首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Dimethoate-degrading enzymatic activity in Bacillus licheniformis, Pseudomonas aeruginosa, Aeromonas hydrophila, Proteus mirabilis and Bacillus pumilus was found to be 6.4, 1.760, 4.09, 1.196 and 0.505 units/mg protein, respectively. The Escherichia coli C600 transconjugants of the isolated bacterial strains also exhibited dimethoate-degrading enzymatic activities. The cured derivatives did not show any decrease in the amount of dimethoate substrate and did not harbour plasmid as found in the original and transconjugant strains. Thus, the ability of enzymatic degradation of dimethoate was plasmid-mediated in B. licheniformis, Ps. aeruginosa, A. hydrophila, P. mirabilis and B. pumilus.  相似文献   

4.
Kinetics of enzymatic degradation of cyanide   总被引:1,自引:0,他引:1  
CYANIDASE(@) is a new enzyme preparation capable of degrading cyanide in industrial wastewaters to ammonia and formate in an apparently one-step reaction, down to very low concentrations. This enzyme has both a high selectivity and affinity toward cyanide. A granular form of the biocatalyst was used in a recirculation fixed bed reactor in order to characterize the new biocatalyst with respect to pH, ionic strength, common ions normally present in wastewaters, mass transfer effects, and temperature. Long term stability was investigated. The kinetics of the enzymatic degradation of cyanide were studied in a batch reactor using the powdered immobilized enzyme preparation and modeled using a simple Michaelis-Menten equation.  相似文献   

5.
Gangliotriaosylceramide 3'-sulfate (GgOse3Cer-II3-sulfate) contains the sugar sequence similar to that of GM2 ganglioside except that the NeuAc in GM2 is replaced by a sulfate group. Due to this structural similarity, we have studied the in vitro synthesis of GgOse3Cer-II3-sulfate using the system for GM2. Our results showed that GgOse3Cer-II3-sulfate could be synthesized from lactosylceramide 3'-sulfate and UDP-GalNAc catalyzed by N-acetylgalactosaminyltransferase prepared from rat brain (Dicesare, J. L., and Dain, J. A. (1971) Biochim. Biophys. Acta 231, 385-393). As in the case of GM2, the GgOse3Cer-II3-sulfate biosynthesized in vitro or isolated from rat kidney could also be cleaved by human beta-hexosaminidase A in the presence of GM2-activator (Li, S.-C., Hirabayashi, Y., and Li, Y.-T. (1981) J. Biol. Chem. 256, 6234-6240). The fact that the GM2-activator could stimulate beta-hexosaminidase A to hydrolyze both GM2 and Gg-Ose3Cer-II3-sulfate indicates that these two glycolipids may be catabolyzed by the same mechanism.  相似文献   

6.
7.
8.
《Trends in microbiology》2023,31(7):668-671
Enzyme-based plastic degradation and valorization of the plastic-derived monomers has emerged as a potent option to address the plastic waste dilemma. Obstacles in implementing the enzymatic degradation of plastics in industry are here summarized, and strategies to overcome these obstacles are discussed to exploit the full potential of enzymatic plastic degradation toward a sustainable plastic economy.  相似文献   

9.
10.
Enzymes that employ a transient oxidation mechanism catalyze transformations that are overall redox neutral, but involve intermediates that have a higher oxidation state than the substrates or products. An oxidation/reduction sequence may be used directly to promote isomerization reactions or indirectly to permit the formation of stabilized intermediates such as carbanions. This review will focus on three recent examples of nicotinamide-dependent enzymes that have been found to employ transient oxidation during catalysis: ADP-L-glycero-D-manno-heptose 6-epimerase, GDP-mannose 3,5-epimerase, and the 6-phosphoglucosidases from family 4. These enzymes are remarkable in their ability to catalyze either nonstereospecific hydride transfers or multiple chemical steps within a single active site.  相似文献   

11.
A structured, mechanistic model has been built for the kinetics of yeast cell lysis by microbial cell lytic enzymes, based on an understanding of the two-layer yeast cell wall structure and the properties of yeast-lytic enzyme systems. The model predicts the release of protein, peptides and carbohydrates from four cell structures: the outer and inner wall layers, the cytosol and organelles or proteins present in particles; it also predicts organelle or particle lysis or solubilization and the breakdown of released proteins to peptides. Applications of the model to design and optimization of selective product release are discussed.  相似文献   

12.
The oxidation mechanism of non-phenolic substrates induced by laccase under catalysis by two phenolic mediators is shown to be radical.  相似文献   

13.
Pinchuk SV  Vorobeĭ AV 《Biofizika》2000,45(5):839-843
It was found that a number of halogen-containing compounds (chloroform, carbon tetrachloride, difluorodichloromethane, sodium trichloroacetate) enhance the lipid peroxidation induced by UV light (265-300 nm) in isolated erythrocyte membranes. It was shown that the enhancement is realized with participation of excited states of membrane protein tryptophanyls, which may induce the reduction of halogen-containing compounds with formation of radicals having a high oxidative activity. Moreover, halogen-containing compounds decrease the antioxidant protection of membrane lipids owing to an increase in quantum yield of alpha-tocopherol photodestruction.  相似文献   

