首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的:探讨CXCR4与MMP-9在膀胱移行细胞癌中表达的相关性及其临床意义.方法:采用免疫组化SP法与半定量RT-PCR检测40例膀胱移行细胞癌组织及10例正常膀胱粘膜组织中CXCR4和MMP-9蛋白及mRNA的表达情况,分析膀胱移行细胞癌组织中CXCR4和MMP-9表达的相关性,分析二者与临床病理特征的关系.结果:膀胱移行细胞癌组织中CXCR4蛋白表达率为77.5%,mRNA相对含量为0,777±0.044;其中浸润深度达肌层者表达率为100%,mRNA相对含量为0.790± 0.049;局限在粘膜下层者表达率为50%,mRNA相对含量为0.660± 0.052;二者之间差异有统计学意义.MMP-9在膀胱移行细胞癌组织中的表达率为80.0%,mRNA相对含量为0.850± 0.079,其中浸润深度达肌层者表达率为95.5%,mRNA相对含量为0.854±0.070,局限在粘膜下层者表达率为61.1%,mRNA相对含量为0.758±0.092,二者之间差异有统计学意义.膀胱移行细胞癌组织中CXCR4及MMP-9蛋白阳性表达呈正相关关系(γ=0.479,P<0.05).MMP-9与肿瘤组织学分级有关,与患者的性别、年龄无关;而CXCR4的表达与肿瘤组织学分级及患者的性别、年龄均无关.结论:CXCR4和MMP-9表达与膀胱移行细胞癌的发生和浸润密切相关,通过干预CXCR4和MMP-9的活性可能成为治疗膀胱移行细胞癌的新靶点.  相似文献   

2.
Umbilical cord blood‐derived USSCs (unrestricted somatic stem cells) have recently been considered as a potential source for stem cell therapy and transplantation due to their characteristics such as easy accessibility, low immunogenicity, self‐renewing and multilineage differentiation potential. Stem cell homing is a key factor in successful transplantation, which is regulated by CXCR4 in stem cells. In this study, we evaluated the expression of CXCR4 in USSCs different passages. Moreover, the effect of VEGF (vascular endothelial growth factor) and IGF‐1 (insulin‐like growth factor 1) on its expression was assessed. It was shown that the expression of CXCR4 in USSCs decreased with the increase in passage number. It was also revealed that VEGF increased surface expression and mRNA level of CXCR4 in USSCs, while IGF‐1 decreased its expression. When VEGF and IGF‐1 were administered simultaneously, CXCR4 expression was increased, but the expression level was less than VEGF alone. Finally, it was shown that over‐expression of CXCR4 enhanced the migratory capacity of USSCs. The increase of CXCR4 expression, here caused by VEGF in USSCs, can improve the efficacy of stem cell therapy and transplantation after long‐term culture of stem cells before clinical use.  相似文献   

3.
The increased migration and invasion of oral squamous cell carcinoma cells are key events in the development of metastasis to the lymph nodes and distant organs. Although the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1α, have been found to play an important role in tumor invasion, its precise role and potential underlying mechanisms remain largely unknown. In this study, we showed that knockdown of CXCR4 significantly decreased Tca8113 cells migration and invasion, accompanied with the reduction of MMP-9 and MMP-13 expression. Inhibition of ligand binding to CXCR4 by a specific antagonist TN14003, also led to reduced cancer cell migration and invasion. Because the degradation of the extracellular matrix and the basement membrane by proteases, such as matrix metalloproteinases (MMP) is critical for migration and invasion of cancer cells, we investigated the expression of several MMPs and found that the expression of functional MMP-9 and MMP-13 was selectively decreased in CXCR4 knockdown cells. More importantly, decreased cell migration and invasion of CXCR4 knockdown cells were completely rescued by exogenous expression of MMP-9 or MMP-13, indicating that the two MMPs are downstream targets of CXCR4-mediated signaling. Furthermore, we found the level of phosphorylated extracellular signal-regulated kinase (ERK) was significantly decreased in CXCR4-silenced cells, suggesting that ERK may be a potential mediator of CXCR4-regulated MMP-9 and MMP-13 expression in Tca8113 cells. Taken together, our results strongly suggest the underlying mechanism of CXCR4 promoting Tca8113 migration and invasion by regulating MMP-9 and MMP-13 expression perhaps via activation of the ERK signaling pathway.  相似文献   

