首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ideal therapy would target cancer cells while sparing normal tissue. However, in most conventional chemotherapies normal cells are damaged together with cancer cells resulting in the unfortunate side effects. The principle underlying enzyme/prodrug therapy is that a prodrug-activating enzyme is delivered or expressed in tumor tissue following which a non-toxic prodrug is administered systemically. Non-invasive imaging modalities can fill an important niche in guiding prodrug administration when the enzyme concentration is detected to be high in the tumor tissue but low in the normal tissue. Therefore, high therapeutic efficacy with minimized toxic effect can be anticipated. This review introduces the latest developments of molecular imaging in enzyme/prodrug cancer therapies. We focus on the application of imaging modalities including magnetic resonance imaging, position emission tomography and optical imaging in monitoring the enzyme delivery/expression, guiding the prodrug administration and evaluating the real-time therapeutic response in vivo.  相似文献   

2.
Cytokine-induced killer (CIK) cells are T cell derived ex vivo expanded cells with both NK and T cell properties. They exhibit potent anti-tumor efficacy against various malignancies in preclinical models and have proven safe and effective in clinical studies. We combined CIK cell adoptive immunotherapy with IL-12 cytokine immunotherapy in an immunocompetent preclinical breast cancer model. Combining CIK cells with IL-12 increased anti-tumor efficacy in vivo compared to either therapy alone. Combination led to full tumor remission and long-term protection in 75% of animals. IL-12 treatment sharply increased the anti-tumor efficacy of short-term cultured CIK cells that exhibited no therapeutic effect alone. Bioluminescence imaging based in vitro cytotoxicity and in vivo homing assays revealed that short-term cultured CIK cells exhibit full cytotoxicity in vitro, but display different tumor homing properties than fully expanded CIK cells in vivo. Our data suggest that short-term cultured CIK cells can be “educated” in vivo, producing fully expanded CIK cells upon IL-12 administration with anti-tumor efficacy in a mouse model. Our findings demonstrate the potential to improve current CIK cell-based immunotherapy by increasing efficacy and shortening ex vivo expansion time. This holds promise for a highly efficacious cancer therapy utilizing synergistic effects of cytokine and cellular immunotherapy.  相似文献   

3.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.  相似文献   

4.
Immunotherapy has been developed for the treatment of metastatic cancers refractory to conventional therapies. Immunotherapy utilizes immune cells and/or biological response modifiers (BRMs) to induce an anti-tumor response mediated by the patient's immune system. BRMs, including lymphokines and cytokines, are used as single agents or in combination for cancer therapy. Some BRMs, particularly interleukin 2 (IL-2), can activate and expandin vitro lymphocytes with anti-tumor reactivity which will be adoptively transferred to the patient. To enhance the therapeutic effect of immunotherapy, gene therapy is currently under investigation and involves the insertion of cytokine genes in immune cells or in tumor cells. The development and future of cancer immunotherapy will be discussed in this review.  相似文献   

5.
A phase II study of NK cell therapy in treatment of patients with recurrent breast cancer has recently been reported. However, because of the complexities of tumor microenvironments, effective therapeutic effects have not been achieved in NK cell therapy. Radioiodine (I-131) therapy inhibits cancer growth by inducing the apoptosis and necrosis of cancer cells. Furthermore, it can modify cancer cell phenotypes and enhance the effect of immunotherapy against cancer cells. The present study showed that I-131 therapy can modulate microenvironment of breast cancer and improve the therapeutic effect by enhancing NK cell cytotoxicity to the tumor cells. The susceptibility of breast cancer cells to NK cell was increased by precedent I-131 treatment in vitro. Tumor burden in mice treated with I-131 plus NK cell was significantly lower than that in mice treated with NK cell or I-131 alone. The up-regulation of Fas, DR5 and MIC A/B on irradiated tumor cells could be the explanation for the enhancement of NK cell cytotoxicity to tumor cells. It can be applied to breast cancer patients with iodine avid metastatic lesions that are non-responsive to conventional treatments.  相似文献   

