 5% C2H2. Complete inhibition of the reduction of N2O to N2 was observed in 99.3% of the samples. The denitrification rates varied from 0.12 to 53.8 μg of N·cm-3·day-1. Correlation between denitrification rate and soil pH was highly significant: r = 0.84 on a volume basis, and r = 0.44 on a weight basis. Vegetation type and amount of soil organic matter had a minor or no effect, respectively. In spodosolized soils the rates were significantly higher for B horizons than for A horizons. These results show that denitrification can occur in acid soils.  相似文献   

10.
Exudation of carboxylic anions and protons by plant roots plays an important role in mobilizing soil P under P-deficiency conditions. The objective of this work was to quantify short-term (6 h) carboxylate and H+ exudation by tomato roots in response to P concentration (0, 0.1, 0.5 and 1.0 mt M P) in nutrient solution (Cp). The exudation rate of tri- and dicarboxylates decreased exponentially with increasing Cp, from 0.3 to 0.03 mol plant–1 6h–1. At low Cp the predominant exudates were fumarate, citrate and succinate, while at Cp=0.5 and 1.0 mt M the prevalent anions were succinate and citrate. The solution pH declined sharply as Cp was lowered from 0.1 (pH=4.2) to 0 mt M P (pH=3.7).  相似文献   

11.
Denitrification in San Francisco Bay Intertidal Sediments   总被引:23,自引:17,他引:6       下载免费PDF全文
The acetylene block technique was employed to study denitrification in intertidal estuarine sediments. Addition of nitrate to sediment slurries stimulated denitrification. During the dry season, sediment-slurry denitrification rates displayed Michaelis-Menten kinetics, and ambient NO3 + NO2 concentrations (≤26 μM) were below the apparent Km (50 μM) for nitrate. During the rainy season, when ambient NO3 + NO2 concentrations were higher (37 to 89 μM), an accurate estimate of the Km could not be obtained. Endogenous denitrification activity was confined to the upper 3 cm of the sediment column. However, the addition of nitrate to deeper sediments demonstrated immediate N2O production, and potential activity existed at all depths sampled (the deepest was 15 cm). Loss of N2O in the presence of C2H2 was sometimes observed during these short-term sediment incubations. Experiments with sediment slurries and washed cell suspensions of a marine pseudomonad confirmed that this N2O loss was caused by incomplete blockage of N2O reductase by C2H2 at low nitrate concentrations. Areal estimates of denitrification (in the absence of added nitrate) ranged from 0.8 to 1.2 μmol of N2 m−2 h−1 (for undisturbed sediments) to 17 to 280 μmol of N2 m−2 h−1 (for shaken sediment slurries).  相似文献   

12.
Production and sources of N2O were determined in soil columns amended with autoclaved yeast cells either mixed into or added as 0.5 cm3 lumps to the soil in combination with no or 200 g NO3 --N g-1. At four occasions over a two-week study period, subsets of cores were measured for N2O production during 4-hour incubations under atmospheres of ambient air, 10 Pa of C2H2, and N2, respectively. Denitrification enzyme activity (DEA) was assessed in subsamples of cores that had been incubated continuously under air.Autoclaved yeast provided a C-source readily available for denitrifying bacteria in the soil. Nitrous oxide production was negligible in unamended columns whereas accumulated N2O losses in the presence of yeast material were substantial, varying between 15 to 49 ng N2O-N g-1 h-1. Mixing yeast into the soil caused the highest production of N2O followed by the yeast lump and no yeast treatments. Incubation in the presence of 10 Pa C2H2 indicated that denitrification was the sole source of N2O, in accordance with an increase in DEA. Nitrous oxide production and DEA peaked after 4–7 days of incubation, and both were unaffected by additional NO3 -. Two-to four-fold responses to anaerobiosis and accumulation of NO3 - and NH4 + in proximity of the lumps indicated that N2O production here was limited by relatively low C-availability. In contrast, 10- to 12-fold responses to anaerobiosis and no accumulation of inorganic N suggested a higher C-availability where yeast was mixed into the soil.  相似文献   

