首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
31P-NMR spectroscopy has been used to study the energy metabolism and the NMR visibility of ATP and intracellular Pi of the C6 glioma cell line and rat astrocyte grown on microcarrier beads with the following results. 1. In vivo NMR spectra of C6 glioma cells and rat astrocytes indicate that these cells were able to maintain their level of ATP resonances during a long anoxic period (more than an hour). Both cell types were sensitive to ischemia which induced a loss of ATP resonances within 40 min. Glucose starvation induced by 40% decrease in ATP resonances correlated to a 50% increase in the intensity of the Pi signal. These changes corresponded to a new steady state which could be reversed by reperfusing the cells with a glucose-containing medium. 2. In contrast to in vivo data, 31P-NMR analyses of perchloric acid extracts of cells incubated in a glucose-free medium showed that their ATP and Pi contents were unchanged during starvation. The changes of NMR visibility of the metabolites in living C6 cells were correlated to modifications of their macroscopic longitudinal relaxation times, evolving from 0.30 +/- 0.08 s and 6.6 +/- 1.5 s in the presence of glucose to 0.68 +/- 0.26 s and 3.2 +/- 0.9 s in the absence of glucose for ATP and Pi, respectively. The changes of the NMR detectability of ATP and Pi indicate that changes in their microenvironment occur during glucose starvation, suggesting the existence of different pools of these metabolites within the cells. 3. Under various experimental conditions, i.e. anoxia, ischemia and glucose starvation, rat astrocytes in primary culture showed a very similar behavior to that of C6 cells, suggesting a similar adaptability to the nature of the energy supply for both the normal and the malignant cell.  相似文献   

2.
In conditions of glucose starvation, the maximum velocity of the mediated transport of nonmetabolized and metabolized amino acids, uridine, adenosine, and sucrose across the plasma membrane is stimulated by a factor of two by the addition of 1 mM adenosine 3':5'-monophosphate to Schizosaccharomyces pombe 972h- wild strain, to the glucose-super-repressed and derepressed mutants COB5 and COB6, and to Saccharomyces cerevisiae strain IL 216-IA. The mediated uptake of 2-D-deoxyglucose and the apparently nonmediated uptake of guanosine are not stimulated by the cyclic nucleotide. N6,O2'-Dibutyryl adenosine 3':5'-monophosphate is also efficient, whereas theophylline, guanosine 3':5'-monophosphate, 5'-AMP, ATP, and adenosine are ineffective. The cellular ATP content of glycerol-grown S. pombe COB5 is about 10 nmol per mg of protein and is not decreased by further incubation in the starvation medium. The addition of 100 mM glucose markedly enhances transport without any increase of the cellular ATP content. The addition of antimycin A or Dio-9 decreases markedly both cellular ATP content and transport. The addition of 2.5 mM glucose to antimycin A-containing medium restores both transport is not necessarily of mitochondrial origin. The uptake of 2-D-deoxyglucose is unaffected by the respiratory inhibitors. Stimulation of uptake by cyclic adenosine 3':5'-monophosphate occurs only in glucose-deprived cells. The addition of 10 mM glucose elicits the disappearance of the stimulation and prevents the 30% decrease of the cellular adenosine 3':5'-monophosphate content produced by glucose starvation. Adenosine 3':5'-'monophosphate does not enhance the steady state ATP level but requires cellular ATP produced either by endogenous respiration or, in the absence of respiration blocked by antimycin A, by further addition of 2.5 mM glucose. Stimulation of active uptake by adenosine 3':5'-monophosphate does not require protein synthesis because the addition of cycloheximide or anisomycin does not prevent the stimulation of L-leucine uptake. In the absence of respiration, Dio-9, and ATPase inhibitor, suppresses instantaneously the cellular ejection of protons as well as the uptake of uridine and amino acids. It abolishes also the adenosine 3':5'-monophosphate-stimulated transport. In the presence of antimycin A, specific mitochondrial ATPase inhibitors such as venruricidin A do not inhibit metabolite uptakes and their stimulation by adenosine 3':5'-monophosphate. These results suggest that in these conditions, the target of Dio-9 is not the mitochondrial ATPase but a plasma membrane proton-translocating function generating an electrochemical gradient required for active transport. That adenosine 3':5'-monophosphate enhances the Dio-9-sensitive proton extrusion supports the view that the cyclic nucleotide might modulate the plasma membrane ATPase.  相似文献   

