首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation   总被引:22,自引:0,他引:22  
A relatively small group of hyperaccumulator plants is capable of sequestering heavy metals in their shoot tissues at high concentrations. In recent years, major scientific progress has been made in understanding the physiological mechanisms of metal uptake and transport in these plants. However, relatively little is known about the molecular bases of hyperaccumulation. In this paper, current progresses on understanding cellular/molecular mechanisms of metal tolerance/hyperaccumulation by plants are reviewed. The major processes involved in hyperaccumulation of trace metals from the soil to the shoots by hyperaccumulators include: (a) bioactivation of metals in the rhizosphere through root–microbe interaction; (b) enhanced uptake by metal transporters in the plasma membranes; (c) detoxification of metals by distributing to the apoplasts like binding to cell walls and chelation of metals in the cytoplasm with various ligands, such as phytochelatins, metallothioneins, metal-binding proteins; (d) sequestration of metals into the vacuole by tonoplast-located transporters. The growing application of molecular-genetic technologies led to the well understanding of mechanisms of heavy metal tolerance/accumulation in plants, and subsequently many transgenic plants with increased resistance and uptake of heavy metals were developed for the purpose of phytoremediation. Once the rate-limiting steps for uptake, translocation, and detoxification of metals in hyperaccumulating plants are identified, more informed construction of transgenic plants would result in improved applicability of the phytoremediation technology.  相似文献   

2.
Perspectives of plant-associated microbes in heavy metal phytoremediation   总被引:6,自引:0,他引:6  
"Phytoremediation" know-how to do-how is rapidly expanding and is being commercialized by harnessing the phyto-microbial diversity. This technology employs biodiversity to remove/contain pollutants from the air, soil and water. In recent years, there has been a considerable knowledge explosion in understanding plant-microbes-heavy metals interactions. Novel applications of plant-associated microbes have opened up promising areas of research in the field of phytoremediation technology. Various metabolites (e.g., 1-aminocyclopropane-1-carboxylic acid deaminase, indole-3-acetic acid, siderophores, organic acids, etc.) produced by plant-associated microbes (e.g., plant growth promoting bacteria, mycorrhizae) have been proposed to be involved in many biogeochemical processes operating in the rhizosphere. The salient functions include nutrient acquisition, cell elongation, metal detoxification and alleviation of biotic/abiotic stress in plants. Rhizosphere microbes accelerate metal mobility, or immobilization. Plants and associated microbes release inorganic and organic compounds possessing acidifying, chelating and/or reductive power. These functions are implicated to play an essential role in plant metal uptake. Overall the plant-associated beneficial microbes enhance the efficiency of phytoremediation process directly by altering the metal accumulation in plant tissues and indirectly by promoting the shoot and root biomass production. The present work aims to provide a comprehensive review of some of the promising processes mediated by plant-associated microbes and to illustrate how such processes influence heavy metal uptake through various biogeochemical processes including translocation, transformation, chelation, immobilization, solubilization, precipitation, volatilization and complexation of heavy metals ultimately facilitating phytoremediation.  相似文献   

3.
Metal hyperaccumulator plants like Thlaspi caerulescens J. & C. Presl. are used for phytoremediation of contaminated soils. Since little is known about the rhizosphere of hyperaccumulators, the influence of T. caerulescens was compared with the effects of Trifolium pratense L. on soil microbes. High- and low-metal soils were collected near a zinc smelter in Palmerton, Penn. Soil pH was adjusted to 5.8 and 6.8 by the addition of Ca(OH)2. Liming increased bacterial populations and decreased metal toxicity to levels allowing growth of both plants. The effects of the plants on total (culturable) bacteria, total fungi, as well as cadmium- and zinc-resistant populations were assessed in nonrhizosphere and rhizosphere soil. Both plants increased microbial populations in rhizosphere soil compared with nonrhizosphere soil. Microbial populations were higher in soils planted with T. pratense, but higher ratios of metal-resistant bacteria were found in the presence of T. caerulescens. We hypothesize that T. caerutescens acidifies its rhizosphere. Soil acidification in the rhizosphere of T. caerulescens would affect metal uptake by increasing available metals around the roots and consequently, increase the selection for metal-resistant bacteria. Soil acidification may be part of the hyperaccumulation process enhancing metal uptake from soil.  相似文献   