14.
15.
Plasmid-determined enzymatic degradation of nylon oligomers.   总被引:3,自引:6,他引:3       下载免费PDF全文
The nylon oligomer (6-aminohexanoic acid cyclic dimer) degradation genes on plasmid pOAD2 of Flavobacterium sp. KI72 were cloned into Escherichia coli vector pBR322. The locus of one of the genes, the structural gene of 6-aminohexanoic acid linear oligomer hydrolase, was determined by constructing various deletion plasmids and inserting the lacUV5 promoter fragment of E. coli into the deletion plasmid. Two kinds of repeated sequences (RS-I and RS-II) were detected on pOAD2 by DNA-DNA hybridization experiments. These repeated sequences appeared five times (RS-I) or twice (RS-II) on pOAD2. One of the RS-II regions and the structural gene of the hydrolase overlapped.  相似文献   

16.
17.
A mechanistic analysis of light and carbon use efficiencies   总被引:12,自引:1,他引:12  
We explore the extent to which a simple mechanistic model of short-term plant carbon (C) dynamics can account for a number of generally observed plant phenomena. For an individual, fully expanded leaf, the model predicts that the fast-turnover labile C, starch and protein pools are driven into an approximate or moving steady state that is proportional to the average leaf absorbed irradiance on a time-scale of days to weeks, even under realistic variable light conditions, in qualitative agreement with general patterns of leaf acclimation to light observed both temporally within the growing season and spatially within plant canopies. When the fast-turnover pools throughout the whole plant (including stems and roots) also follow this moving steady state, the model predicts that the time-averaged whole-plant net primary productivity is proportional to the time-averaged canopy absorbed irradiance and to gross canopy photosynthesis, and thus suggests a mechanistic explanation of the observed approximate constancy of plant light-use efficiency (LUE) and carbon-use efficiency. Under variable light conditions, the fast-turnover pool sizes and the LUE are predicted to depend negatively on the coefficient of variation of irradiance. We also show that the LUE has a maximum with respect to the fraction of leaf labile C allocated to leaf protein synthesis ( alp ), reflecting a trade-off between leaf photosynthesis and leaf respiration. The optimal value of alp is predicted to decrease at elevated [CO2] a , suggesting an adaptive interpretation of leaf acclimation to CO2. The model therefore brings together a number of empirical observations within a common mechanistic framework.  相似文献   

18.
Adav SS  Chao LT  Sze SK 《Molecular & cellular proteomics : MCP》2012,11(7):M111.012419-M111.012419-15
Trichoderma reesei is a mesophilic, filamentous fungus, and it is a major industrial source of cellulases, but its lignocellulolytic protein expressions on lignocellulosic biomass are poorly explored at present. The extracellular proteins secreted by T. reesei QM6a wild-type and hypercellulolytic mutant Rut C30 grown on natural lignocellulosic biomasses were explored using a quantitative proteomic approach with 8-plex high throughput isobaric tags for relative and absolute quantification (iTRAQ) and analyzed by liquid chromatography tandem mass spectrometry. We quantified 230 extracellular proteins, including cellulases, hemicellulases, lignin-degrading enzymes, proteases, protein-translocating transporter, and hypothetical proteins. Quantitative iTRAQ results suggested that the expressions and regulations of these lignocellulolytic proteins in the secretome of T. reesei wild-type and mutant Rut C30 were dependent on both nature and complexity of different lignocellulosic carbon sources. Therefore, we discuss here the essential lignocellulolytic proteins for designing an enzyme mixture for optimal lignocellulosic biomass hydrolysis.  相似文献   

19.
The bacterial degradation of catechol, 3-methylcatechol, 2,3-dihydroxy-β-phenylpropionic acid, and protocatechuic acid has been studied in detail. From the results obtained a general sequence has been proposed for the microbial oxidation of dihydroxy aromatic compounds.  相似文献   

20.
Biological degradation of cyanide compounds   总被引:9,自引:0,他引:9  
Cyanide compounds are produced as waste products of a number of industrial processes and several routes for their removal from the environment are under investigation, including the use of biodegradation. The most recent developments in this area have come from studies of the hydrolytic and oxidative pathways for biodegradation and the conditions that affect their activity. The biodegradation of cyanide under anaerobic conditions has also recently demonstrated the feasibility for concomitant biogas generation, a possible economic benefit of the process. Significant advances have been reported in the use of plants for the phytoremediation of cyanide compounds and evidence for the biodegradation of thiocyanate and metal-cyanide complexes has become available. Despite these advances, however, physical and economic factors still limit the application of cyanide biodegradation, as do competing technologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号