3.
GroEL undergoes an important functional and structural transition when oxidized with hydrogen peroxide (H2O2) concentrations between 15 and 20mM. When GroEL was incubated for 3h with 15 mM H2O2, it retained its quaternary structure, chaperone and ATPase activities. Under these conditions, GroEL's cysteine and tyrosine residues remained intact. However, all the methionine residues of the molecular chaperone were oxidized to the corresponding methionine-sulfoxides under these conditions. The oxidation of the methionine residues was verified by the inability of cyanogen bromide to cleave at the carboxyl side of the modified methionine residues. The role for the proportionately large number (23) of methionine residues in GroEL has not been identified. Methionine residues have been reported to have an antioxidant activity in proteins against a variety of oxidants produced in biological systems including H2O2. The carboxyl-terminal domain of GroEL is rich in methionine residues and we hypothesized that these residues are involved in the protection of GroEL's functional structure by scavenging H2O2. When GroEL was further incubated for the same time, but with increasing concentrations of H2O2 (>15 mM), the oxidation of GroEL's cysteine residues and a significant decrease of the tyrosine fluorescence due to the formation of dityrosines were observed. Also, at these higher concentrations of H2O2, the inability of GroEL to hydrolyze ATP and to assist the refolding of urea-unfolded rhodanese was observed.  相似文献   

4.
The induction of mycrocyst formation by methionine starvation was demonstrated in Myxococcus xanthus by several methods. Growing in a defined medium (M(1)), M. xanthus had a doubling time of 6.5 hr. Four amino acids-leucine, isoleucine, valine, and glycine-were required for growth under these conditions. When the concentration of several amino acids in the medium was reduced (M(2)), the doubling time increased to 10 to 12 hr, and a requirement for methionine was observed. Methionine starvation led to a slow conversion of the population to microcysts. Under conditions of methionine prototrophy (M(1)), microcyst formation could still be triggered in exponentially growing cells by the addition of either 5 mm ethionine or 0.1 m isoleucine plus 0.1 m threonine, feedback inhibitors of methionine biosynthesis. Vegetative growth in the absence of methionine was obtained in medium M(2) if the leucine concentration was raised to its level in medium M(1). Thus, methionine biosynthesis is controlled by the exogenous concentration of the required amino acid, leucine. During an examination of the effects of methionine metabolites on microcyst formation, the involvement of polyamines in morphogenesis was uncovered. Putrescine (0.05 m) induced the formation of microcysts; spermidine (2 to 5 mm) inhibited induction by methionine starvation, ethionine, or high isoleucine-threonine. Spermidine was the only polyamine detected in M. xanthus (16.0 mug/10(9) cells). Its concentration decreased by more than 50% shortly after microcyst induction by high isoleucine-threonine. It is postulated that spermidine is an inhibitor of microcyst induction; when spermidine formation is blocked by methionine starvation, morphogenesis is induced.  相似文献   