4.
Advances in Research on Genetically Engineered Plants for Metal Resistance   总被引:1,自引:0,他引:1  
The engineering application of natural hyperaccumulators In removing or inactivating metal pollutants from soil and surface water In field trials mostly presents the insurmountable shortcoming of low efficiency owing to their little biomass and slow growth. Based on further understanding of the molecular mechanism of metal uptake, translocation, and also the separation, identification, and cloning of some related functional genes, this article highlights and summarizes In detail the advances in research on transgenlc techniques, such as Agrobacterlurn tumefaciens-medlated transformation and particle bombardment, in breeding of plants for metal resistance and accumulation, and points out that deepening the development of transgenlc plants Is one of the efficient approaches to improving phytoremedlatlon efficiency of metalcontaminated environments. From the viewpoint of sustainable development, governments should strengthen support to the development of genetic engineering for metal resistance and accumulation In plants.  相似文献   

5.
Phytoextraction of metals and metalloids from contaminated soils   总被引:63,自引:0,他引:63  
The removal of inorganic contaminants by plants is termed phytoextraction. Recent studies have looked at the feasibility of phytoextraction, and demonstrate that both good biomass yields and metal hyperaccumulation are required to make the process efficient. Adding chelating agents to soil to increase the bioavailability of contaminants can sometimes induce hyperaccumulation in normal plants, but may produce undesirable environmental risks. Thus, it is necessary to investigate the mechanisms responsible for hyperaccumulation, using natural hyperaccumulators as model plant species. Recent advances have been made in understanding the mechanisms responsible for hyperaccumulation of Zn, Cd, Ni and As by plants. Attempts to engineer metal tolerance and accumulation have so far been limited to Hg, As and Cd, and although promising results have been obtained they may be some way from practical application. More fundamental understanding of the traits and mechanisms involved in hyperaccumulation are needed so that phytoextraction can be optimised.  相似文献   

6.
植物对重金属的吸收和分布   总被引:68,自引:2,他引:68  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合脓等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子方面的研究进展。  相似文献   

7.
植物对重金属的吸收和分布   总被引:3,自引:0,他引:3  
植物修复是利用植物来清除污染土壤中重金属的一项技术。该技术成功与否取决于植 物从土壤中吸取金属以及向地上部运输金属的能力。植物对金属的吸收主要取决于自由态离子活度。许多螯合剂能诱导植物对重金属的吸收。金属离子在液泡中的区域化分布是植物耐 重金属的主要原因。同时,细胞内的金属硫蛋白、植物螯合肽等蛋白质以及有机酸、氨基酸等在金属贮存和解毒方面也起重要作用。本文还论述了重金属在植物体内运输的生理及分子 方面的研究进展。  相似文献   

8.
植物采矿是利用超积累植物高量吸收土壤中的重金属,并从中提取、冶炼金属产品,在修复污染土壤的同时实现金属的资源化。全世界广泛分布着自然风化的镍污染土壤,植物采矿因其重要的环境、生态及资源价值,被作为一种环境友好且具备经济效益的土壤修复技术,在此类地区具有广阔的应用前景。该植物采矿技术关键过程主要包括超积累植物镍高选择性根际环境响应、植物镍高效吸收转运以及生物质中镍高附加值资源化等过程。近30年,污染土壤中镍的植物采矿已经在美国、阿尔巴尼亚、马来西亚等多个国家进行了野外实践,取得了良好效果。然而,相关技术在我国的研究与应用仍然处于起步阶段。文中通过综述植物采矿技术的关键过程的研究进展,发现其中的瓶颈,为接下来植物采矿的科学研究和技术在全世界推广提供理论基础和技术指导。  相似文献   