4.
Despite androgen deprivation therapy (ADT) suppression of prostate cancer (PCa) growth, its overall effects on PCa metastasis remain unclear. Using human (C4-2B/THP1) and mouse (TRAMP-C1/RAW264.7) PCa cells–macrophages co-culture systems, we found currently used anti-androgens, MDV3100 (enzalutamide) or Casodex (bicalutamide), promoted macrophage migration to PCa cells that consequently led to enhanced PCa cell invasion. In contrast, the AR degradation enhancer, ASC-J9, suppressed both macrophage migration and subsequent PCa cell invasion. Mechanism dissection showed that Casodex/MDV3100 reduced the AR-mediated PIAS3 expression and enhanced the pSTAT3-CCL2 pathway. Addition of CCR2 antagonist reversed the Casodex/MDV3100-induced macrophage migration and PCa cell invasion. In contrast, ASC-J9 could regulate pSTAT3-CCL2 signaling using two pathways: an AR-dependent pathway via inhibiting PIAS3 expression and an AR-independent pathway via direct inhibition of the STAT3 phosphorylation/activation. These findings were confirmed in the in vivo mouse model with orthotopically injected TRAMP-C1 cells. Together, these results may raise the potential concern about the currently used ADT with anti-androgens that promotes PCa metastasis and may provide some new and better therapeutic strategies using ASC-J9 alone or a combinational therapy that simultaneously targets androgens/AR signaling and PIAS3-pSTAT3-CCL2 signaling to better battle PCa growth and metastasis at castration-resistant stage.  相似文献   

5.
We recently demonstrated that stromal cell-derived factor-1(SDF-1/CXCL12) forms complexes with CXCR4, but also with syndecan-4expressed by human primary lymphocytes and macrophages, andHeLa cells. We also suggested that syndecan-4 behaves as a SDF-1-signalingmolecule. Here, we demonstrate that SDF-1 strongly acceleratesthe shedding of syndecan-4 ectodomains and to a lesser extentthat of syndecan-1 from HeLa cells. The fact that this accelerationwas not inhibited by the CXCR4 antagonist AMD3100, anti-CXCR4mAb 12G5, and CXCR4 gene silencing suggests its CXCR4-independence.Pre-treating the cells with heparitinases I, III, or with theprotein kinase C (PKC) inhibitor, bisindolylmaleimide, significantlyinhibited this accelerated shedding, which suggests the involvementof both cell-surface heparan sulfate and PKC transduction pathway.In contrast, Map Kinase or NF-B pathway inhibitors had no effect.Moreover, SDF-1 increases the matrix metalloproteinase-9 (MMP-9)mRNA level as well as MMP-9 activity in HeLa cells, and MMP-9silencing by RNA interference strongly decreases the syndecan-1and -4 ectodomain shedding accelerated by SDF-1. Finally, SDF-1also accelerates in a CXCR4-independent manner, the sheddingof syndecan-1 and -4 from human primary macrophages, which issignificantly inhibited by anti-MMP-9 antibodies. This stronglyindicates the role of MMP-9 in these events occurring in botha tumoral cell line and in human primary macrophages. BecauseMMP-9 plays a crucial role in extracellular matrix degradationduring cancer cell metastasis and invasion, and shed ectodomainsof syndecans may likely be involved in tumor cell proliferation,these data further indicate the multiplicity of the roles playedby SDF-1 on tumor cell biology.  相似文献   