5.
Requirement of ATP in bacterial chemotaxis   总被引:13,自引:0,他引:13  
Evidence is presented that chemotaxis requires ATP or a closely related metabolite, in addition to its known requirements of ATP for synthesis of S-adenosylmethionine (AdoMet) and maintenance of the proton motive force. Previous studies demonstrated a loss of tumbling and chemotaxis, and depletion of ATP when hisF auxotrophs of Salmonella typhimurium are starved for histidine (Galloway, R. J., and Taylor, B. L. (1980) J. Bacteriol. 144, 1068-1075). In the present study, intracellular [AdoMet], membrane potential, and [ATP] were measured in a hisF mutant of S. typhimurium. Membrane potential, determined from partitioning of [3H]tetraphenylphosphonium ion between the inside and the outside of the cell, was about -150 mV at pH 7.6, and did not decrease in histidine starvation but was slightly increased. The concentration of AdoMet decreased from 0.4 mM to 0.3 mM during starvation but when cycloleucine, an inhibitor of AdoMet synthetase, was used to decrease [AdoMet] by a similar amount in histidine-fed cells there was little change in tumbling frequency. Intracellular [ATP] was reduced from 4.5 mM to less than 0.2 mM by histidine starvation. About 0.2 mM ATP was necessary for spontaneous tumbling. A similar [ATP] was required for tumbling in arsenate-treated cells. Adenine at concentrations as low as 20 nM caused a transient increase in both tumbling frequency and [ATP] in histidine-starved cells. Thus, out of three parameters tested, only the intracellular [ATP] correlated with changes in tumbling frequency in the histidine-starved cells.  相似文献   

6.
7.
The adenosine triphosphate (ATP) content of Arthrobactery crystallopoietes was measured during growth, starvation and recovery from starvation. During exponential growth of the cells as spheres in a glucose salts medium, the level of ATP per cell remained constant at 8.0×10-10 g/cell. Morphogenesis to rodshaped cells and an increased growth rate following addition of casein hydrolysate was accompanied by an almost two-fold increase in the ATP level. As division of the rod-shaped cells proceeded, the level of ATP declined. After growing as rods for 12–14 h the cells underwent fragmentation to spheres during which time the ATP level again increased to the original value of 8.0×10-10 g/cell. As the spherical cells resumed growth on the residual glucose, their ATP content declined for a short period and then remained relatively constant. During starvation of sphere or rod-shaped cells for one week, the ATP level declined by approximately 70% during the first 40–50 h and then remained constant. The endogenous metabolism rate of spherical cells declined during the first 10–20 h of starvation and then remained constant at approximately 0.02% of the cell carbon being utilized per h. Addition of glucose to spherical cells which had been starved for one week increased both the ATP content per cell and their rate of endogenous metabolism. The ATP content fluctuated and then remained at a level higher than maintained during starvation while endogenous metabolism quickly declined.Non-Standard Abbreviations ATP adenosine triphosphate - GS glucose mineral salts - HC casein hydrolysate - PVP polyvinylpyrrolidone - DMSO dimethylsulfoxide - MOPS morpholinopropane sulfonic acid - EDTA ethylene diaminetetraacetic acid  相似文献   

8.
Control of glycolysis and gluconeogenesis in rat kidney cortex slices   总被引:15,自引:12,他引:3       下载免费PDF全文
1. Glucose uptake or glucose formation has been studied in kidney cortex slices to investigate metabolic control of phosphofructokinase and fructose-diphosphatase activities. 2. Glucose uptake is increased and glucose formation is decreased by anoxia, cyanide or an uncoupling agent. Under these conditions the intracellular concentrations of glucose 6-phosphate and ATP decreased whereas that of fructose diphosphate either increased or remained constant, and the concentrations of AMP and ADP increased. 3. Glucose uptake was decreased, and glucose formation from glycerol or dihydroxyacetone was increased, by the presence of ketone bodies or fatty acids, or after starvation of the donor animal. Under these conditions, the concentrations of glucose 6-phosphate and citrate were increased, whereas those of fructose diphosphate and the adenine nucleotides were unchanged (see also Newsholme & Underwood, 1966). 4. It is concluded that anoxia and cell poisons increase glucose uptake and decrease gluconeogenesis by stimulating phosphofructokinase and inhibiting fructose diphosphatase, whereas ketone bodies, fatty acids or starvation increase gluconeogenesis and decrease glucose uptake through the citrate inhibition of phosphofructokinase.  相似文献   

