首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the early chick embryo, the dorsal–ventral (DV) boundary organizes the apical ectodermal ridge (AER) structure in the limb bud field. Here it is reported that Engrailed-1 ( En-1 ), a homolog of the Drosophila segment polarity gene engrailed expressed in the ventral limb ectoderm, participates in AER formation at the DV boundary of the limb bud. Restricted ectopic expression of En-1 in the dorsal side of the limb bud by transplantation of En-1 -overexpressing ectoderm induces ectopic AER at the boundary of En-1 -positive and -negative cells. The results suggest that En-1 is involved in AER formation at the DV boundary of the limb bud.  相似文献   

2.
The height of the apical ectodermal ridge on limb buds of the embryo laboratory rat was studied in the polydactyly-luxate syndrome and compared with the controls. The following findings were obtained: (a) On the 14th embryonal day, prior to the development of the anlage of mesenchymal condensates, the AER is higher in polydactylous animals as compared with the controls. (b) On the 15th, 16th and 17th embryonal day the height of the AER in the praeaxial region of the polydactylous limb bud largely predominates over the controls. A comparison of the height of the AER above digital rays and interdigital grooves of polydactylous and normodactylous animals does not thus exhibit any marked differences. This fact is attributed to the existence of more powerful induction processes of the underlying mesenchymal component where rudiments of supernumerary digital rays are formed.  相似文献   

3.
The apical ectodermal ridge (AER) is a specialized thickening of the distal limb ectoderm, and its signals are known to support limb morphogenesis. The expression of a homeobox gene, Msx1 , in the distal limb mesoderm depends on signals from the AER. In the present paper it is reported that Msx1 expression in the distal mesoderm is necessary for the transfer of AER signals in chick limb buds. Interruption of AER-mesoderm interaction by insertion of a thick filter led to the inhibition of pattern specification in the mesoderm just under the filter. In such cases, the expression of Msx1 disappeared in the mesoderm under the filter, suggesting that AER is able to signal over short ranges. In advanced limb buds, Msx1 is also expressed in the proximal mesoderm under the anterior ectoderm. However, it was found that a grafted antero-proximal mesoderm shows no inhibitory effects on pattern specification of the host mesoderm, as is the case with the distal mesoderm. On the other hand, grafted mesoderms without potent Msx1 re-expression, even underneath AER, disturbed normal limb development. In such cases, the expression of Msx1 disappeared in the mesoderm under the grafts, whereas Fgf-8 expression was maintained in the AER above the graft. These results indicate that the expression of Msx1 in the mesoderm is important for the transfer of AER signals.  相似文献   

4.
A spatiotemporal pattern of cell death occurred in the chick wing and leg bud mesoderm after removal of apical ectodermal ridge at stages 18–20. Cells died in a region extending from the limb bud distal surface to 150–200 μm into the mesoderm. Limb buds from which ridge was removed at later stages in development did not exhibit a spatiotemporal pattern of cell death. In control experiments in which dorsal ectoderm was removed, a pattern of cell death did not occur. Removal of the ridge and part of the 150- to 200-μm zone of prospective cell death resulted in cell death in an area approximately equal to the amount of the zone remaining. After removal of all of the prospective zone of cell death plus the apical ridge, cell death was observed in the remaining limb bud mesoderm. In these limb buds, cell death occurred in a region in which it had not been seen in limb bud with apical ridge alone removed. We conclude that at stages 18–20 the mesodermal cells 150–200 μm beneath the ridge require the apical ridge to survive. More proximal mesodermal cells do not die after ridge removal alone, but apparently require the presence of the more distal mesoderm to survive. Whether this is a requirement for something intrinsic to the distal mesoderm or something it possesses by way of the ridge is unknown. After stage 23, the limb mesoderm cells do not die when the apical ridge is removed. Nevertheless, at the later stages, ridge continues to be required for limb bud proximal-distal elongation and the differentiation of distal limb elements.  相似文献   