6.
Accumulating data suggested that CXCR4/SDF-1 pathway may play an important role in the metastasis of tumor. We previously demonstrated that CpG ODN could enhance the metastasis of human lung cancer cell via TLR9. Here we further evaluated the possible role of CXCR4/SDF-1 pathway in the enhanced metastasis of human lung cancer 95D cells induced by CpG ODN. Our data showed down-regulation of CXCR4 expression using siRNA against CXCR4 could significantly reduce the enhanced metastasis of 95D cells induced by CpG ODN both in vitro and in vivo. These results suggested that TLR9 agonist might promote the metastasis of human lung cancer cells via CXCR4/SDF-1 pathway.  相似文献   

7.
Colorectal cancer (CRC) is characterized by a distinct metastatic pattern resembling chemokine-induced leukocyte trafficking. This prompted us to investigate expression, signal transduction and specific functions of the chemokine receptor CXCR4 in CRC cells and metastases. Using RT-PCR analysis and Western blotting, we demonstrated CXCR4 and CXCL12 expression in CRC and CRC metastases. Cell differentiation increases CXCL12 mRNA levels. Moreover, CXCR4 and its ligand are inversely expressed in CRC cell lines with high CXCR4 and low or not detectable CXCL12 expression. CXCL12 activates ERK-1/2, SAPK/JNK kinases, Akt and matrix metalloproteinase-9. These CXCL12-induced signals mediate reorganization of the actin cytoskeleton resulting in increased cancer cell migration and invasion. Moreover, CXCL12 increases vascular endothelial growth factor (VEGF) expression and cell proliferation but has no effect on CRC apoptosis. Therefore, the CXCL12/CXCR4 system is an important mediator of invasion and metastasis of CXCR4 expressing CRC cells.  相似文献   

8.
Matrix metalloproteinase-mediated degradation of extracellular matrix is a crucial event for invasion and metastasis of malignant cells. The expressions of matrix metalloproteinases (MMPs) are regulated by different cytokines and growth factors. VEGF, a potent angiogenic cytokine, induces invasion of ovarian cancer cells through activation of MMPs. Here, we demonstrate that invasion and scattering in SKOV-3 cells were induced by VEGF through the activation of p38 MAPK and PI3K/AKT pathways. VEGF induced the expression of MMP-2, MMP-9, and MMP-13 and hence regulated the metastasis of SKOV-3 ovarian cancer cells, and the activities of these MMPs were reduced after inhibition of PI3K/AKT and p38 MAPK pathways. Interestingly, VEGF induced expression of ETS-1 factor, an important trans-regulator of different MMP genes. ETS-1 bound to both MMP-9 and MMP-13 promoters. Furthermore, VEGF acted through its receptor to perform the said functions. In addition, VEGF-induced MMP-9 and MMP-13 expression and in vitro cell invasion were significantly reduced after knockdown of ETS-1 gene. Again, VEGF-induced MMP-9 and MMP-13 promoter activities were down-regulated in ETS-1 siRNA-transfected cells. VEGF enriched ETS-1 in the nuclear fraction in a dose-dependent manner. VEGF-induced expression of ETS-1 and its nuclear localization were blocked by specific inhibitors of the PI3K and p38 MAPK pathways. Therefore, based on these observations, it is hypothesized that the activation of PI3K/AKT and p38 MAPK by VEGF results in ETS-1 gene expression, which activates MMP-9 and MMP-13, leading to the invasion and scattering of SKOV-3 cells. The study provides a mechanistic insight into the prometastatic functions of VEGF-induced expression of relevant MMPs.  相似文献   