9.
AS-30D hepatoma cells, a highly oxidative and fast-growing tumor line, showed glucose-induced and fructose-induced inhibition of oxidative phosphorylation (the Crabtree effect) of 54% and 34%, respectively. To advance the understanding of the underlying mechanism of this process, the effect of 5 mM glucose or 10 mM fructose on the intracellular concentration of several metabolites was determined. The addition of glucose or fructose lowered intracellular Pi (40%), and ATP (53%) concentrations, and decreased cytosolic pH (from 7.2 to 6.8). Glucose and fructose increased the content of AMP (30%), glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate (15, 13 and 50 times, respectively). The cytosolic concentrations of Ca2+ and Mg2+ were not modified. The addition of galactose or glycerol did not modify the concentrations of the metabolites. Mitochondria isolated from AS-30D cells, incubated in media with low Pi (0.6 mM) at pH 6.8, exhibited a 40% inhibition of oxidative phosphorylation. The data suggest that the Crabtree effect is the result of several small metabolic changes promoted by addition of exogenous glucose or fructose.  相似文献   

10.
The effects of carbohydrates on meiotic maturation and ATP content of bovine oocytes under low oxygen tension (5%) were investigated. Furthermore, the developmental competence or intracellular H(2)O(2) contents of the oocytes matured under 5% or 20% O(2) was assessed. In vitro maturation of bovine cumulus-oocyte complexes was performed in synthetic oviduct fluid (SOF) containing 20 amino acids and hormones (SOFaa). The proportion of the oocytes that matured to the metaphase II stage in SOFaa containing 1.5 mM glucose, 0.33 mM pyruvate, and 3.3 mM lactate under 5% O(2) was dramatically lower than that of oocytes matured under 20% O(2) (P < 0.01). Similarly, the ATP content of the oocytes that matured under 5% O(2) was much lower than that of oocytes matured under 20% O(2) (P < 0.05). Under 5% O(2) the proportion of metaphase II oocytes increased with increasing glucose concentration (0-20 mM) in SOFaa without pyruvate or lactate. In addition, the ATP content of oocytes cultured in 20 mM glucose was higher (P < 0.05) than that of oocytes cultured in 1. 5 mM glucose. Two glucose metabolites (pyruvate and lactate) and a nonmetabolizable glucose analog (2-deoxy-glucose), however, had no noticeable effects on meiotic maturation under 5% O(2). These results suggest that ATP production under 5% O(2) is not dependent on the TCA cycle. Addition of iodoacetate, a glycolytic inhibitor, to SOFaa containing 20 mM glucose significantly reduced (P < 0.01) the proportion of metaphase II and ATP content. Moreover, the proportion of the development to the blastocyst stage of oocytes matured under 5% O(2) was higher (P < 0.05) than that of oocytes matured under 20% O(2). H(2)O(2) contents of oocytes matured under 5% O(2) was lower (P < 0.05) than that of oocytes matured under 20% O(2). The results of the present study demonstrate that glucose plays important roles in supporting the completion of meiotic maturation in bovine cumulus-oocyte complexes under low oxygen tension and that low oxygen tension during in vitro maturation is beneficial for supporting the subsequent development of bovine oocytes.  相似文献   

11.
An in vitro system was used to study DNA synthesis in lysates of Escherichia coli cells which had been grown in the presence of ethionine. Such lysates showed a reduced capacity to incorporate [3H]TTP into high-molecular-weight material. Activity could be restored by incubation with S-adenosyl methionine and ATP. S-adenosyl methionine-reactivated TTP incorporation required the presence of DNA polymerase I, ATP, and all four deoxyribonucleotide triphosphates. DNA polymerase III was not required.  相似文献   

12.
Summary We have investigated the physiological conditions under which meiosis and the ensuing sporulation of Saccharomyces cerevisiae are initiated. Initiation of sporulation occurs in response to carbon, nitrogen, phosphorus, or sulfur deprivation, and also, when met auxotrophs are partially starved for methionine, but not after starvation of other amino acid auxotrophs. It also occurs after partial starvation of pur or gua auxotrophs for guanine but not after starvation of ura auxotrophs for uracil. Under all these sporulation conditions the concentrations of both guanine nucleotides (GTP) and S-adenosylmethionine (SAM) decrease whereas those of other nucleotides show no trend. We show that the decrease of guanine nucleotides is essential for the initiation of meiosis and sporulation: when a gua auxotroph, also lacking one of the two SAM synthetases, is starved for guanine but supplemented with 0.1 mM methionine, GTP decreases while SAM slightly increases and yet the cells sporulate.  相似文献   