9.
为探讨铅锌矿废弃地优势植物在重金属污染土壤植物修复中的应用潜力,利用野外采样分析法,从粤东梅县丙村铅锌尾矿区采集其三种优势植物类芦、黄荆、盐肤木的根、茎、叶和土壤样品,测定和分析Pb、Zn、Cu、Cd四种重金属含量.结果表明:该矿区土壤污染严重,Pb、Zn、Cd含量远超土壤环境质量的三级标准,Cu超出二级标准;根际土壤和非根际土壤重金属含量均为Pb>Zn>Cu>Cd,但根际土壤的重金属含量显著低于非根际土壤;这三种植物对Pb、Zn、Cu的转移系数大于1.0,对Cu的富集系数最高,Pb最小,但对四种重金属的富集系数均小于1.0,均未达到超富集植物临界含量标准.三种植物为该矿区的优势植物,说明它们对土壤的重金属污染有很强的耐性,虽然并非典型的超富集植物,但对污染土壤仍有较好的修复效果.  相似文献   

10.
Chelate-Enhanced Phytoremediation of Soils Polluted with Heavy Metals   总被引:10,自引:0,他引:10  
In general, hyperaccumulators are low biomass, slow-growing plants. High biomass non-hyperaccumulator plants by themselves are not a valid alternative for phytoextraction as they also have many limitations, such as small root uptake and little root-to-shoot translocation. In this context, chemically-induced phytoextraction (based on the fact that the application of certain chemicals, mostly chelating agents, to the soil significantly enhances metal accumulation by plants) has been proposed as an alternative for the cleaning up of metal polluted soils. But chelate-induced phytoextraction increases the risk of adverse environmental effects due to metal mobilization during extended periods of time. In order to minimize the phytotoxicity and environmental problems associated with the use of chelating agents, nowadays, research is being carried out on the gradual application of small doses of the chelating agent during the growth period. However, EDTA utilization in the future will most likely be limited to ex situconditions where control of the leachates can be achieved. There are other mobilizing agents which are much less harmful to the environment such as citric acid, NTA, and particularly EDDS. Research should also be aimed towards more innovative agronomic practices. Environmentally safe methods of chelate-induced phytoextraction must be developed before steps towards further development and commercialization of this remediation technology are taken. Most importantly, more applied projects in this field are needed to clarify the real potential and risks of this technology.  相似文献   

11.
Heavy metal pollution of soil is a significant environmental problem with a negative potential impact on human health and agriculture. Rhizosphere, as an important interface of soil and plants, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria or mycorrhizas have received more and more attention. In addition, some plants possess a range of potential mechanisms that may be involved in the detoxification of heavy metals, and they manage to survive under metal stresses. High tolerance to heavy metal toxicity could rely either on reduced uptake or increased plant internal sequestration, which is manifested by an interaction between a genotype and its environment.A coordinated network of molecular processes provides plants with multiple metal-detoxifying mechanisms and repair capabilities. The growing application of molecular genetic technologies has led to an increased understanding of mechanisms of heavy metal tolerance/accumulation in plants and, subsequently, many transgenic plants with increased heavy metal resistance, as well as increased uptake of heavy metals, have been developed for the purpose of phytoremediation. This article reviews advantages, possible mechanisms, current status and future direction of phytoremediation for heavy-metal–contaminated soils.  相似文献   

12.
几种有机添加剂对遏蓝菜和东南景天吸收提取Zn的效应   总被引:3,自引:0,他引:3  
邓金川  吴启堂  龙新宪  卫泽斌 《生态学报》2005,25(10):2562-2568
通过盆栽试验,比较研究乙二胺四乙酸二钠盐(EDTA)、味精废液、柠檬酸、乙酸、草酸和混合试剂(柠檬酸∶味精废液∶EDTA∶KC l=10∶1∶2∶3)对Zn超累积植物遏蓝菜(T h lasp i caeru lescens)和东南景天(S edum a lf red ii)吸收提取Zn的影响。结果表明:各种添加剂均提高土壤中的水提取态和NH4NO3提取态Zn的含量,其顺序为EDTA混合试剂>味精废液>有机酸。除乙酸和味精废液外,其余添加剂都显著促进遏蓝菜的生长,以混合试剂的增产效果最好;但只有EDTA和混合试剂在浓度为10mm o l/kg土时提高了东南景天的生物量。混合试剂在浓度为6~10 mm o l/kg土时促进遏蓝菜对Zn的吸收和向地上部转移;EDTA和浓度为10mm o l/kg的混合试剂能显著促进东南景天对Zn的吸收和向地上部的转移。因此东南景天配合环境风险较小、用量为10mm o l/kg土的混合试剂较适合我国南方的Zn污染土壤。  相似文献   