5.
Outgrowth of normal chick limb bud mesoderm is dependent on the presence of a specialized epithelium called the apical ectodermal ridge. This ectodermal ridge is induced by the mesoderm at about the time of limb bud formation. The limbless mutation in the chick affects apical ectodermal ridge formation in the limb buds of homozygotes. The initial formation of the limb bud appears to be unaffected by the mutation but no ridge develops and further outgrowth, which is normally dependent on the ridge, does not take place. As a result, limbless chicks develop without limbs. In the present study, which utilized a pre-limb-bud recombinant technique, limbless mesoderm induced an apical ectodermal ridge in grafted normal flank ectoderm. However, at stages when normal flank ectoderm is capable of responding to ridge induction, limbless flank ectoderm did not form a ridge or promote outgrowth of a limb in response to normal presumptive wing bud mesoderm. We conclude from this that the limbless mutation affects the ability of the ectoderm to form a ridge. In addition, because the limbless ectoderm has no morphological ridge and no apparent ridge activity (i.e. it does not stabilize limb elements in stage-18 limb bud mesoderm), the limbless mutant demonstrates that the initial formation of the limb bud is independent of apical ectodermal ridge activity.  相似文献   

6.
We present evidence for the existence of two phases of retinoic acid (RA) signaling required for vertebrate limb development. Limb RA synthesis is under the control of retinaldehyde dehydrogenase-2 (Raldh2) expressed in the lateral plate mesoderm, which generates a proximodistal RA signal during limb outgrowth. We report that Raldh2(-/-) embryos lack trunk mesodermal RA activity and fail to initiate forelimb development. This is associated with deficient expression of important limb determinants Tbx5, Meis2, and dHand needed to establish forelimb bud initiation, proximal identity, and the zone of polarizing activity (ZPA), respectively. Limb expression of these genes can be rescued by maternal RA treatment limited to embryonic day 8 (E8) during limb field establishment, but the mutant forelimbs obtained at E10 display a significant growth defect associated with a smaller apical ectodermal ridge (AER), referred to here as an apical ectodermal mound (AEM). In these RA-deficient forelimbs, a ZPA expressing Shh forms, but it is located distally adjacent to the Fgf8 expression domain in the AEM rather than posteriorly as is normal. AER formation in Raldh2(-/-) forelimbs is rescued by continuous RA treatment through E10, which restores RA to distal ectoderm fated to become the AER. Our findings indicate the existence of an early phase of RA signaling acting upstream of Tbx5, Meis2, and dHand, followed by a late phase of RA signaling needed to expand AER structure fully along the distal ectoderm. During ZPA formation, RA acts early to activate expression of dHand, but it is not required later for Shh activation.  相似文献   

7.
We demonstrate that signaling via the bone morphogenetic protein receptor IA (BMPR-IA) is required to establish two of the three cardinal axes of the limb: the proximal-distal axis and the dorsal-ventral axis. We generated a conditional knockout of the gene encoding BMPR-IA (Bmpr) that disrupted BMP signaling in the limb ectoderm. In the most severely affected embryos, this conditional mutation resulted in gross malformations of the limbs with complete agenesis of the hindlimbs. The proximal-distal axis is specified by the apical ectodermal ridge (AER), which forms from limb ectoderm at the distal tip of the embryonic limb bud. Analyses of the expression of molecular markers, such as Fgf8, demonstrate that formation of the AER was disrupted in the Bmpr mutants. Along the dorsal/ventral axis, loss of engrailed 1 (En1) expression in the non-ridge ectoderm of the mutants resulted in a dorsal transformation of the ventral limb structures. The expression pattern of Bmp4 and Bmp7 suggest that these growth factors play an instructive role in specifying dorsoventral pattern in the limb. This study demonstrates that BMPR-IA signaling plays a crucial role in AER formation and in the establishment of the dorsal/ventral patterning during limb development.  相似文献   