9.
CXC chemokine receptor 4 (CXCR4) has been shown to play a critical role in chemotaxis and homing, which are key steps in cancer metastasis. There is also increasing evidence that links this receptor to angiogenesis; however, its molecular basis remains elusive. Vascular endothelial growth factor (VEGF), one of the major angiogenic factors, promotes the formation of leaky tumor vasculatures that are the hallmarks of tumor progression. Here, we investigated whether CXCR4 induces the expression of VEGF through the PI3K/Akt pathway. Our results showed that CXCR4/CXCL12 induced Akt phosphorylation, which resulted in upregulation of VEGF at both the mRNA and protein levels. Conversely, blocking the activation of Akt signaling led to a decrease in VEGF protein levels; blocking CXCR4/CXCL12 interaction with a CXCR4 antagonist suppressed tumor angiogenesis and growth in vivo. Furthermore, VEGF mRNA levels correlated well with CXCR4 mRNA levels in patient tumor samples. In summary, our study demonstrates that the CXCR4/CXCL12 signaling axis can induce angiogenesis and progression of tumors by increasing expression of VEGF through the activation of PI3K/Akt pathway. Our findings suggest that targeting CXCR4 could provide a potential new anti-angiogenic therapy to suppress the formation of both primary and metastatic tumors.  相似文献   

10.
目的:检测趋化因子受体4(CXCR4)及血管内皮生长因子(VEGF)在肾母细胞瘤中的表达,探讨其在肾母细胞瘤的发生、发展、浸润和转移中的作用。方法:选择临床及病理资料齐全的存档肾母细胞瘤标本30例,另取正常肾脏标本10例作对照。采用免疫组化(SABC)方法检测CXCR4及VEGF的表达。结果:CXCR4在肾母细胞瘤组织中高表达(66.67%),在正常肾脏组织中低表达(30.0%),两者相比有统计学意义(P<0.05),VEGF在肾母细胞瘤组织中高表达(73.33%),在正常肾脏组织中低表达(20.0%),两者相比同样有统计学意义(P<0.05),肾母细胞瘤组织中CXCR4与VEGF的表达两者之间呈正相关性(r=0.392,P<0.05)。结论:肾母细胞瘤组织中CXCR4和VEGF均高表达。CXCR4及VEGF可能成为预测肾母细胞瘤浸润转移的重要指标。  相似文献   

11.
Matrix metalloproteinase-9 (MMP-9) and vascular endothelial growth factor (VEGF) expression are pivotal steps in cancer metastasis. Herein, we investigated the effect of silibinin, a major constituent (flavanolignan) of the fruits of Silybum marianum, on 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced MMP-9 and VEGF expression in MCF-7 human breast cancer cells. The expression of MMP-9 and VEGF in response to TPA was increased, whereas TPA-induced MMP-9 and VEGF expression was decreased by silibinin. To investigate the regulatory mechanism of silibinin on TPA-induced MMP-9 and VEGF expression, we pretreated cells with various inhibitors, such as UO126 (MEK1/2 inhibitor), SP600125 (JNK inhibitor), and SB203580 (p38 inhibitor). Interestingly, TPA-induced MMP-9 expression was significantly inhibited by UO126, but not by SP600125 and SB203580. In addition, we pretreated cells with 100 μM silibinin prior to TPA treatment. TPA-induced MEK and ERK phosphorylation was significantly decreased by silibinin in MCF7 cells. TPA-induced VEGF expression was also suppressed by UO126. On the other hand, we found that adenoviral constitutive active-MEK (Ad-CA-MEK) significantly increased MMP-9 and VEGF expression. Taken together, we suggest that the inhibition of TPA-induced MMP-9 and VEGF expression by silibinin is mediated by the suppression of the Raf/MEK/ERK pathway in MCF-7 breast cancer cells.  相似文献   

12.
13.
Numerous studies have showed that chemokine receptors, such as CXCR4, contribute to the growth and metastasis of a variety of malignant tumors. In this study, we investigated the role of CXCR4 in the production of angiogenic factor, vascular endothelial growth factor (VEGF), in various human glioma cells from astrocytic origin. The expression of CXCR4 mRNA and protein in three glioma cell lines, U87-MG, SHG-44, and CHG-5, was determined by RT-PCR and immunocytochemistry, respectively. The malignancies of three gliomas were evaluated by expression of glial fibrillary acidic protein and vimentin, the differentiation markers of astrocytic cells. The role of functional CXCR4 in tumor cell migration was studied with chemotaxis assay. Ca2+ mobilization and VEGF production were measured in the cells after stimulation with CXCR4 ligand, SDF1beta. The results showed that the levels of functional CXCR4 expression at both mRNA and protein levels by several human glioma cell lines were correlated with the degree of differentiation of the tumor cells. Activation of CXCR4 induced glioma cell chemotaxis and could trigger the increase of intracellular [Ca2+]i. Such an activation could result in the increased production of VEGF by the stimulated tumor cells. Our results suggest that CXCR4 may contribute to the high level of VEGF produced by malignant glioma cells and thus constitute a therapeutic target for antiangiogenesis strategy.  相似文献   

