首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Peterson RB 《Plant physiology》1994,105(1):349-356
Regulation of the quantum yields of linear electron transport and photosystem II photochemistry ([phi]II) with changing irradiance and gas-phase O2 concentration was studied in leaf tissue from Panicum bisulcatum (C3), Panicum milioides (C3-C4), and Panicum antidotale (C4) at 200 [mu]bars of CO2 and 25[deg]C using infrared gas analysis and chlorophyll fluorescence yield measurements. When the O2 level was increased from 14 to 213 mbars at high irradiance, [phi]II increased by as much as 115% in P. bisulcatum but by no more than 17% in P. antidotale. Under the same conditions [phi]II increased to an intermediate degree in P. milioides. Measurements of accumulation of the photooxidized form of the photosystem I reaction center (P700+) based on the light-dependent in vivo absorbance change at 830 nm indicate that the steady-state concentration of P700+ varied in an antiparallel manner with [phi]II when either the irradiance or O2 concentration was changed. Hence, O2-dependent changes in [phi]II were indicative of variations in linear photosynthetic electron transport. These experiments revealed, however, that a significant capacity was retained for in vivo regulation of the apparent quantum yield of photosystem I ([phi]I) independently of [phi]II+ Coordinate regulation of quantum yields of photosystems I and II (expressed as [phi]I:[phi]II in response to changing irradiance and O2 level differed markedly for the C3 and C4 species, and the response for the C3-C4 species most closely resembled that observed for the C4 species. The fraction of total linear electron transport supporting photorespiration at 213 mbars of O2 was negligible in the C4 species and was 13% lower in the C3-C4 species relative to the C3 species as calculated from fluorescence and gas-exchange determinations. At high photon-flux rates and high O2 concentration, the potential benefit to light use for net CO2 uptake arising from lower photorespiration in P. milioides was offset by a reduced capacity for total CO2- and O2-dependent noncyclic electron transport in this species compared with P. bisulcatum.  相似文献   

2.
Young plants of Panicum bisulcatum (C(3)), Zuloagaea bulbosa [NADP-malic enzyme (ME)-C(4)], P. miliaceum (NAD-ME-C(4)) and Urochloa maxima [phosphoenolpyruvate carboxykinase (PCK)-C(4)] were subjected to drought stress (DS) in soil for 6?days. The C(3) species showed severe wilting symptoms at higher soil water potential (-1.1?MPa) and relative leaf water content (77?%) than in the case of the C(4) species (-1.5 to -1.7?MPa; 58-64?%). DS decreased photosynthesis, both under atmospheric and under saturating CO(2). Stomatal limitation of net photosynthesis (P (N)) in the C(3), but not in the C(4) species was indicated by P (N)/C (o) curves. Chlorophyll fluorescence of photosystem II, resulting from different cell types in the four species, indicated NADPH accumulation and non-stomatal limitation of photosynthesis in all four species, even under high CO(2). In the NAD-ME-C(4) and the PCK-C(4) species, DS plants showed increased violaxanthin de-epoxidase rates. Biochemical analyses of carboxylating enzymes and in vitro enzyme activities of the C(4) enzymes identified the most likely non-stomatal limiting steps of photosynthesis. In P. bisulcatum, declining RubisCO content and activity would explain the findings. In Z. bulbosa, all photosynthesis enzymes declined significantly; photosynthesis is probably limited by the turnover rate of the PEPC reaction. In P. miliaceum, all enzyme levels remained fairly constant under DS, but photosynthesis can be limited by feedback inhibition of the Calvin cycle, resulting in asp inhibition of PEPC. In U. maxima, declines of in vivo PEPC activity and feedback inhibition of the Calvin cycle are the main candidates for non-stomatal limitation of photosynthesis under DS.  相似文献   