13.
Pancreatic beta cells act as glucose sensors, in which intracellular ATP ([ATP]i) are altered with glucose concentration change. The characterization of voltage-gated sodium channels under different [ATP]i remains unclear. Here, we demonstrated that increasing [ATP]i within a certain range of concentrations (2–8 mM) significantly enhanced the voltage-gated sodium channel currents, compared with 2 mM cytosolic ATP. This enhancement was attenuated by even high intracellular ATP (12 mM). Furthermore, elevated ATP modulated the sodium channel kinetics in a dose-dependent manner. Increased [ATP]i shifted both the current–voltage curve and the voltage-dependent inactivation curve of sodium channel to the right. Finally, the sodium channel recovery from inactivation was significantly faster when the intracellular ATP level was increased, especially in 8 mM [ATP]i, which is an attainable concentration by the high glucose stimulation. In summary, our data suggested that elevated cytosolic ATP enhanced the activity of Na+ channels, which may play essential roles in modulating β cell excitability and insulin release when blood glucose concentration increases.  相似文献   

14.
Regulation of platelet AMP deaminase activity in situ.   总被引:1,自引:0,他引:1       下载免费PDF全文
The regulation of platelet AMP deaminase activity by ATP, GTP and phosphate was studied in human platelets in situ, and in vitro after partial purification. In intact platelets, a similar 50% decrease in cytosolic ATP was induced by either glucose starvation or treatment with H2O2. During starvation, AMP deaminase was in the inhibited state, as ATP consumption was mostly balanced by the accumulation of AMP. During H2O2 treatment, however, the enzyme was in the stimulated state, as the AMP formed was almost completely deaminated to IMP. Cytosolic GTP fell by 40-50% in both starvation and H2O2 treatment. In contrast, intracellular phosphate was 4-5-fold higher in starved than in H2O2-treated cells. These data point to phosphate as the main regulator of AMP deaminase activity in situ. This conclusion was verified by kinetic analysis of partially purified AMP deaminase. At near-physiological concentrations of MgATP, MgGTP and phosphate, the S0.5 (substrate half-saturation constant) for AMP was 0.35 mM. Half-maximal stimulation by MgATP occurred at a concn. between 2 and 3 mM. This stimulation was antagonized by the inhibitory effects of phosphate (IC50 = 2.0 mM) and MgGTP (IC50 = 0.2-0.3 mM), which acted in synergism (IC50 is the concentration causing 50% inhibition). We conclude that the difference in adenylate catabolism between starved and H2O2-treated platelets is due to the distinct phosphate concentrations. During starvation, refeeding and H2O2 treatment, the values of the adenylate charge and the phosphorylation potential were kept closely co-ordinated, which may be effected by AMP deaminase.  相似文献   