13.
A mixed beech and spruce forest soil was incubated under potential denitrification assay (PDA) condition with 10% acetylene (C2H2) in the headspace of soil slurry bottles. Nitrous oxide (N2O) concentration in the headspace, as well as nitrate, nitrite and ammonium concentrations in the soil slurries were monitored during the incubation. Results show that nitrate disappearance rate was higher than N2O production rate with C2H2 blockage during the incubation. Sum of nitrate, nitrite, and N2O with C2H2 blockage could not recover the original soil nitrate content, showing an N imbalance in such a closed incubation system. Changes in nitrite and ammonium concentration during the incubation could not account for the observed faster nitrate disappearance rate and the N imbalance. Non-determined nitric oxide (NO) and N2 production could be the major cause, and the associated mechanisms could vary for different treatments. Commonly applied PDA measurement likely underestimates the nitrate removal capacity of a system. Incubation time and organic matter/nitrate ratio are the most critical factors to consider using C2H2 inhibition technique to quantify denitrification. By comparing the treatments with and without an antibiotic, the results suggest that microbial N uptake probably played a minor role in N balance, and other denitrifying enzymes but nitrate reductase could be substantially synthesized during the incubation.  相似文献   

14.
Mahmood  T.  Malik  K.A.  Shamsi  S.R.A.  Sajjad  M.I. 《Plant and Soil》1998,199(2):239-250
Denitrification and total N losses were quantified from an irrigated field cropped to maize and wheat, each receiving urea at 100 kg N ha-1. During the maize growing season (60 days), the denitrification loss measured directly by acetylene inhibition-soil cover method amounted 2.72 kg N ha-1 whereas total N loss measured by 15N balance was 39 kg ha-1. Most (87%) of the denitrification loss under maize occurred during the first two irrigation cycles. During the wheat growing season (150 days), the denitrification loss directly measured by acetylene inhibition-soil cover and acetylene inhibition-soil core methods was 1.14 and 3.39 kg N ha-1, respectively in contrast to 33 kg N ha-1 loss measured by 15N balance. Most (70-88%) of the denitrification loss under wheat occurred during the first three irrigation cycles. Soil moisture and NO 3 - -N were the major factors limiting denitrification under both crops. Higher N losses measured by 15N balance than C2H2 inhibition method were perhaps due to underestimation of denitrification by C2H2 inhibition method and losses other than denitrification, most probably NH3 volatilization.  相似文献   

15.
Abstract

A greenhouse experiment was conducted to evaluate phytotoxicity and distribution of Cu in a tropical soil amended with sewage sludge (Sw) and copper sulfate (CuSO4.5H2O). Samples of a clay soil from the State of Paraná, Brazil were collected at depth of 0–20; 20–40 and 40–60 cm, and brought to the laboratory to be properly accommodated in experimental units (PVC tubes). The Cu treatments were performed by the application of Sw (10 t ha-1) amended with Cu (SB-T), and by CuSO4. H2O (WB-T). Lettuce plants were cultivated in the amended soil in order to predict the toxicity of the Cu. The experiment was conducted for 70 days, and then the lettuce plants and soil samples were collected for analysis. A sequential method was used to separate soil Cu into following fractions: exchangeable, amorphous iron oxide bound, crystalline iron oxide bound, organic matter bound and residual bound. The experimental results showed that Fe, Zn, K, P, Cu and organic matter amounts of the soil increased with the treatment SB-T. The toxic phyto-available Cu content in the soil for the lettuce plants was 80.00 mg kg-1. A percolation study showed that the Cu contents were larger for the first 20 cm of depth, indicating that the metal was not transported down the soil profile. The Cu content of different fractions declined in an order residual > amorphous iron oxide > crystalline iron oxide > organic matter > exchangeable, regardless of treatment performed. Additionally, the Cu contents added from treatments were determined mainly in amorphous iron oxide fraction.  相似文献   

16.
Soil from a pulse cultivated farmers land of Odisha, India, have been subjected to incubation studies for 40 consecutive days, to establish the impact of various nitrogenous fertilizers and water filled pore space (WFPS) on green house gas emission (N2O & CH4). C2H2 inhibition technique was followed to have a comprehensive understanding about the individual contribution of nitrifiers and denitrifiers towards the emission of N2O. Nevertheless, low concentration of C2H2 (5 ml: flow rate 0.1 kg/cm2) is hypothesized to partially impede the metabolic pathways of denitrifying bacterial population, thus reducing the overall N2O emission rate. Different soil parameters of the experimental soil such as moisture, total organic carbon, ammonium content and nitrate–nitrogen contents were measured at regular intervals. Application of external N-sources under different WFPS conditions revealed the diverse role played by the indigenous soil microorganism towards green house gas emission. Isolation of heterotrophic microorganisms (Pseudomonas) from the soil samples, further supported the fact that denitrification might be prevailing during specific conditions thus contributing to N2O emission. Statistical analysis showed that WFPS was the most influential parameter affecting N2O formation in soil in absence of an inhibitor like C2H2.  相似文献   