6.
Nanotherapy has emerged as an improved anticancer therapeutic strategy to circumvent the harmful side effects of chemotherapy. It has been proven to be beneficial to offer multiple advantages, including their capacity to carry different therapeutic agents, longer circulation time and increased therapeutic index with reduced toxicity. Over time, nanotherapy evolved in terms of their designing strategies like geometry, size, composition or chemistry to circumvent the biological barriers. Multifunctional nanoscale materials are widely used as molecular transporter for delivering therapeutics and imaging agents. Nanomedicine involving multi-component chemotherapeutic drug-based combination therapy has been found to be an improved promising approach to increase the efficacy of cancer treatment. Next-generation nanomedicine has also utilized and combined immunotherapy to increase its therapeutic efficacy. It helps in targeting tumor immune response sparing the healthy systemic immune function. In this review, we have summarized the progress of nanotechnology in terms of nanoparticle designing and targeting cancer. We have also discussed its further applications in combination therapy and cancer immunotherapy. Integrating patient-specific proteomics and biomarker based information and harnessing clinically safe nanotechnology, the development of precision nanomedicine could revolutionize the effective cancer therapy.  相似文献   

7.
Gene therapy, recently frequently investigated, is an alternative treatment method that introduces therapeutic genes into a cancer cell or tissue to cause cell death or slow down the growth of the cancer. This treatment has various strategies such as therapeutic gene activation or silencing of unwanted or defective genes; therefore a wide variety of genes and viral or nonviral vectors are being used in studies. Gene therapy strategies in cancer can be classified as inhibition of oncogene activation, activation of tumor suppressor gene, immunotherapy, suicide gene therapy and antiangiogenic gene therapy. In this review, we explain gene therapy, gene therapy strategies in cancer, approved gene medicines for cancer treatment and future of gene therapy in cancer. Today gene therapy has not yet reached the level of replacing conventional therapies. However, with a better understanding of the mechanism of cancer to determine the right treatment and target, in the future gene therapy, used as monotherapy or in combination with another existing treatment options, is likely to be used as a new medical procedure that will make cancer a controllable disease.  相似文献   

8.
Over the last decades medicine has developed tremendously, but still many diseases are incurable. The last years, cellular (gene) therapy has become a hot topic in biomedical research for the potential treatment of cancer, AIDS and diseases involving cell loss or degeneration. Here, we will focus on two major areas within cellular therapy, cellular immunotherapy and stem cell therapy, that could benefit from the introduction of neo-expressed genes through mRNA electroporation for basic research as well as for clinical applications. For cellular immunotherapy, we will provide a state-of-the-art on loading antigen-presenting cells with antigens in the mRNA format for manipulation of T cell immunity. In the area of stem cell research, we will highlight current gene transfer methods into adult and embryonic stem cells and discuss the use of mRNA electroporation for controlling guided differentiation of stem cells into specialized cell lineages.  相似文献   

9.
One of the most common diseases in the present era is cancer. The common treatment methods used to control cancer include surgery, chemotherapy, and radiotherapy. Despite progress in the treatment of cancers, there still is no definite therapeutic approach. Among the currently proposed strategies, immunotherapy is a new approach that can provide better outcomes compared with existing therapies. Employing natural killer (NK) cells is one of the means of immunotherapy. As innate lymphocytes, NK cells are capable of rapidly responding to cancer cells without being sensitized or restricted to the cognate antigen in advance, as compared to T cells that are tumor antigen-specific. Latest insights into the biology of NK cells have clarified the underlying molecular mechanisms of NK cell maturation and differentiation, as well as controlling their effector functions through the investigation of the ligands and receptors engaged in recognizing cancer cells by NK cells. Elucidating the fact that NK cells recognize cancer cells could similarly show the mechanism through which cancer cells possibly avoid NK cell-dependent immune surveillance. Additionally, the expectations for novel immunotherapies by targeting NK cells have increased through the latest clinical outcomes of T–cell-targeted cancer immunotherapy. For this emerging method, researchers are still attempting to develop protocols for conferring the best proliferation and expansion medium, activation pathways, utilization dosage, transferring methods, as well as reducing possible side effects in cancer therapy. This study reviews the NK cells, their proliferation and expansion methods, and their recent applications in cancer immunotherapy.  相似文献   

