首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
As stated by the island rule, small mammals evolve toward gigantism on islands. In addition they are known to evolve faster than their mainland counterparts. Body size in island mammals may also be influenced by geographical climatic gradients or climatic change through time. We tested the relative effects of climate change and isolation on the size of the Japanese rodent Apodemus speciosus and calculated evolutionary rates of body size change since the last glacial maximum (LGM). Currently A. speciosus populations conform both to Bergmann's rule, with an increase in body size with latitude, and to the island rule, with larger body sizes on small islands. We also found that fossil representatives of A. speciosus are larger than their extant relatives. Our estimated evolutionary rates since the LGM show that body size evolution on the smaller islands has been less than half as rapid as on Honshu, the mainland-type large island of Japan. We conclude that island populations exhibit larger body sizes today not because they have evolved toward gigantism, but because their evolution toward a smaller size, due to climate warming since the LGM, has been decelerated by the island effect. These combined results suggest that evolution in Quaternary island small mammals may not have been as fast as expected by the island effect because of the counteracting effect of climate change during this period.  相似文献   

2.
横断山两种小型哺乳动物的蒸发失水与体温调节   总被引:3,自引:6,他引:3  
在实验室条件下测定了大绒鼠和高山姬鼠在不同温度下的蒸发失水与能量代谢.结果表明:大绒鼠和高山姬鼠的热中性区分别为22.5~30℃和25~30℃;平均体温分别为36.12℃和36.17℃;大绒鼠和高山姬鼠的基础代谢率(BMR)分别为2.99±0.48 ml O2/g ·h和4.24±0.50 ml O2/g·h;大绒鼠和高山姬鼠的平均最小热传导(Cm)分别为0.26±0.038 ml O2/g·h·℃和0.32±0.034 ml O2/g·h·℃;大绒鼠和高山姬鼠的蒸发失水随着温度增高而增加,大绒鼠的蒸发失水在30 ℃达高峰值,为10.32 mg H2O/g·h,高山姬鼠在35℃达高峰值,为14.57mg H2O/g·h;大绒鼠和高山姬鼠的热散失占总产热的比率随着温度增高而增加,大绒鼠在30 ℃达到最大为34.6%,高山姬鼠在35℃达到最大为37.5%.这些结果很可能反映出横断山小型啮齿类动物的特征,即体温相对较低,代谢水平较高,热传导也较高,蒸发失水在总产热中占有重要的地位.  相似文献   

3.
The tendency for island populations of mammalian taxa to diverge in body size from their mainland counterparts consistently in particular directions is both impressive for its regularity and, especially among rodents, troublesome for its exceptions. However, previous studies have largely ignored mainland body size variation, treating size differences of any magnitude as equally noteworthy. Here, we use distributions of mainland population body sizes to identify island populations as ‘extremely’ big or small, and we compare traits of extreme populations and their islands with those of island populations more typical in body size. We find that although insular rodents vary in the directions of body size change, ‘extreme’ populations tend towards gigantism. With classification tree methods, we develop a predictive model, which points to resource limitations as major drivers in the few cases of insular dwarfism. Highly successful in classifying our dataset, our model also successfully predicts change in untested cases.  相似文献   

4.
Carlos H. Villar  Daniel E. Naya 《Oikos》2018,127(8):1186-1194
A reduction in body size has been proposed as the third universal ecological response to global warming, after species distributional shifts and phenological changes. However, some recent studies raise doubts about the validity of this pattern, in particular for endotherms. Within this context, here we analyzed data on body mass (mb) for 17 rodent species, covering (at least) the last six decades, together with data on temperature change and basal metabolic rate (BMR) for each species. We found that: 1) ten species (58.8%) showed no significant changes in mb, while the remaining seven species (41.2%) decreased their size during the 20th century; 2) phylogenetic generalized linear mixed models indicate that there is a significant and negative effect of the year of collection on mb; 3) the correlation coefficient between mb and the year of collection (ryear) was not correlated with species mean mb, species distributional range, the length of the time series, or the change in ambient temperature; and 4) the correlation between ryear and (residual) BMR was significant (and negative) only for species that do not use torpor. In summary, our results suggest that reductions in mb are common among rodents, but we were unable to identify a clear cause behind these changes (e.g. some results support the energetic argument behind the Bergmann's rule but other do not). We concluded that with less than 0.5% of the extant (known) rodent species analyzed to date, we still are far from reaching a clear understanding of current patterns of variation in body size that are associated with global environmental change for this group.  相似文献   

