首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To determine the contribution of photosynthesis on stomatal conductance, we contrasted the stomatal red light response of wild-type tobacco (Nicotiana tabacum 'W38') with that of plants impaired in photosynthesis by antisense reductions in the content of either cytochrome b(6)f complex (anti-b/f plants) or Rubisco (anti-SSU plants). Both transgenic genotypes showed a lowered content of the antisense target proteins in guard cells as well as in the mesophyll. In the anti-b/f plants, CO(2) assimilation rates were proportional to leaf cytochrome b(6)f content, but there was little effect on stomatal conductance and the rate of stomatal opening. To compare the relationship between photosynthesis and stomatal conductance, wild-type plants and anti-SSU plants were grown at 30 and 300 micromol photon m(-2) s(-1) irradiance (low light and medium light [ML], respectively). Growth in ML increased CO(2) assimilation rates and stomatal conductance in both genotypes. Despite the significantly lower CO(2) assimilation rate in the anti-SSU plants, the differences in stomatal conductance between the genotypes were nonsignificant at either growth irradiance. Irrespective of plant genotype, stomatal density in the two leaf surfaces was 2-fold higher in ML-grown plants than in low-light-grown plants and conductance normalized to stomatal density was unaffected by growth irradiance. We conclude that the red light response of stomatal conductance is independent of the concurrent photosynthetic rate of the guard cells or of that of the underlying mesophyll. Furthermore, we suggest that the correlation of photosynthetic capacity and stomatal conductance observed under different light environments is caused by signals largely independent of photosynthesis.  相似文献   

3.
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of a fumarate hydratase (fumarase) gene in the antisense orientation and exhibiting considerable reductions in the mitochondrial activity of this enzyme show impaired photosynthesis. The rate of the tricarboxylic acid cycle was reduced in the transformants relative to the other major pathways of carbohydrate oxidation and the plants were characterized by a restricted rate of dark respiration. However, biochemical analyses revealed relatively little alteration in leaf metabolism as a consequence of reducing the fumarase activity. That said, in comparison to wild-type plants, CO(2) assimilation was reduced by up to 50% under atmospheric conditions and plants were characterized by a reduced biomass on a whole plant basis. Analysis of further photosynthetic parameters revealed that there was little difference in pigment content in the transformants but that the rate of transpiration and stomatal conductance was markedly reduced. Analysis of the response of the rate of photosynthesis to variation in the concentration of CO(2) confirmed that this restriction was due to a deficiency in stomatal function.  相似文献   

4.
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.  相似文献   

5.
Gas-exchange measurements were performed to analyze the leaf conductances and assimilation rates of potato (Solanum tuberosum L. cv. Desireé) plants expressing an antisense construct against chloroplastic fructose-1,6-bisphosphatase (FBPase, EC 3.1.3.11) in response to increasing photon flux densities, different relative air humidities and elevated CO2 concentrations. Assimilation rates (A) and transpiration rates (E) were observed during a stepwise increase of photon flux density. These experiments were carried out under atmospheric conditions and in air containing 500 μmol mol−1 CO2. In both gas atmospheres, two levels of relative air humidity (60–70% and 70–80%) were applied in different sets of measurements. Intercellular CO2 concentration, leaf conductance, air-to-leaf vapour pressure deficit, and instantaneous water-use efficiency (A/E) were determined. As expected, assimilation rates of the FBPase antisense plants were significantly reduced as compared to the wild type. Saturation of assimilation rates in transgenic plants occurred at a photon flux density of 200 μmol m−2 s−1, whereas saturation in wild type plants was observed at 600 μmol m−2 s−1. Elevated ambient CO2 levels did not effect assimilation rates of transgenic plants. At 70–80% relative humidity and atmospheric CO2 concentration the FBPase antisense plants had significantly higher leaf conductances than wild-type plants while no difference emerged at 60–70%. These differences in leaf conductance vanished at elevated levels of ambient CO2. Stomatal response to different relative air humidities was not affected by mesophyll photosynthetic activity. It is suggested that the regulation of stomatal opening upon changes in photon flux density is merely mediated by a signal transmitted from mesophyll cells, whereas the intercellular CO2 concentration plays a minor role in this kind of stomatal response. The results are discussed with respect to stomatal control by environmental parameters and mesophyll photosynthesis. Received: 24 September 1998 / Accepted: 9 February 1999  相似文献   