10.
The interplay between host immunity and tumour cells has opened the possibility of targeting tumour cells by modulation of the human immune system. Cancer immunotherapy involves the treatment of a tumour by utilizing the recombinant human immune system components to target the pro-tumour microenvironment or by revitalizing the immune system with the ability to kill tumour cells by priming the immune cells with tumour antigens. In this review, current immunotherapy approaches to cancer with special focus on dendritic cell (DC)-based cancer vaccines are discussed. Some of the DC-based vaccines under clinical trials for various cancer types are highlighted. Establishing tumour immunity involves a plethora of immune components and pathways; hence, combining chemotherapy, radiation therapy and various arms of immunotherapy, after analysing the benefits of individual therapeutic agents, might be beneficial to the patient.  相似文献   

11.
Gene therapy is a very attractive strategy in experimental cancer therapy. Ideally, the approach aims to deliver therapeutic genes selectively to cancer cells. However, progress in the improvement of gene therapy formulations has been hampered by difficulties in measuring transgene delivery and in quantifying transgene expression in vivo. In clinical trials, endpoints rely almost exclusively on the analysis of biopsies by molecular and histopathological methods, which provide limited information. Therefore, to ensure the rational development of gene therapy, a crucial issue is the utilisation of technologies for the non-invasive monitoring of spatial and temporal gene expression in vivo upon administration of a gene delivery vector. Such imaging technologies would allow the generation of quantitative information about gene expression and the assessment of cancer gene therapy efficacy. In the past decade, progress has been made in the field of in vivo molecular imaging. This review highlights the various methods currently being developed in preclinical models.  相似文献   

12.
Vaccine and antibody-directed T cell tumour immunotherapy   总被引:3,自引:0,他引:3  
Clearer evidence for immune surveillance in malignancy and the identification of many new tumour-associated antigens (TAAs) have driven novel vaccine and antibody-targeted responses for therapy in cancer. The exploitation of active immunisation may be particularly favourable for TAA where tolerance is incomplete but passive immunisation may offer an additional strategy where the immune repertoire is affected by either tolerance or immune suppression. This review will consider how to utilise both active and passive types of therapy delivered by T cells in the context of the failure of tumour-specific immunity by presenting cancer patients. This article will outline the progress, problems and prospects of several different vaccine and antibody-targeted approaches for immunotherapy of cancer where proof of principle pre-clinical studies have been or will soon be translated into the clinic. Two examples of vaccination-based therapies where both T cell- and antibody-mediated anti-tumour responses are likely to be relevant and two examples of oncofoetal antigen-specific antibody-directed T cell therapies are described in the following sections: (1) therapeutic vaccination against human papillomavirus (HPV) antigens in cervical neoplasia; (2) B cell lymphoma vaccines including against immunoglobulin idiotype; (3) oncofoetal antigens as tumour targets for redirecting T cells with antibody strategies.  相似文献   

13.
Molecular imaging is used to improve the disease diagnosis, prognosis, monitoring of treatment in living subjects. Numerous molecular targets have been developed for various cellular and molecular processes in genetic, metabolic, proteomic, and cellular biologic level. Molecular imaging modalities such as Optical Imaging, Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), Single Photon Emission Computed Tomography (SPECT), and Computed Tomography (CT) can be used to visualize anatomic, genetic, biochemical, and physiologic changes in vivo. For in vivo cell imaging, certain cells such as cancer cells, immune cells, stem cells could be labeled by direct and indirect labeling methods to monitor cell migration, cell activity, and cell effects in cell-based therapy. In case of cancer, it could be used to investigate biological processes such as cancer metastasis and to analyze the drug treatment process. In addition, transplanted stem cells and immune cells in cell-based therapy could be visualized and tracked to confirm the fate, activity, and function of cells. In conventional molecular imaging, cells can be monitored in vivo in bulk non-invasively with optical imaging, MRI, PET, and SPECT imaging. However, single cell imaging in vivo has been a great challenge due to an extremely high sensitive detection of single cell. Recently, there has been great attention for in vivo single cell imaging due to the development of single cell study. In vivo single imaging could analyze the survival or death, movement direction, and characteristics of a single cell in live subjects. In this article, we reviewed basic principle of in vivo molecular imaging and introduced recent studies for in vivo single cell imaging based on the concept of in vivo molecular imaging.  相似文献   