5.
Genetic structure of the large Japanese field mouse populations in suburban landscape of West Tokyo, Japan was determined using mitochondrial DNA control region sequence. Samples were collected from six habitats linked by forests and green tract along the Tama River, and from two forests segregated by urban areas from those continuous habitats. Thirty-five haplotypes were detected in 221 animals. Four to eight haplotypes were found within each local population belonging to the continuous landscape. Some haplotypes were shared by two or three adjacent local populations. On the other hand, two isolated habitats were occupied by one or two indigenous haplotypes. Significant genetic differentiation between all pairs of local populations, except for one pair in the continuous habitats, was found by analysis of molecular variance (amova). The geographical distance between habitats did not explain the large variance of pairwise F(ST)-values among local populations. F(ST)-values between local populations segregated by urban areas were higher than those between local populations in the continuous habitat, regardless of geographical distance. The results of this study demonstrated quantitatively that urban areas inhibit the migration of Apodemus speciosus, whereas a linear green tract along a river functions as a corridor. Moreover, it preserves the metapopulation structure of A. speciosus as well as the corridors in suburban landscape.  相似文献   

6.
Two species of field mice, Apodemus argenteus and A. speciosus, occur in sympatry across the Japanese archipelago. The inter- and intraspecific patterns of morphological differentiation have been evaluated, using a Fourier analysis of the mandible outline. The relative importance of the effect of insular isolation and latitudinal climatic gradient on the size and shape of the two species was assessed by a comparison of the populations from the large island of Honshu and the surrounding small-island populations. The size variation in A. argenteus is correlated with the climatic gradient whilst the shape variation corresponds mainly to a random differentiation of the small-island populations from a Honshu-like basic morphological pattern. A. speciosus displays increased size on small islands, and its shape variation is related to both the climatic gradient and insularity. Finally, the two species are differentiated by both the size and shape of the mandible across the Japanese archipelago, suggesting that interspecific competition between both species is reduced via niche partitioning. Our results emphasize the importance of insular isolation on shape differentiation, but a part of the morphological differentiation is also related to the latitudinal climatic gradient. Isolation on small islands could have favoured such a response to environmental factors by lowering the gene flow that prevents almost any significant differentiation within Honshu populations.  相似文献   

7.
Aim This paper examines body size variation in both recent and Quaternary populations of the Japanese field mouse Apodemus argenteus in order to assess the relative effects on body size of climate change, isolation and competitive interactions with its congeneric A. speciosus. Both temporal (since the Last Glacial Maximum, LGM) and spatial (over the Japanese archipelago) scales are considered. Location The small field mouse is widespread in Japan, and the specimens examined were collected from 10 localities on islands of widely differing area (from 4 km2 to 230,510 km2) and at latitudes ranging from 30.3° N to 45.1° N. Methods The effects of geographical factors such as latitude and island area on the size variation of A. argenteus were investigated, using the lower incisor size. In addition, the size of some specimens from two Quaternary localities was compared with the size of the extant specimens. Evolutionary rates of size change since the LGM were calculated in darwins. Hutchinson size ratios were used to examine the pattern of variation of the size segregation between the two Japanese field mice, A. argenteus and A. speciosus, in relation to time and space. Results There was a negative relationship between size and latitude among living A. argenteus populations. In addition, there was no effect of island area on body size, especially at higher latitudes. At lower latitudes, A. argenteus were larger on smaller islands, although this trend was not statistically significant. Quaternary specimens of A. argenteus were smaller in size than their living representatives. The interspecific size ratio between the two Japanese Apodemus was larger on smaller islands and at higher latitudes, and there has been a decrease in the size ratio between the two Apodemus since the LGM. Lastly, in accordance with the theory of character displacement, the small A. argenteus was larger in allopatry than in sympatry, whereas the large A. speciosus was smaller in allopatry than in sympatry. Main conclusions These results indicate that A. argenteus does not conform to Bergmann's rule or to the island rule. The variation in size for the small Japanese field mouse at both spatial and temporal scales may be related to climate change, with an additional effect of competition with the large field mouse, especially on smaller islands. The size convergence between the two Japanese Apodemus observed over the last 21,000 years may be explained by the diminution of available food resources due to the reduction of land mass areas following the LGM. It may also be the result of an evolution towards an optimal body size; a hypothesis previously proposed to explain the evolution of body size in island mammals. Lastly, the evolutionary rates of body size calculated for A. argenteus since the LGM are typical of rates calculated for other Quaternary mainland mammals, thus suggesting that the evolution in this species was not particularly rapid, as is often thought for island mammals.  相似文献   