8.
In the gastrula stage embryo, the epiblast migrates toward the primitive streak and ingresses through the primitive groove. Subsequently, the ingressing epiblast cells undergo epithelial-mesenchymal transition (EMT) and differentiate into the definitive endoderm and mesoderm during gastrulation. However, the developmental mechanisms at the end of gastrulation have not yet been elucidated. Histological and genetic analyses of the ventral ectodermal ridge (VER), a derivative of the primitive streak, were performed using chick and mouse embryos. The analyses showed a continued cell movement resembling gastrulation associated with EMT during the early tailbud stage of both embryos. Such gastrulation-like cell movement was gradually attenuated by the absence of EMT during tail development. The kinetics of the expression pattern of noggin (Nog) and basal membrane degradation adjacent to the chick and the mouse VER indicated a correlation between the temporal and/or spatial expression of Nog and the presence of EMT in the VER. Furthermore, Nog overexpression suppressed EMT and arrested ingressive cell movement in the chick VER. Mice mutant in noggin displayed dysregulation of EMT with continued ingressive cell movement. These indicate that the inhibition of Bmp signaling by temporal and/or spatial Nog expression suppresses EMT and leads to the cessation of the ingressive cell movement from the VER at the end of gastrulation.  相似文献   

9.
Here we report a new role for the small GTPase RhoC in the control of limb chondrogenesis. Expression of rhoC is a precocious marker of the zeugopodial and digit blastemas and is induced by treatments with TGFbetas preceding the formation of ectopic digits. As development progresses, expression of rhoC outlines the growing distal tip of the digits, and marks the regions of interphalangeal joint formation. Functional experiments show that RhoC is a negative regulator of chondrogenesis, which controls digit outgrowth and joint segmentation. These functions appear to be mediated by reorganization of the actin cytoskeleton and modification of the adhesive properties of the mesenchymal cells.  相似文献   

10.
11.
Mice deficient for the homeobox gene Six1 display defects in limb muscles consistent with the Six1 expression in myogenic cells. In addition to its myogenic expression domain, Six1 has been described as being located in digit tendons and as being associated with connective tissue patterning in mouse limbs. With the aim of determining a possible involvement of Six1 in tendon development, we have carefully characterised the non-myogenic expression domain of the Six1 gene in mouse and chick limbs. In contrast to previous reports, we found that this non-myogenic domain is distinct from tendon primordia and from tendons defined by scleraxis expression. The non-myogenic domain of Six1 expression establishes normally in the absence of muscle, in Pax3-/- mutant limbs. Moreover, the expression of scleraxis is not affected in early Six1-/- mutant limbs. We conclude that the expression of the Six1 gene is not related to tendons and that Six1, at least on its own, is not involved in limb tendon formation in vertebrates. Finally, we found that the posterior domain of Six1 in connective tissue is adjacent to that of the secreted factor Sonic hedgehog and that Sonic hedgehog is necessary and sufficient for Six1 expression in posterior limb regions.  相似文献   

12.
Hemopoietic cell proliferation is controlled by a set of polypeptide growth factors and regulatory molecules that bind to cell surface receptors inducing cellular responses. Maintenance of a viable state, cell growth, DNA synthesis and mitosis are basic properties of proliferating cells, but links between growth factor receptors and each of these cellular outcomes are poorly understood. Most studies have monitored DNA synthesis as a measure of progression through the cell cycle or directly measured viable cell numbers, but cell survival per se as an output of receptor activation by ligand, has received little attention. In this study we have used a bone marrow-derived murine cell line that is dependent on interleukin-3 for growth, to investigate the relationship between DNA synthesis and a biochemical marker of cell survival, reduction of the tetrazolium salt, MTT. We show that at times up to 6 hr, continued DNA synthesis, RNA synthesis, protein synthesis, and mitochondrial respiration are not necessary for background or IL-3-stimulated MTT reduction. Furthermore, dibutyryl cyclic AMP promoted background and IL-3-dependent MTT reduction while simultaneously inhibiting DNA synthesis. These results provide evidence that IL-3 controls events involved in MTT reduction and cell survival independently of DNA synthesis. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Zhu Q  Luo K 《FEBS letters》2012,586(14):1971-1976
SnoN (Ski-novel protein) plays an important role in embryonic development, tumorigenesis and aging. Past studies largely focused on its roles in tumorigenesis. Recent studies of its expression patterns and functions in mouse models and mammalian cells have revealed that SnoN interacts with multiple signaling molecules at different cellular levels to modulate the activities of several signaling pathways in a tissue context and developmental stage dependent manner. These studies suggest that SnoN may have broad functions in the embryonic development and tissue morphogenesis.  相似文献   