17.
Characterizing denitrification rates in aquatic ecosystems is essential to understanding how systems may respond to increased nutrient loading. Thus, it is important to ensure the precision and accuracy of the methods employed for measuring denitrification rates. The acetylene (C2H2) inhibition method is a simple technique for estimating denitrification. However, potential problems, such as inhibition of nitrification and incomplete inhibition of nitrous oxide reduction, may influence rate estimates. Recently, membrane inlet mass spectrometry (MIMS) has been used to measure denitrification in aquatic systems. Comparable results were obtained with MIMS and C2H2 inhibition methods when chloramphenicol was added to C2H2 inhibition assay mixtures to inhibit new synthesis of denitrifying enzymes. Dissolved-oxygen profiles indicated that surface layers of sediment cores subjected to the MIMS flowthrough incubation remained oxic whereas cores incubated using the C2H2 inhibition methods did not. Analysis of the microbial assemblages before and after incubations indicated significant changes in the sediment surface populations during the long flowthrough incubation for MIMS analysis but not during the shorter incubation used for the C2H2 inhibition method. However, bacterial community changes were also small in MIMS cores at the oxygen transition zone where denitrification occurs. The C2H2 inhibition method with chloramphenicol addition, conducted over short incubation intervals, provides a cost-effective method for estimating denitrification, and rate estimates are comparable to those obtained by the MIMS method.  相似文献   

18.
Summary The effect of KNO3 and N2O on the accumulation of CH4, H2 and denitrification products in two North Dakota soils during anaerobic incubation at 30°C was studied by means of gas chromatography. KNO3 and N2O (500 ppm N) reduced the rate of accumulation of CH4 by a Tetonka soil regardless of whether the soil was in an air-dried condition or had been pre-incubated and actively producing CH4 prior to the treatment application. Both KNO3 and N2O completely suppressed H2 accumulation by the remoistened air-dried soil; no H2 either in the presence or absence of added KNO3 or N2O was accumulated by the pre-incubated Tetonka soil subsequent to the treatment application. KNO3 (250 ppm N) reduced the rate of accumulation of CH4 by a Cavour loam during anaerobic incubation. No H2 was accumulated by this soil during anaerobic incubation. At equivalent K+ concentrations, KNO3 suppressed CH4 accumulation by the Tetonka and Cavour soils to a greater extent than did KCl.  相似文献   

19.
A level feedlot, located in an area consisting of Wann silt loam changing with depth to sand, appears to contribute no more NO3- nitrogen, NH4+ nitrogen, and total nitrogen to the shallow water table beneath it than an adjacent cropped field. Soil water samples collected at 46, 76, and 107 cm beneath the feedlot surface generally showed NO3- nitrogen concentrations of less than 1 μg/ml. During the summer months, soil water NO3- nitrogen increased at the 15-cm depth, indicating that nitrification took place at the feedlot surface. However, the low soil water NO3- nitrogen values below 15 cm indicate that denitrification takes place beneath the surface.  相似文献   

20.
Adaptation of Denitrifying Populations to Low Soil pH   总被引:3,自引:0,他引:3       下载免费PDF全文
Natural denitrification rates and activities of denitrifying enzymes were measured in an agricultural soil which had a 20-year past history of low pH (pH ca. 4) due to fertilization with acid-generating ammonium salts. The soil adjacent to this site had been limed and had a pH of ca. 6.0. Natural denitrification rates of these areas were of similar magnitude: 158 ng of N g−1 of soil day−1 for the acid soil and 390 ng of N g−1 of soil day−1 at the neutral site. Estimates of in situ denitrifying enzyme activity were higher in the neutral soil, but substantial enzyme activity was also detected in the acid soil. Rates of nitrous oxide reduction were very low, even when NO3 and NO2 were undetectable, and were ca. 400 times lower than the rates of N2O production from NO3. Denitrification rates measured in slurries of the acid and neutral soil showed distinctly different pH optima (pH 3.9 and pH 6.3) which were near the pH values of the two soils. This suggests that an acid-tolerant denitrifying population had been selected during the 20-year period of low pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号