15.
Different cancer cells exhibit altered sensitivity to metformin treatment. Recent studies suggest these findings may be due in part to the common cell culture practice of utilizing high glucose, and when glucose is lowered, metformin becomes increasingly cytotoxic to cancer cells. In low glucose conditions ranging from 0 to 5 mM, metformin was cytotoxic to breast cancer cell lines MCF7, MDAMB231 and SKBR3, and ovarian cancer cell lines OVCAR3, and PA-1. MDAMB231 and SKBR3 were previously shown to be resistant to metformin in normal high glucose medium. When glucose was increased to 10 mM or above, all of these cell lines become less responsive to metformin treatment. Metformin treatment significantly reduced ATP levels in cells incubated in media with low glucose (2.5 mM), high fructose (25 mM) or galactose (25 mM). Reductions in ATP levels were not observed with high glucose (25 mM). This was compensated by enhanced glycolysis through activation of AMPK when oxidative phosphorylation was inhibited by metformin. However, enhanced glycolysis was either diminished or abolished by replacing 25 mM glucose with 2.5 mM glucose, 25 mM fructose or 25 mM galactose. These findings suggest that lowering glucose potentiates metformin induced cell death by reducing metformin stimulated glycolysis. Additionally, under low glucose conditions metformin significantly decreased phosphorylation of AKT and various targets of mTOR, while phospho-AMPK was not significantly altered. Thus inhibition of mTOR signaling appears to be independent of AMPK activation. Further in vivo studies using the 4T1 breast cancer mouse model confirmed that metformin inhibition of tumor growth was enhanced when serum glucose levels were reduced via low carbohydrate ketogenic diets. The data support a model in which metformin treatment of cancer cells in low glucose medium leads to cell death by decreasing ATP production and inhibition of survival signaling pathways. The enhanced cytotoxicity of metformin against cancer cells was observed both in vitro and in vivo.  相似文献   

16.
17.
Our previous work has demonstrated that islet depolarization with KCl opens connexin36 hemichannels in β-cells of mouse pancreatic islets allowing the exchange of small metabolites with the extracellular medium. In this study, the opening of these hemichannels has been further characterized in rat islets and INS–1 cells. Taking advantage of hemicannels’opening, the uptake of extracellular ATP and its effect on insulin release were investigated. 70 mM KCl stimulated light emission by luciferin in dispersed rat islets cells transduced with the fire-fly luciferase gene: it was suppressed by 20 mM glucose and 50 μM mefloquine, a specific connexin36 inhibitor. Extracellular ATP was taken up or released by islets depolarized with 70 mM KCl at 5 mM glucose, depending on the external ATP concentration. 1 mM ATP restored the loss of ATP induced by the depolarization itself. ATP concentrations above 5 mM increased islet ATP content and the ATP/ADP ratio. No ATP uptake occurred in non-depolarized or KCl-depolarized islets simultaneously incubated with 50 μM mefloquine or 20 mM glucose. Extracellular ATP potentiated the secretory response induced by 70 mM KCl at 5 mM glucose in perifused rat islets: 5 mM ATP triggered a second phase of insulin release after the initial peak triggered by KCl-depolarization itself; at 10 mM, it increased both the initial, KCl-dependent, peak and stimulated a greater second phase of secretion than at 5 mM. These stimulatory effects of extracellular ATP were almost completely suppressed by 50 μM mefloquine. The magnitude of the second phase of insulin release due to 5 mM extracellular ATP was decreased by addition of 5 mM ADP (extracellular ATP/ADP ratio = 1). ATP acts independently of KATP channels closure and its intracellular concentration and its ATP/ADP ratio seems to regulate the magnitude of both the first (triggering) and second (amplifying) phases of glucose-induced insulin secretion.  相似文献   

18.
L-ethionine has been found to inhibit uracil tRNA methylating enzymes in vitro under conditions where methylation of other tRNA bases is unaffected. No selective inhibitor for uracil tRNA methylases has been identified previously. 15 mM L-ethionine or 30 mM D,L-ethionine caused about 40% inhibition of tRNA methylation catalyzed by enzyme extracts from E. coli B or E. coli M3S (mixtures of methylases for uracil, guanine, cytosine, and adenine) but did not inhibit the activity of preparations from an E. coli mutant that lacks uracil tRNA methylase. Analysis of the 14CH3 bases in methyl-deficient E. coli tRNA after its in vitro methylation with E. coli B3 enzymes in the presence or absence of ethionine showed that ethionine inhibited 14CH3 transfer to uracil in tRNA, but did not diminish significantly the 14CH3 transfer to other tRNA bases. Under similar conditions 0.6 mM S-adenosylethionine and 0.2 mM ethylthioadenosine inhibited the overall tRNA base methylating activity of E. coli B preparations about 50% but neither of these ethionine metabolites preferentially inhibited uracil methylation. Ethionine was not competitive with S-adenosyl methionine. Uracil methylation was not inhibited by alanine, valine, or ethionine sulfoxide. It is suggested that the thymine deficiency that we found earlier in tRNA from ethionine-treated E. coli B cells, resulted from base specific inhibition by the amino acid, ethionine, of uracil tRNA methylation in vivo.  相似文献   