6.
We analysed the impact of elevated CO2 on water relations, water use efficiency and photosynthetic gas exchange in barley (Hordeum vulgare L.) under wet and drying soil conditions. Soil moisture was less depleted under elevated compared to ambient [CO2]. Elevated CO2 had no significant effect on the water relations of irrigated plants, except on whole plant hydraulic conductance, which was markedly decreased at elevated compared to ambient CO2 concentrations. The values of relative water content, water potential and osmotic potential were higher under elevated CO2 during the entire drought period. The better water status of water-limited plants grown at elevated CO2 was the result of stomatal control rather than of osmotic adjustment. Despite the low stomatal conductance produced by elevated CO2, net photosynthesis was higher under elevated than ambient CO2 concentrations. With water shortage, photosynthesis was maintained for longer at higher rates under elevated CO2. The reduction of stomatal conductance and therefore transpiration, and the enhancement of carbon assimilation by elevated CO2, increased instantaneous and whole plant water use efficiency in both irrigated and droughted plants. Thus, the metabolism of barley plants grown under elevated CO2 and moderate or mild water deficit conditions is benefited by increased photosynthesis and lower transpiration. The reduction in plant water use results in a marked increase in soil water content which delays the onset and severity of water deficit.  相似文献   

7.
Transgenic antisense tobacco plants with a range of reductions in sedoheptulose-1,7-bisphosphatase (SBPase) activity were used to investigate the role of photosynthesis in stomatal opening responses. High resolution chlorophyll a fluorescence imaging showed that the quantum efficiency of photosystem II electron transport (F(q)(')/F(m)(')) was decreased similarly in both guard and mesophyll cells of the SBPase antisense plants compared to the wild-type plants. This demonstrated for the first time that photosynthetic operating efficiency in the guard cells responds to changes in the regeneration capacity of the Calvin cycle. The rate of stomatal opening in response to a 30 min, 10-fold step increase in red photon flux density in the leaves from the SBPase antisense plants was significantly greater than wild-type plants. Final stomatal conductance under red and mixed blue/red irradiance was greater in the antisense plants than in the wild-type control plants despite lower CO(2) assimilation rates and higher internal CO(2) concentrations. Increasing CO(2) concentration resulted in a similar stomatal closing response in wild-type and antisense plants when measured in red light. However, in the antisense plants with small reductions in SBPase activity greater stomatal conductances were observed at all C(i) levels. Together, these data suggest that the primary light-induced opening or CO(2)-dependent closing response of stomata is not dependent upon guard or mesophyll cell photosynthetic capacity, but that photosynthetic electron transport, or its end-products, regulate the control of stomatal responses to light and CO(2).  相似文献   

8.
Barnes SA  Knight JS  Gray JC 《Plant physiology》1994,106(3):1123-1129
Tobacco plants (Nicotiana tabacum L.) transformed with sense and antisense constructs of a cDNA encoding the tobacco phosphate-triose phosphate-3-phosphoglycerate translocator (phosphate translocator) were shown to contain altered amounts of phosphate translocator mRNA and protein. Phosphate translocator activity in intact chloroplasts isolated from transformed plants showed a 15-fold variation, from 20% of the wild-type activity in antisense transformants to 300% of the wild-type activity in sense transformants. However, the maximal rates of photosynthesis and the rates of photosynthetic carbon assimilation in ambient CO2 showed no consistent differences between transformants. Starch content was decreased by 20% and total soluble sugars were increased by 20% in leaves of antisense transformants compared to sense transformants. The 40% decrease in the ratio of starch to total soluble sugars in antisense transformants relative to sense transformants indicates that distribution of assimilate between starch and sugar had been altered. However, the amount of sucrose in the leaves was unchanged. The changes in total soluble sugars were accounted for completely by changes in glucose and fructose, suggesting the existence of a homeostatic mechanism for maintaining sucrose concentrations in the leaves at the expense of glucose and fructose.  相似文献   