14.
3,3′‐Diindolylmethane (DIM) is a known anti‐tumor agent against breast and other cancers; however, its exact mechanism of action remains unclear. The urokinase plasminogen activator (uPA) and its receptor (uPAR) system are involved in the degradation of basement membrane and extracellular matrix, leading to tumor cell invasion and metastasis. Since uPA‐uPAR system is highly activated in aggressive breast cancer, we hypothesized that the biological activity of B‐DIM could be mediated via inactivation of uPA‐uPAR system. We found that B‐DIM treatment as well as silencing of uPA‐uPAR led to the inhibition of cell growth and motility of MDA‐MB‐231 cells, which was in part due to inhibition of VEGF and MMP‐9. Moreover, silencing of uPA‐uPAR led to decreased sensitivity of these cells to B‐DIM indicating an important role of uPA‐uPAR in B‐DIM‐mediated inhibition of cell growth and migration. We also found similar effects of B‐DIM on MCF‐7, cells expressing low levels of uPA‐uPAR, which was due to direct down‐regulation of MMP‐9 and VEGF, independent of uPA‐uPAR system. Interestingly, over‐expression of uPA‐uPAR in MCF‐7 cells attenuated the inhibitory effects of B‐DIM. Our results, therefore, suggest that B‐DIM down‐regulates uPA‐uPAR in aggressive breast cancers but in the absence of uPA‐uPAR, B‐DIM can directly inhibit VEGF and MMP‐9 leading to the inhibition of cell growth and migration of breast cancer cells. J. Cell. Biochem. 108: 916–925, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Despite the fact that androgen deprivation therapy (ADT) can effectively reduce prostate cancer (PCa) size, its effect on PCa metastasis remains unclear. We examined the existing data on PCa patients treated with ADT plus anti-androgens to analyze ADT effects on primary tumor size, prostate-specific antigen (PSA) values, and metastatic incidence. We found that the current ADT with anti-androgens might lead to primary tumor reduction, with PSA decreased yet metastases increased in some PCa patients. Using in vitro and in vivo metastasis models with four human PCa cell lines, we evaluated the effects of the currently used anti-androgens, Casodex/bicalutamide and MDV3100/enzalutamide, and the newly developed anti-AR compounds, ASC-J9® and cryptotanshinone, on PCa cell growth and invasion. In vitro results showed that 10 μm Casodex or MDV3100 treatments suppressed PCa cell growth and reduced PSA level yet significantly enhanced PCa cell invasion. In vivo mice studies using an orthotopic xenograft mouse model also confirmed these results. In contrast, ASC-J9® led to suppressed PCa cell growth and cell invasion in in vitro and in vivo models. Mechanism dissection indicated these Casodex/MDV3100 treatments enhanced the TGF-β1/Smad3/MMP9 pathway, but ASC-J9® and cryptotanshinone showed promising anti-invasion effects via down-regulation of MMP9 expression. These findings suggest the potential risks of using anti-androgens and provide a potential new therapy using ASC-J9® to battle PCa metastasis at the castration-resistant stage.  相似文献   