13.
Metals contaminate the soil when present in high concentrations causing soil and ultimately environmental pollution. “Phytoremediation” is the use of plants to remove pollutants from contaminated environments. Plants tightly regulate their internal metal concentrations in a process called “metal homeostasis”. Some species have evolved extreme tolerance and accumulation of Zn, Cd and Ni as a way to adapt to exposure to these metals. Such traits are beneficial for phytoremediation, however, most natural metal hyperaccumulator species are not adapted to agriculture and have low yields. A wealth of knowledge has been generated regarding metal homeostasis in plants, including hyperaccumulators, which can be used in phytoremediation of Zn, Cd and Ni. In this review, we describe the current state of Zn, Cd and Ni physiology in plants and the underlying molecular mechanisms. The ways to efficiently utilize this information in designing high biomass metal accumulator plants are discussed. The potential and application of genetic modification has extended our understanding about the mechanisms in plants dealing with the metal environment and has paved the way to achieve the goal of understanding metal physiology and to apply the knowledge for the containment and clean up of metal contaminated soils.  相似文献   

14.
Metal hyperaccumulator plants like Alyssum murale are used for phytoremediation of Ni contaminated soils. Soil microorganisms are known to play an important role in nutrient acquisition for plants, however, little is known about the rhizosphere microorganisms of hyperaccumulators. Fresh and dry weight, and Ni and Fe concentrations in plant shoots were higher when A. murale was grown in non-sterilized compared to sterilized soils. The analysis of microbial populations in the rhizosphere of A. murale and in bulk soils demonstrated that microbial numbers were affected by the presence of the plant. Significantly higher numbers of culturable actinomycetes, bacteria and fungi were found in the rhizosphere compared to bulk soil. A higher percent of Ni-resistant bacteria were also found in the rhizosphere compared to bulk soil. Percentage of acid producing bacteria was higher among the rhizosphere isolates compared to isolates from bulk soil. However, proportions of siderophore producing and phosphate solubilizing bacteria were not affected by the presence of the plant. We hypothesize that microbes in the rhizosphere of A. murale were capable of reducing soil pH leading to an increase in metal uptake by this hyperaccumulator.  相似文献   

15.
超富集植物吸收富集重金属的生理和分子生物学机制   总被引:31,自引:2,他引:31  
与普通植物相比,超富集植物在地上部富集大量重金属离子的情况下可以正常生长,其富集重金属的机理已经成为当前植物逆境生理研究的热点领域.尤其是近两年,随着分子生物学等现代技术手段的引人,关于重金属离子富集机理的研究取得了一定进展.通过与酵母突变株功能互补克隆到了多条编码微量元素转运蛋白的全长cDNA;也从分子水平上研究了谷胱甘肽、植物螯合素、金属硫蛋白、有机酸或氨基酸等含巯基物质与重金属富集之间的可能关系.本文从植物生理和分子生物学角度简要评述超富集植物对重金属元素的吸收、富集、整合及区室化的机制.  相似文献   

16.
根分泌物在污染土壤生物修复中的作用   总被引:17,自引:2,他引:17  
对根分泌物在植物根际微生态环境中 ,通过土壤 植物 微生物系统协同作用高效修复重金属和有机污染土壤的环境过程与机理进行了综述。根分泌物在重金属污染土壤植物修复中的作用主要表现在活化污染区重金属元素 ,使固定态转化为植物可吸收态 ,大大提高了重金属的植物有效性 ,通过植物的超积累作用 ,降低土壤中重金属污染物的含量 ;此外 ,根分泌物也可以和重金属形成稳定的螯合体 ,降低他们在土壤中的移动性 ,起到固定和钝化作用。对于有机污染物 ,根分泌物一方面为根际的微生物提供了丰富的营养和能源 ,使植物根际的微生物数量和代谢活力比非根际区高 ,增强了微生物对环境中的有机污染物的降解能力 ;另一方面植物根分泌到根际的酶系统可直接参与有机污染物降解的生化过程 ,提高降解效率。并对此领域今后研究工作的方向做了探讨  相似文献   