14.
15.
In the developing limb bud, mesenchymal cells show position-specific affinity, suggesting that the positional identity of the cells is represented as their surface properties. Since the affinity is regulated by glycosylphosphatidylinositol (GPI)-anchored cell surface proteins, and by EphA4 receptor tyrosine kinase, we hypothesized that the GPI-anchored ligand, the ephrin-A family, also contributes to the affinity. Here, we describe the role of ephrin-A2 in the chick limb bud. Ephrin-A2 protein is uniformly distributed in the limb bud during early limb development. As the limb bud grows, expression of ephrin-A2 is strong in its proximal-to-intermediate regions, but weak distally. The position-dependent expression is maintained in vitro, and is regulated by FGF protein, which is produced in the apical ectodermal ridge. To investigate the role of ephrin-A2 in affinity and in cartilage morphogenesis of limb mesenchyme, we ectopically expressed ephrin-A2 in the limb bud using the retrovirus vector, RCAS. Overexpressed ephrin-A2 modulated the affinity of the mesenchymal cells that differentiate into autopod elements. It also caused malformation of the autopod skeleton and interfered with cartilage nodule formation in vitro without inhibiting chondrogenesis. These results suggest that ephrin-A2 regulates the position-specific affinity of limb mesenchyme and is involved in cartilage pattern formation in the limb.  相似文献   

16.
Abstract The broad bean rust fungus Uromyces viciae-fabae exhibits chitin only on surfaces of those infection structures which in nature are formed on the plant cuticle, but not on those differentiated in the intercellular space of the host leaf. Chitin deacetylase, an enzyme which converts chitin to chitosan, has been studied during in vitro differentiation of rust infection structures. Radiometrie and gel electrophoretic analyses of crude extracts and extracellular washing fluids have shown that chitin deacetylase activity massively increases when the fungus starts to penetrate through the stomata, and that formation of the enzyme is strictly differentiation-specifically controlled. The extracellular portion of chitin deacetylase activity was about 53% in 24-h-old differentiated infection structures. Five isoforms with apparent molecular masses of 48.1, 30.7, 25.2, 15.2 and 12.7 kDa were detectable after substrate SDS-PAGE. The enzyme is temperature-sensitive and has a pH optimum of 5.5-6.0.  相似文献   

17.
18.
19.
The so-called mesenchymal condensation that is considered to be the preliminary to cartilage formation has been investigated using the electron microscope. While there is a modest (about 30%) increase in cell density in the precartilage area there is little increase in cellular contact, the cells remaining as a relatively loose meshwork. By contrast, the presumptive muscle region shows a true condensation in that the cells form long epithelioid-like contacts with each other. It is suggested that the observed increases in density are due mainly to the cells not moving away from such regions. The nature of the cell contacts is described and discussed.  相似文献   

20.
Much of what we currently know about digit morphogenesis during limb development is deduced from embryonic studies in the chick. In this study, we used ex utero surgical procedures to study digit morphogenesis during mouse embryogenesis. Our studies reveal some similarities; however, we have found considerable differences in how the chick and the mouse autopods respond to experimentation. First, we are not able to induce ectopic digit formation from interdigital cells as a result of wounding or TGFbeta-1 application in the mouse, in contrast to what is observed in the chick. Second, FGF4, which inhibits the formation of ectopic digits in the chick, induces a digit bifurcation response in the mouse. We demonstrate with cell marking studies that this bifurcation response results from a reorganization of the prechondrogenic tip of the digit rudiment. The FGF4 effect on digit morphogenesis correlates with changes in the expression of a number of genes, including Msx1, Igf2, and the posterior members of the HoxD cluster. In addition, the bifurcation response is digit-specific, being restricted to digit IV. We propose that FGF4 is an endogenous signal essential for skeletal branching morphogenesis in the mouse. This work stresses the existence of major differences between the chick and the mouse in how digit morphogenesis is regulated and is thus consistent with the view that vertebrate digit evolution is a relatively recent event. Finally, we discuss the relationship between the digit IV bifurcation restriction and the placement of the metapterygial axis in the evolution of the tetrapod limb.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号