16.
17.
18.
目的:研究基质金属蛋白酶-9(matrix metalloproteinase-9,MMP-9)及其组织抑制因子-1(tissue inhibitor of metallopmteinase—1,TMP-1)在进展期胃癌中的表达情况,探讨二者的表达与胃癌侵袭转移闻的关系及二者间的联系。方法:应用免疫组化方法检测70例进展期胃癌标本中MMP-9,TIMP-1的表达,并进行回顾性随访。结果:馒反肌层以上者MMP-9的阳性表达(66.67%)明显高于肿瘤局限于粘膜、粘膜下者(20%P〈0.01)。MMP-9阳性表达与胃癌的淋巴转移与肝转移有相关性(P〈0.01)。TIMP-1的表达随胃癌浸润深度增加而减少,当肿瘤突破浆膜时TIMP-1的表达呈现陡降趋势(P〈0.01)。结论:MMP-9的过阳性表达和TIMP-1的表达失衡可能与胃癌转移行为有关。TIMP-1可能抑制胃癌的浸润转移。  相似文献   

19.
Transforming growth factor-β (TGF-β) is known to promote tumor migration and invasion. Bone morphogenetic proteins (BMPs) are members of the TGF-β family expressed in a variety of human carcinoma cell lines. The role of bone morphogenetic protein 9 (BMP9), the most powerful osteogenic factor, in osteosarcoma (OS) progression has not been fully clarified. The expression of BMP9 and its receptors in OS cell lines was analyzed by RT-PCR. We found that BMP9 and its receptors were expressed in OS cell lines. We further investigated the influence of BMP9 on the biological behaviors of OS cells. BMP9 overexpression in the OS cell lines 143B and MG63 inhibited in vitro cell migration and invasion. We further investigated the expression of a panel of cancer-related genes and found that BMP9 overexpression increased the phosphorylation of Smad1/5/8 proteins, increased the expression of ID1, and reduced the expression and activity of matrix metalloproteinase 9 (MMP9) in OS cells. BMP9 silencing induced the opposite effects. We also found that BMP9 may not affect the chemokine (C-X-C motif) ligand 12 (CXCL12)/C-X-C chemokine receptor type 4 (CXCR4) axis to regulate the invasiveness and metastatic capacity of OS cells. Interestingly, CXCR4 was expressed in both 143B and MG63 cells, while CXCL12 was only detected in MG63 cells. Taken together, we hypothesize that BMP9 inhibits the migration and invasiveness of OS cells through a Smad-dependent pathway by downregulating the expression and activity of MMP9.  相似文献   

20.
3,3′‐Diindolylmethane (DIM) has been studied for its putative anti‐cancer properties, especially against prostate cancer; however, its exact mechanism of action remains unclear. We recently provided preliminary data suggesting down‐regulation of uPA during B‐DIM (a clinically active DIM)‐induced inhibition of invasion and angiogenesis in prostate cancer cells. Since the expression and activation of uPA plays important role in tumorigenicity, and high endogenous levels of uPA and uPAR are found in advanced metastatic cancers, we investigated their role in B‐DIM‐mediated inhibition of prostate cancer cell growth and motility. Using PC3 cells, we found that B‐DIM treatment as well as the silencing of uPA and uPAR by siRNAs led to the inhibition of cell growth and motility. Conversely, over‐expression of uPA/uPAR in LNCaP and C4‐2B cells resulted in increased cell growth and motility, which was effectively inhibited by B‐DIM. Moreover, we found that uPA as well as uPAR induced the production of VEGF and MMP‐9, and that the down‐regulation of uPA/uPAR by siRNAs or B‐DIM treatment resulted in the inhibition of VEGF and MMP‐9 secretion which could be responsible for the observed inhibition of cell migration. Interestingly, silencing of uPA/uPAR led to decreased sensitivity to B‐DIM indicating important role of uPA/uPAR in B‐DIM‐mediated regulation of prostate cancer cell growth and migration. Our data suggest that chemopreventive and/or therapeutic activity of B‐DIM is in part due to down‐regulation of uPA–uPAR leading to reduced production of VEGF/MMP‐9 which ultimately leads to the inhibition of cell growth and migration of aggressive prostate cancer cells. J. Cell. Biochem. 107: 516–527, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号