14.
Xia D  Moyana T  Xiang J 《Cell research》2006,16(3):241-259
Recent developments in tumor immunology and biotechnology have made cancer gene therapy and immunotherapy feasible. The current efforts for cancer gene therapy mainly focus on using immunogenes, chemogenes and tumor suppressor genes. Central to all these therapies is the development of efficient vectors for gene therapy. By far, adenovirus (AdV)-mediated gene therapy is one of the most promising approaches, as has confirmed by studies relating to animal tumor models and clinical trials. Dendritic cells (DCs) are highly efficient, specialized antigen-presenting cells, and DC- based tumor vaccines are regarded as having much potential in cancer immunotherapy. Vaccination with DCs pulsed with tumor peptides, lysates, or RNA, or loaded with apoptotic/necrotic tumor cells, or engineered to express certain cytokines or chemokines could induce significant antitumor cytotoxic T lymphocyte (CTL) responses and antitumor immunity. Although both AdV-mediated gene therapy and DC vaccine can both stimulate antitumor immune responses, their therapeutic efficiency has been limited to generation of prophylactic antitumor immunity against re-challenge with the parental tumor cells or to growth inhibition of small tumors. However, this approach has been unsuccessful in combating well-established tumors in animal models. Therefore, a major strategic goal of current cancer immunotherapy has become the development of novel therapeutic strategies that can combat well-established tumors, thus resembling real clinical practice since a good proportion of cancer patients generally present with significant disease. In this paper, we review the recent progress in AdV-mediated cancer gene therapy and DC-based cancer vaccines, and discuss combined immunotherapy including gene therapy and DC vaccines. We underscore the fact that combined therapy may have some advantages in combating well-established tumors vis-a-vis either modality administered as a monotherapy.  相似文献   

15.
Rapidly detectable and easily accessible markers of tumor cell death are needed for evaluating early therapeutic efficacy for immunotherapy and chemotherapy so that patients and their physicians can decide whether to remain with a given therapeutic strategy. Currently, image-based tests such as computed tomography scans and magnetic resonance imaging are used to visualize the response of a patient’s tumor, but often these evaluations are not conducted for weeks to months after treatment begins. While serum levels of secreted proteins such as carcinoembryonic antigen and prostate specific antigen are commonly monitored to gauge tumor status during therapy and between image evaluations, the levels of these proteins do not always correlate well with the actual tumor response. In laboratory studies, it has been shown that tumor cells undergoing apoptosis can release cellular components into cell culture media such as cytochrome c, nucleosomes, cleaved cytokeratin-18 and E-cadherin. Studies of patient sera have found that these and other macromolecules can be found in circulation during cancer therapy, providing a potential source of material for monitoring treatment efficacy. In the future, analysis of biofluids from severe combined immunodeficiency mice bearing patient tumor specimens treated with a targeted therapy such as Apo2L/tumor necrosis factor-related apoptosis-inducing ligand will be useful in the preclinical identification of therapy response markers. In this review, the current status of the identification of serum markers of tumor cell apoptosis is provided, as well as a discussion of critical research questions that must be addressed and the considerations necessary when identifying a marker that reflects true clinical outcome.  相似文献   

16.
胃癌是目前世界上发病率及致死率较高的恶性肿瘤之一,在东亚地区尤其显著。针对胃癌的治疗手段仍是传统的手术联合化疗、放疗为主,尽管靶向药物治疗提供了新的选择,但其对晚期胃癌的疗效仍然有限。胃癌的免疫治疗作为独特的治疗手段,在近十多年发展较为活跃,特别是过继性免疫治疗手段不断有创新。过继性免疫治疗主要依赖回输具有抗肿瘤活性的细胞,目前回输的细胞由具有非特异性抗肿瘤作用向具有特异性抗肿瘤作用演变,特别是嵌合性抗原T细胞治疗的出现,为进展期胃癌患者提供了有一种潜在的选择。本文对胃癌过继性免疫治疗中采用的不同免疫活性细胞的作用机制、临床应用等进行总结,并针对其不足提出利用基因工程技术增强治疗靶向性、降低免疫逃逸的研究方向。  相似文献   