9.
Aerial parts of lettuce plants were grown under natural tropical fluctuating ambient temperatures, but with their roots exposed to two different root-zone temperatures (RZTs): a constant 20 degrees C-RZT and a fluctuating ambient (A-) RZT from 23-40 degrees C. Plants grown at A-RZT showed lower photosynthetic CO2 assimilation (A), stomatal conductance (gs), midday leaf relative water content (RWC), and chlorophyll fluorescence ratio Fv/Fm than 20 degrees C-RZT plants on both sunny and cloudy days. Substantial midday depression of A and g(s) occurred on both sunny and cloudy days in both RZT treatments, although Fv/Fm did not vary diurnally on cloudy days. Reciprocal temperature transfer experiments investigated the occurrence and possible causes of stomatal and non-stomatal limitations of photosynthesis. For both temperature transfers, light-saturated stomatal conductance (gs sat) and photosynthetic CO2 assimilation (A(sat)) were highly correlated with each other and with midday RWC, suggesting that A was limited by water stress-mediated stomatal closure. However, prolonged growth at A-RZT reduced light- and CO2-saturated photosynthetic O2 evolution (Pmax), indicating non-stomatal limitation of photosynthesis. Tight temporal coupling of leaf nitrogen content and P(max) during both temperature transfers suggested that decreased nutrient status caused this non-stomatal limitation of photosynthesis.  相似文献   

10.
Transgenic tomato (Solanum lycopersicum) plants expressing a fragment of the mitochondrial malate dehydrogenase gene in the antisense orientation and exhibiting reduced activity of this isoform of malate dehydrogenase show enhanced photosynthetic activity and aerial growth under atmospheric conditions (360 ppm CO2). In comparison to wild-type plants, carbon dioxide assimilation rates and total plant dry matter were up to 11% and 19% enhanced in the transgenics, when assessed on a whole-plant basis. Accumulation of carbohydrates and redox-related compounds such as ascorbate was also markedly elevated in the transgenics. Also increased in the transgenic plants was the capacity to use L-galactono-lactone, the terminal precursor of ascorbate biosynthesis, as a respiratory substrate. Experiments in which ascorbate was fed to isolated leaf discs also resulted in increased rates of photosynthesis providing strong indication for an ascorbate-mediated link between the energy-generating processes of respiration and photosynthesis. This report thus shows that the repression of this mitochondrially localized enzyme improves both carbon assimilation and aerial growth in a crop species.  相似文献   

11.
Plants grown in an environment of elevated CO2 and temperature often show reduced CO2 assimilation capacity, providing evidence of photosynthetic downregulation. The aim of this study was to analyse the downregulation of photosynthesis in elevated CO2 (700 µmol mol−1) in nodulated alfalfa plants grown at different temperatures (ambient and ambient + 4°C) and water availability regimes in temperature gradient tunnels. When the measurements were taken in growth conditions, a combination of elevated CO2 and temperature enhanced the photosynthetic rate; however, when they were carried out at the same CO2 concentration (350 and 700 µmol mol−1), elevated CO2 induced photosynthetic downregulation, regardless of temperature and drought. Intercellular CO2 concentration measurements revealed that photosynthetic acclimation could not be accounted for by stomatal limitations. Downregulation of plants grown in elevated CO2 was a consequence of decreased carboxylation efficiency as a result of reduced rubisco activity and protein content; in plants grown at ambient temperature, downregulation was also induced by decreased quantum efficiency. The decrease in rubisco activity was associated with carbohydrate accumulation and depleted nitrogen availability. The root nodules were not sufficiently effective to balance the source–sink relation in elevated CO2 treatments and to provide the required nitrogen to counteract photosynthetic acclimation.  相似文献   