8.
大绒鼠和高山姬鼠的体温调节和产热特征   总被引:14,自引:8,他引:14  
大绒鼠和高山姬鼠为横断山地区小型哺乳动物的代表。为探讨它们在该地区的生理生态适应特征,对其体温调节和产热特征进行了测定。代谢率采用封闭式流体压力呼吸计进行测定。结果表明:大绒鼠和高山姬鼠热中性区分别为25~32.5℃ 和25~30℃;平均体温分别为35.92 ±0.37℃和36.01±0.83℃,前者体温在20~27.5℃ 范围内维持恒定,后者体温在15~27.5℃范围内维持恒定;大绒鼠和高山姬鼠基础代谢率(BMR)分别为3.76±0.07 ml O2/g.h和4.58±0.09 ml O2/g.h;大绒鼠和高山姬鼠平均最小热传导(Cm) 分别为0.28±0.005 ml O2/g.h ℃ 和0.32±0.009 ml O2/g.h℃;热中性区内,大绒鼠和高山姬鼠的F值(RMR/ Kleiber 期望RMR)/(C/Bradley 期望C) 分别为0.88±0.05 和1.10±0.05。它们的产热特征和体温调节模式很可能反映了横断山地区小型啮齿动物的特征,即体温较低、维持体温稳定的环境温度范围较窄、BMR水平较高、热传导率高。高山姬鼠的体温、C值和BMR 都比大绒鼠的高,并且高山姬鼠维持体温稳定的环境温度范围比大绒鼠的宽,它们产热特征和体温调节模式的这些差异与其分类地位、生活习性和栖息生境等因素密切相关。  相似文献   

9.
Climate change, species range limits and body size in marine bivalves   总被引:5,自引:2,他引:3  
We use data on the Pleistocene and modern range limits of Californian marine bivalves to show that species that shifted their geographical ranges in response to Pleistocene climatic fluctuations were preferentially drawn from the large end of the regional body size–frequency distributions. This difference is not due to phylogenetic effects (i.e. dominance of extralimital species by a few large-bodied clades), differences among major ecological categories (burrowing versus surface-dwelling, or suspension feeding versus non-suspension feeding), or differences in modes of reproduction and larval development. In addition, we show that successful invasive species of bivalves in present-day marine habitats also tend to be large-bodied, despite the difference in mechanisms between present-day and Pleistocene range expansions. These results indicate that range limits of large-bodied bivalve species are more unstable than small-bodied ones, and that body size and its correlates need to be considered when attempting to predict the responses of marine communities to climate change, biotic interchanges and human-mediated invasions.  相似文献   

10.
对仓山和洱海国家自然保护区4种年龄的森林以及周边的农田、果园、荒山灌丛和非保护区6种年龄的森林中齐氏姬鼠(Apodemus chevrieri)和大绒鼠(Eothenomys miletus)的种群数量进行了调查,研究了森林中2种小兽与栖境因子的关系以及人类活动对其种群数量的影响。结果表明,齐氏姬鼠和大绒鼠的生态位宽度分别为0.706和0.641,生态位重叠度为0.831。聚类分析显示:农田中2种小兽的种群数量最高;在非保护区森林、灌丛和果园,齐氏姬鼠和大绒鼠的数量显著低于农田,而高于保护区森林。人类干扰活动对森林底层植物有显著影响,能显著降低灌木的覆盖度、物种多度(除了6~10年生的森林)和密度,而增加草本植物的覆盖度和密度。回归结果表明,2种小兽的数量与森林草本植物的覆盖度呈正相关,而与灌木的密度呈负相关。  相似文献   