17.
The adoptive transfer of chimeric antigen receptor (CAR)-expressing T cells is a relatively new but promising approach in the field of cancer immunotherapy. This therapeutic strategy is based on the genetic reprogramming of T cells with an artificial immune receptor that redirects them against targets on malignant cells and enables their destruction by exerting T cell effector functions. There has been an explosion of interest in the use of CAR T cells as an immunotherapy for cancer. In the pre-clinical setting, there has been a considerable focus upon optimizing the structural and signaling potency of the CAR while advances in bio-processing technology now mean that the clinical testing of these gene-modified T cells has become a reality. This review will summarize the concept of CAR-based immunotherapy and recent clinical trial activity and will further discuss some of the likely future challenges facing CAR-modified T cell therapies.  相似文献   

18.
Insights into the molecular basis for natural killer (NK) cell recognition of human cancer have been obtained in recent years. Here, we review current knowledge on the molecular specificity and function of human NK cells. Evidence for NK cell targeting of human tumors is provided and new strategies for NK cell-based immunotherapy against human cancer are discussed. Based on current knowledge, we foresee a development where more cancers may be subject to treatment with drugs or other immunomodulatory agents affecting NK cells, either directly or indirectly. We also envisage a possibility that certain forms of cancers may be subject to treatment with adoptively transferred NK cells, either alone or in combination with other therapeutic interventions.  相似文献   

19.
Dendritic cells (DCs) generated in vitro to present tumour antigens have been injected in cancer patients to boost in vivo anti-tumour immune responses. This approach to cancer immunotherapy has had limited success. For anti-tumour therapy, delivery and subsequent migration of DCs to lymph nodes leading to effective stimulation of effector T cells is thought to be essential. The ability to non-invasively monitor the fate of adoptively transferred DCs in vivo using magnetic resonance imaging (MRI) is an important clinical tool to correlate their in vivo behavior with response to treatment. Previous reports of superparamagnetic iron oxides (SPIOs) labelling of different cell types, including DCs, have indicated varying detrimental effects on cell viability, migration, differentiation and immune function. Here we describe an optimised labelling procedure using a short incubation time and low concentration of clinically used SPIO Endorem to successfully track murine DC migration in vivo using MRI in a mouse tumour model. First, intracellular labelling of bone marrow derived DCs was monitored in vitro using electron microscopy and MRI relaxometry. Second, the in vitro characterisation of SPIO labelled DCs demonstrated that viability, phenotype and functions were comparable to unlabelled DCs. Third, ex vivo SPIO labelled DCs, when injected subcutaneously, allowed for the longitudinal monitoring by MR imaging of their migration in vivo. Fourth, the SPIO DCs induced the proliferation of adoptively transferred CD4(+) T cells but, most importantly, they primed cytotoxic CD8(+) T cell responses to protect against a B16-Ova tumour challenge. Finally, using anatomical information from the MR images, the immigration of DCs was confirmed by the increase in lymph node size post-DC injection. These results demonstrate that the SPIO labelling protocol developed in this study is not detrimental for DC function in vitro and in vivo has potential clinical application in monitoring therapeutic DCs in patients with cancer.  相似文献   

20.
The greatest challenge in cancer treatment is to achieve the highest levels of specificity and efficacy. Cancer gene therapy could be designed specifically to express therapeutic genes to induce cancer cell destruction. Cancer-specific promoters are useful tools to accomplish targeted expression; however, high levels of gene expression are needed to achieve therapeutic efficacy. Incorporating an imaging reporter gene in tandem with the therapeutic gene will allow tangible proof of principle that gene expression occurs at the correct location and at a sufficient level. Gene-based imaging can advance cancer detection and diagnosis. By combining the cancer-targeted imaging and therapeutic strategies, the exciting prospect of a 'one-two punch' to find hidden, disseminated cancer cells and destroy them simultaneously can potentially be realized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号