12.
Phosphoenolpyruvate carboxylase (PEPC) was overproduced in the leaves of rice plants by introducing the intact maize C4-specific PEPC gene. Maize PEPC in transgenic rice leaves underwent activity regulation through protein phosphorylation in a manner similar to endogenous rice PEPC but contrary to that occurring in maize leaves, being downregulated in the light and upregulated in the dark. Compared with untransformed rice, the level of the substrate for PEPC (phosphoenolpyruvate) was slightly lower and the product (oxaloacetate) was slightly higher in transgenic rice, suggesting that maize PEPC was functioning even though it remained dephosphorylated and less active in the light. 14CO2 labeling experiments indicated that maize PEPC did not contribute significantly to the photosynthetic CO2 fixation of transgenic rice plants. Rather, it slightly lowered the CO2 assimilation rate. This effect was ascribable to the stimulation of respiration in the light, which was more marked at lower O2 concentrations. It was concluded that overproduction of PEPC does not directly affect photosynthesis significantly but it suppresses photosynthesis indirectly by stimulating respiration in the light. We also found that while the steady-state stomatal aperture remained unaffected over a wide range of humidity, the stomatal opening under non-steady-state conditions was destabilized in transgenic rice. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
Photosynthetic electron flux allocation, stomatal conductance, and the activities of key enzymes involved in photosynthesis were investigated in Rumex K-1 leaves to better understand the role of nitric oxide (NO) in photoprotection under osmotic stress caused by polyethylene glycol. Gas exchange and chlorophyll fluorescence were measured simultaneously with a portable photosynthesis system integrated with a pulse modulated fluorometer to calculate allocation of photosynthetic electron fluxes. Osmotic stress decreased stomatal conductance, photosynthetic carbon assimilation, and nitrate assimilation, increased Mehler reaction, and resulted in photoinhibition. Addition of external NO enhanced the stomatal conductance, photosynthetic rate, activities of glutamine synthetase and nitrate reductase, and reduced Mehler reaction and photoinhibition. These results demonstrated that osmotic stress reduced CO2 assimilation, decreasing the use of excited energy via CO2 assimilation which caused significant photoinhibition. Improving stomatal conductance by the addition of external NO enhanced the use of excited energy via CO2 assimilation. As a result, less excited energy was allocated to Mehler reaction, which reduced production of reactive oxygen species via this pathway. We suppose that Mehler reaction is not promoted unless photosynthesis and nitrogen metabolism are prominently inhibited.  相似文献   

14.
High-resolution imaging of chlorophyll a fluorescence from intact tobacco leaves was used to compare the quantum yield of PSII electron transport in the chloroplasts of guard cells with that in the underlying mesophyll cells. Transgenic tobacco plants with reduced amounts of Rubisco (anti-Rubisco plants) were compared with wild-type tobacco plants. The quantum yield of PSII in both guard cells and underlying mesophyll cells was less in anti-Rubisco plants than in wild-type plants, but closely matched between the two cell types regardless of genotype. CO2 assimilation rates of anti-Rubisco plants were 4.4 micromol m(-2) s(-1) compared with 17.3 micromol m(-2) s(-1) for the wild type, when measured at a photon irradiance of 1000 micromol m(-2) s(-1) and ambient CO2 of 380 micromol mol(-1). Despite the large difference in photosynthetic capacity between the anti-Rubisco and wild-type plants, there was no discernible difference in the rate of stomatal opening, steady-state stomatal conductance or response of stomatal conductance to ambient CO2 concentration. These data demonstrate clearly that the commonly observed correlation between photosynthetic capacity and stomatal conductance can be disrupted in the long term by manipulation of photosynthetic capacity via antisense RNA technology. It was concluded that stomatal conductance is not directly determined by the photosynthetic capacity of guard cells or the leaf mesophyll.  相似文献   

15.
Variation in stomatal development and physiology of mature leaves from Alnus glutinosa plants grown under reference (current ambient, 360 μmol mol−1 CO2) and double ambient (720 μmol mol−1 CO2) carbon dioxide (CO2) mole fractions is assessed in terms of relative plant growth, stomatal characters (i.e. stomatal index and density) and leaf photosynthetic characters. This is the first study to consider the effects of elevated CO2 concentration on the distribution of stomata and epidermal cells across the whole leaf and to try to ascertain the cause of intraleaf variation. In general, a doubling of the atmospheric CO2 concentration enhanced plant growth and significantly increased stomatal index. However, there was no significant change in relative stomatal density. Under elevated CO2 concentration there was a significant decrease in stomatal conductance and an increase in assimilation rate. However, no significant differences were found for the maximum rate of carboxylation ( V cmax) and the light saturated rate of electron transport ( J max) between the control and elevated CO2 treatment.  相似文献   