19.
Platinum resistance of cancer cells may evolve due to a decrease in intracellular drug accumulation, decreased cell permeability or by an increased deactivation of the drug by glutathione (GSH). The aim of this study was (1) to investigate the effect of adenosine 5′-triphosphate (ATP) on the cytotoxicity of cisplatin in a large cell lung carcinoma cell line (H460), and (2) to examine the potential involvement of increased cisplatin uptake, GSH depletion and pyrimidine starvation by ATP in this effect. H460 cells were harvested and seeded (5% CO2; 37 °C). Subsequently, cells were incubated with medium or ATP followed by an incubation with cisplatin. Cytotoxicity screening was analyzed by the sulforhodamine B (SRB) colorimetric assay, lactate dehydrogenase and caspase-3/7 activity. Pre-incubation for 72 h with 0.3 and 3 mM ATP strongly enhanced the anti-proliferative potency of cisplatin 2.9- and 7.6-fold, respectively. Moreover, after incubation of H460 cells with 0.3 mM ATP the intracellular platinum concentration increased, indicating increased cisplatin uptake by ATP. ATP, despite lowering the LD50 of cisplatin, did not modulate GSH levels in H460 cells. ATP itself showed a biphasic effect on H460 cell growth: 0.3 mM inhibited H460 cell growth via the pyrimidine starvation effect, activation of caspase-3/7 and LDH leakage, while 3 mM ATP showed no effect on cell growth. In conclusion, ATP sensitizes the H460 cells to cisplatin-induced apoptosis. The effect of 0.3 mM ATP is not due to GSH depletion but involves increased cisplatin uptake and pyrimidine starvation due to ATP conversion to adenosine followed by cellular uptake.  相似文献   

20.
The relation between autophagy and apoptosis has not been clearly elucidated. Here, we reported that apoptosis followed autophagy in insect Spodoptera litura cells (Sl) undergoing glucose starvation. Sl cells have been adapted to Leibovitz-15 medium supplemented with glucose (1.0 g/l) and 5% fetal bovine serum (FBS), used for mammalian cell cultures. If glucose (1 g/l) or glutamine (1.6 g/l) had not been supplemented in L-15 medium with 5% FBS, Sl cells began to form many vacuoles and these vacuoles gradually enlarged in the cytoplasm, which were autophagic vacuoles. However, these large vacuoles began to disappear gradually after 48 h of glucose starvation, accompanied with remarkable apoptosis without apoptotic bodies, which was demonstrated by DNA fragmentation and activation of caspase-3-like. During glucose starvation, Sl cell ATP concentrations gradually decreased. Interestingly, if the conditioned L-15 medium without glucose was replaced with fresh L-15 medium supplemented with glucose or glutamine after the cultures had been starved seriously for 48 h or longer, the formation of apoptotic bodies was initiated. These data suggested that the partial depletion of cell ATP triggered apoptosis following autophagy in glucose-starved Sl cells and the formation of apoptotic bodies required higher level of ATP than DNA fragmentation and activation of caspase-3-like activity. Additionally, the disappearance of autophagic vacuoles, negative staining of neutral red, green staining of acridine orange and diffusion of acid phosphatase activity in Sl cells at the late stage of starvation (over 48 h) suggested that the dysfunction of lysosome was more likely to involve in apoptosis. The facts that Actinomycin D-induced apoptosis was partially inhibited and cyclosporin A, blocking the opening of mitochondrial permeability transition (MPT) pores, inhibited partially apoptosis in glucose-starved Sl cells, suggested the pathway of glucose starvation-induced apoptosis seemed to be different from that induced by actinomycin D and the opening of MPT pores on mitochondria probably involved in apoptosis triggered by glucose starvation, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号