11.
Recently, we have reported the peculiar topographic separation of shortwave- and middlewave-sensitive (S and M) cones in the retina of the common house mouse (Mus musculus) and in a number of inbred laboratory mouse strains derived from the same species. In an attempt to follow the phylogeny of the complementary cone fields, we have investigated the retina of other mouse-like rodents. Two monoclonal anti-visual pigment antibodies, OS-2 and COS-1, specific to the S and M cones, respectively, have been used to identify the two cone types. Immunocytochemistry on retinal sections and on whole-mount preparations have shown that, as in the house mouse, the two cone types in the mound builder mouse (Mus spicileugus) occupy opposite halves of the retina. In contrast, in the wood mouse (Apodemus sylvaticus), both cone types are scattered uniformly across the whole retinal surface. Another distinguishing feature between the two genera is the frequency of the S cones. Whereas their density in the Mus species is above 7 000/mm2 in the S-field, the maximum density of the S cones in A. sylvaticus is one order of magnitude smaller. In another species of this genus (the herb field mouse, A. microps), the S cones are completely missing.  相似文献   

12.
Mesial-distal and buccal-lingual crown measurements were made on male and female samples of recent Japanese teeth from three locations, Fukuoka, Kyoto, and Tokyo, and for Hokkaido Ainu and Koreans. Similar data were collected for prehistoric Middle-to-Late Jomon Japanese and from Yayoi specimens representing the first agriculturalists to appear in Japan. From a tooth-by-tooth comparison of cross-sectional areas, it was shown that the modern Japanese samples did not differ from one part of Japan to another. Korean tooth size also is not significantly different from Japanese, while Ainu have the smallest teeth recorded in Asia. The Yayoi who brought rice to Japan about 300 B.C. came in with teeth that were the same size as Chinese Neolithic teeth. They encountered a resident Jomon population whose teeth were 10% smaller. From tooth size measures alone, it is most economical to suggest that, if the rates of reduction observed elsewhere in the world applied in Japan, the recent Ainu would best be regarded as the direct descendants of the Jomon, while the modern Japanese are the results of in situ reduction from the incoming Yayoi. Other aspects of craniofacial morphology suggest that some Jomon was incorporated by the Yayoi. The modern Japanese, then, while predominantly derived from the Yayoi, would include a Jomon component.  相似文献   

13.
14.
Summary An experiment was conducted to determine the microhabitat preferences of two heteromyid rodents, Dipodomys ordi and Perognathus flavus. This experiment used marked seeds and the atomic absorption spectrophotometer in order to study the environment as a mosiac of microhabitats. The results of our analysis indicate that these two heteromyids are microhabitat selectors. The preferences of the rodents are D. ordi: grass habitat 0.0%, near grass habitat 22.5%, open habitat 77.4% and P. flavus: grass habitat 46.2%, near grass habitat 32.2%, open habitat 21.4%. The overlap between the two species is only 0.43.  相似文献   

15.
The relationship between body size and temperature of mammals is poorly resolved, especially for large keystone species such as bison (Bison bison). Bison are well represented in the fossil record across North America, which provides an opportunity to relate body size to climate within a species. We measured the length of a leg bone (calcaneal tuber, DstL) in 849 specimens from 60 localities that were dated by stratigraphy and 14C decay. We estimated body mass (M) as M = (DstL/11.49)3. Average annual temperature was estimated from δ18O values in the ice cores from Greenland. Calcaneal tuber length of Bison declined over the last 40,000 years, that is, average body mass was 37% larger (910 ± 50 kg) than today (665 ± 21 kg). Average annual temperature has warmed by 6°C since the Last Glacial Maximum (~24–18 kya) and is predicted to further increase by 4°C by the end of the 21st century. If body size continues to linearly respond to global temperature, Bison body mass will likely decline by an additional 46%, to 357 ± 54 kg, with an increase of 4°C globally. The rate of mass loss is 41 ± 10 kg per°C increase in global temperature. Changes in body size of Bison may be a result of migration, disease, or human harvest but those effects are likely to be local and short‐term and not likely to persist over the long time scale of the fossil record. The strong correspondence between body size of bison and air temperature is more likely the result of persistent effects on the ability to grow and the consequences of sustaining a large body mass in a warming environment. Continuing rises in global temperature will likely depress body sizes of bison, and perhaps other large grazers, without human intervention.  相似文献   