16.
A complementary DNA for the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was cloned from tobacco (Nicotiana tabacum) and fused in the antisense orientation to the cauliflower mosaic virus 35S promoter. This antisense gene was introduced into the tobacco genome, and the resulting transgenic plants were analyzed to assess the effect of the antisense RNA on Rubisco activity and photosynthesis. The mean content of extractable Rubisco activity from the leaves of 10 antisense plants was 18% of the mean level of activity of control plants. The soluble protein content of the leaves of anti-small subunit plants was reduced by the amount equivalent to the reduction in Rubisco. There was little change in phosphoribulokinase activity, electron transport, and chlorophyll content, indicating that the loss of Rubisco did not affect these other components of photosynthesis. However, there was a significant reduction in carbonic anhydrase activity. The rate of CO2 assimilation measured at 1000 micromoles quanta per square meter per second, 350 microbars CO2, and 25°C was reduced by 63% (mean value) in the antisense plants and was limited by Rubisco activity over a wide range of intercellular CO2 partial pressures (pi). In control leaves, Rubisco activity only limited the rate of CO2 assimilation below a pi of 400 microbars. Despite the decrease in photosynthesis, there was no reduction in stomatal conductance in the antisense plants, and the stomata still responded to changes in pi. The unchanged conductance and lower CO2 assimilation resulted in a higher pi, which was reflected in greater carbon isotope discrimination in the leaves of the antisense plants. These results suggest that stomatal function is independent of total leaf Rubisco activity.  相似文献   

17.
The ndh genes encoding for the subunits of NAD(P)H dehydrogenase complex represent the largest family of plastid genes without a clearly defined function. Tobacco (Nicotiana tabacum) plastid transformants were produced in which the ndhB gene was inactivated by replacing it with a mutant version possessing translational stops in the coding region. Western-blot analysis indicated that no functional NAD(P)H dehydrogenase complex can be assembled in the plastid transformants. Chlorophyll fluorescence measurements showed that dark reduction of the plastoquinone pool by stromal reductants was impaired in ndhB-inactivated plants. Both the phenotype and photosynthetic performance of the plastid transformants was completely normal under favorable conditions. However, an enhanced growth retardation of ndhB-inactivated plants was revealed under humidity stress conditions causing a moderate decline in photosynthesis via stomatal closure. This distinctive phenotype was mimicked under normal humidity by spraying plants with abscisic acid. Measurements of CO(2) fixation demonstrated an enhanced decline in photosynthesis in the mutant plants under humidity stress, which could be restored to wild-type levels by elevating the external CO(2) concentration. These results suggest that the plastid NAD(P)H:plastoquinone oxidoreductase in tobacco performs a significant physiological role by facilitating photosynthesis at moderate CO(2) limitation.  相似文献   

18.
19.
柑橘属光合作用的环境调节   总被引:17,自引:6,他引:11  
光合机构的运转受环境影响很大,与柑橘的生长发育、产量和品质密切相关.结合我们的工作,综合论述了柑橘光合作用环境调节的研究进展.强光和紫外光导致光合作用下降与PSⅡ反应中心失活有关,光呼吸和叶黄素循环对光合机构有保护作用.温度胁迫下,光合作用下降主要是RuBPCase活性下降和PSⅡ反应中心失活引起,品种间存在差异.轻度水分胁迫引起的光合作用下降是气孔限制的结果,而严重水分胁迫导致光合作用的非气孔限制.提高CO2浓度,能够促进柑橘的光合作用,进而促进柑橘的生长和提高其品质.阐述了N、P、S、Fe等矿质元素调节光合作用的机理及盐胁迫对光合作用的影响,指出了今后柑橘光合作用的研究方向.  相似文献   

20.
To function, the catalytic sites of Rubisco (EC 4.1.1.39) need to be activated by the reversible carbamylation of a lysine residue within the sites followed by rapid binding of magnesium. The activation of Rubisco in vivo requires the presence of the regulatory protein Rubisco activase. This enzyme is thought to aid the release of sugar phosphate inhibitors from Rubisco's catalytic sites, thereby influencing carbamylation. In C3 species, Rubisco operates in a low CO2 environment, which is suboptimal for both catalysis and carbamylation. In C4 plants, Rubisco is located in the bundle sheath cells and operates in a high CO2 atmosphere close to saturation. To explore the role of Rubisco activase in C4 photosynthesis, activase levels were reduced in Flaveria bidentis, a C4 dicot, by transformation with an antisense gene directed against the mRNA for Rubisco activase. Four primary transformants with very low activase levels were recovered. These plants and several of their segregating T1 progeny required high CO2 (>1 kPa) for growth. They had very low CO2 assimilation rates at high light and ambient CO2, and only 10% to 15% of Rubisco sites were carbamylated at both ambient and very high CO2. The amount of Rubisco was similar to that of wild-type plants. Experiments with the T1 progeny of these four primary transformants showed that CO2 assimilation rate and Rubisco carbamylation were severely reduced in plants with less than 30% of wild-type levels of activase. We conclude that activase activity is essential for the operation of the C4 photosynthetic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号