17.
Bioremediation is gaining a lot of importance in recent times as an alternate technology for removal of elemental pollutants in soil and water, which require effective methods of decontamination. Phytoremediation--the use of green plants to remove, contain or render harmless environmental pollutants--may offer an effective, environmentally nondestructive and cheap remediation method. The use of genetic engineering to modify plants for metal uptake, transport and sequestration may open up new avenues for enhancing efficiency of phytoremediation. Metal chelator, metal transporter, metallothionein (MT), and phytochelatin (PC) genes have been transferred to plants for improved metal uptake and sequestration. Transgenic plants, which detoxify/accumulate cadmium, lead, mercury, arsenic and selenium have been developed. A better understanding of the mechanisms of rhizosphere interaction, uptake, transport and sequestration of metals in hyperaccumulator plants will lead to designing novel transgenic plants with improved remediation traits. As more genes related to metal metabolism are discovered, facilitated by the genome sequencing projects, new vistas will be opened up for development of efficient transgenic plants for phytoremediation.  相似文献   

18.
Hamon  R.E.  Holm  P.E.  Lorenz  S.E.  McGrath  S.P.  Christensen  T.H. 《Plant and Soil》1999,216(1-2):53-64
Uptake of metals by plants growing in sewage sludge-amended soils frequently exhibits a plateau response at high sludge loading rates associated with high total concentrations of metals in the soil. This type of response has generally been attributed to attenuation of metal bioavailability by increased sorption sites provided by the sludge constituents at the high sludge loading rates. We grew Raphanus sativus L. in a soil historically amended with sewage sludge at different rates and examined concentrations of Cd and Zn in the plants and in corresponding rhizosphere soil solution. Metal concentrations in the plants displayed a plateau response. However, concentrations of total or free metals in the soil solution did not display a similar plateau response, therefore the pre-requisite for determining that metal uptake by plants was limited by sludge chemistry was not met. It was concluded that plant physiological factors were responsible for the plateau in plant metal concentrations observed in this study. Examination of data by other authors suggests that a plateau response due to plant physiological factors has routinely been misinterpreted as being the result of only attenuation by sludge chemistry. The serious implications of an incorrect interpretation of the factors underlying a plateau response are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
丛枝菌根在植物修复重金属污染土壤中的作用   总被引:23,自引:0,他引:23  
王发园  林先贵 《生态学报》2007,27(2):793-801
丛枝菌根(Arbuscular mycorrhizae,AM)是自然界中分布最广的一类菌根,AM真菌能与陆地上绝大多数的高等植物共生,常见于包括重金属污染土壤在内的各种生境中。在重金属污染条件下,AM真菌可以减轻重金属对植物的毒害,影响植物对重金属的吸收和转运,在重金属污染土壤的植物修复中显示出极大的应用潜力。重点介绍了AM真菌对植物重金属耐性的影响及其在植物提取和植物稳定中的应用等方面的进展,讨论了未来研究所面临的任务和挑战。  相似文献   

20.
Phytoremediation of Metal-Polluted Ecosystems: Hype for Commercialization   总被引:8,自引:0,他引:8  
Air, water, and soil are polluted by a variety of metals due to anthropogenic activities, which alter the normal biogeochemical cycling. Biodiversity has been employed widely by both developed and developing nations for environmental decontamination of metals. These technologies have gained considerable momentum in the recent times with a hype for commercialization. The United States Environmental Protection Agency's remediation program included phytoremediation of metals and radionuclides as a thrust area to an extent of 30% during the year 2000. Plants, that hyperaccumulate metals, are the ideal model organisms and attracted attention of scientists all over the world for their application in phytoremediation technology. Metal hyperaccumulators have the ability to overcome major physiological bottlenecks. The potential of hyperaccumulators for phytoremediation application relies upon their growth rates (i.e., biomass production) and metal accumulation rate (g metal per kg of plant tissue). The two primary reasons, that are limiting global application of this technology, are the slow growth rates exhibited by most naturally occurring metal hyperaccumulators and the limited solubility of metals in soils (i.e., the high affinity of metal ions for soil particles). Phytoremediation applications, relevance of transgenic plants for metal decontamination, chelate enhanced phytoremediation, chemical transformation, molecular physiology and genetic basis of metal hyperaccumulation by plants, commercialization hype for the phytoremediation technology are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号