16.
Theresource availability hypothesispredicts occurrence of larger rodents in more productive habitats.This prediction was tested in a dataset of 1,301 rodent species.We used adult body mass as a measure of body size and normalized difference vegetation index(NDVI)as a measure of habitat productivity.We utilized a cross-species approach to investigate the association between these variables.This was done at both the order level(Rodentia)and at narrower taxonomic scales.We applied phylogenetic generalized least squares(PGLS)to correct for phylogenetic relationships.The relationship between body mas and NDVI was also investigated across rodent assemblages.We controlled for spatial autocorrelation using generalized least squares(GLS)analysis.The cross-species approach found extremely low support for the resource availability hypothesis.This was reflected by a weak positive association between body mass and NDVI at the order level.We find a positive association in only a minority of rodent subtaxa.The best fit GLS model detected no significant association between body mass and NDVI across assemblages.Thus,our results do not support the view that resource availability plays a major role in explaining geographic variation in rodent body size.  相似文献   

17.
We used museum collections to study temporal trends of possible changes in skull size, body mass and body length in three species of rodents in Denmark. Skulls of adult Microtus agrestis, Apodemus flavicollis and Apodemus sylvaticus, collected between 1895 and 2004, 1847 and 2002, and 1895 and 2002, respectively, were measured and data on body mass and length were taken from the museum registers. Principal component (PC) analysis was used to combine data of the four skull measurements taken. We tested the relationship of sex, latitude, longitude, month and year of collection to PC1 by a General Linear Model (GLM). PC1, body length and body mass of M. agrestis significantly increased from west to east. In addition, PC1, body mass and body length of M. agrestis declined from summer (August) through autumn and winter to spring (March), probably due to the decline in food availability towards winter. None of the other factors examined (sex, latitude and year) were significantly related to body size. PC1 of A. flavicollis and A. sylvaticus was not significantly related to any of the environmental factors examined.  相似文献   

18.

Aim

Species-level traits, such as body and range sizes, are important correlates of extinction risk. However, both are often related and are driven by environmental factors. Here, we elucidated links between environmental factors, body size, range size and susceptibility to extinction, across the whole order of rodents.

Location

Global.

Time period

Current.

Major taxa studied

Rodents (order Rodentia).

Methods

We compiled an unprecedentedly large database of rodent morphology, phylogeny, range size, conservation status, global climate and normalized difference vegetation index (NDVI), comprising >86% of all described species. Using phylogenetic regressions, we initially explored the environmental factors driving body size. Next, we modelled the relationship between body size and range size. From this relationship, we computed and mapped (at the assemblage level) an index of relative range size, corresponding to the deviation from the expected range size of each species, given its body size. Finally, we tested whether relative range was correlated with the risk of extinction of the species derived from an assessment by the International Union for Conservation of Nature.

Results

We found that, contrary to the expectations of Bergmann's rule, the body size of rodents was mostly influenced by variation in NDVI (rather than latitude/temperature). Body size, in turn, imposed a constraint on species range size, as evidenced by a triangular relationship that was segmented at the lower bound. The relative species range size derived from this relationship highlighted four geographical regions where rodents with small relative range were concentrated globally. We demonstrated that lower relative range size was associated with increased risk of extinction.

Main conclusions

Species that, given their body size, are distributed across ranges that are smaller than expected have elevated extinction risk. Therefore, investigating the relationships between environmental drivers, body size and range size might help to detect species that could become threatened in the near future.  相似文献   

19.
为比较横断山区同域分布物种大绒鼠(Eothenomys miletus)和高山姬鼠(Apodemus chevrieri)的日节律特征,对两种鼠在24 h中4个时间段(04:00~06:00时、10:00~12:00时、16:00~18:00时和22:00~24:00时)的体温和蒸发失水进行了测定.结果显示,大绒鼠、高...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号