3.
Sugarcane (Saccharum officinarum L. cv. CP72-2086) was grown in sunlit greenhouses at daytime [CO(2)] of 360 (ambient) and 720 (elevated)mumolmol(-1). Drought stress was imposed for 13d when plants were 4 months old, and various photosynthetic parameters and levels of nonstructural carbohydrates were determined for uppermost fully expanded leaves of well-watered (control) and drought stress plants. Control plants at elevated [CO(2)] were 34% and 25% lower in leaf stomatal conductance (g(s)) and transpiration rate (E) and 35% greater in leaf water-use efficiency (WUE) than their counterparts at ambient [CO(2)]. Leaf CO(2) exchange rate (CER) and activities of Rubisco, NADP-malate dehydrogenase, NADP-malic enzyme and pyruvate P(i) dikinase were marginally affected by elevated [CO(2)], but were reduced by drought, whereas activity of PEP carboxylase was reduced by elevated [CO(2)], but not by drought. At severe drought developed at day 12, leaf g(s) and WUE of ambient-[CO(2)] stress plants declined to 5% and 7%, while elevated-[CO(2)] stress plants still maintained g(s) and WUE at 20% and 74% of their controls. In control plants, elevated [CO(2)] did not enhance the midday levels of starch, sucrose, or reducing sugars. For both ambient- and elevated-[CO(2)] stress plants, severe drought did not affect the midday level of sucrose but substantially reduced that of starch. Nighttime starch decomposition in control plants was 55% for ambient [CO(2)] and 59% for elevated [CO(2)], but was negligible for stress plants of both [CO(2)] treatments. For both ambient-[CO(2)] control and stress plants, midday sucrose level at day 12 was similar to the predawn value at day 13. In contrast, sucrose levels of elevated-[CO(2)] control and stress plants at predawn of day 13 were 61-65% of the midday values of day 12. Levels of reducing sugars were much greater for both ambient- and elevated-[CO(2)] stress plants, implying an adaptation to drought stress. Sugarcane grown at elevated [CO(2)] had lower leaf g(s) and E and greater leaf WUE, which helped to delay the adverse effects of drought and, thus, allowed the stress plants to continue photosynthesis for at least an extra day during episodic drought cycles.  相似文献   

4.
The temperature response of C(3) and C(4) photosynthesis   总被引:1,自引:0,他引:1  
We review the current understanding of the temperature responses of C(3) and C(4) photosynthesis across thermal ranges that do not harm the photosynthetic apparatus. In C(3) species, photosynthesis is classically considered to be limited by the capacities of ribulose 1.5-bisphosphate carboxylase/oxygenase (Rubisco), ribulose bisphosphate (RuBP) regeneration or P(i) regeneration. Using both theoretical and empirical evidence, we describe the temperature response of instantaneous net CO(2) assimilation rate (A) in terms of these limitations, and evaluate possible limitations on A at elevated temperatures arising from heat-induced lability of Rubisco activase. In C(3) plants, Rubisco capacity is the predominant limitation on A across a wide range of temperatures at low CO(2) (<300 microbar), while at elevated CO(2), the limitation shifts to P(i) regeneration capacity at suboptimal temperatures, and either electron transport capacity or Rubisco activase capacity at supraoptimal temperatures. In C(4) plants, Rubisco capacity limits A below 20 degrees C in chilling-tolerant species, but the control over A at elevated temperature remains uncertain. Acclimation of C(3) photosynthesis to suboptimal growth temperature is commonly associated with a disproportional enhancement of the P(i) regeneration capacity. Above the thermal optimum, acclimation of A to increasing growth temperature is associated with increased electron transport capacity and/or greater heat stability of Rubisco activase. In many C(4) species from warm habitats, acclimation to cooler growth conditions increases levels of Rubisco and C(4) cycle enzymes which then enhance A below the thermal optimum. By contrast, few C(4) species adapted to cooler habitats increase Rubisco content during acclimation to reduced growth temperature; as a result, A changes little at suboptimal temperatures. Global change is likely to cause a widespread shift in patterns of photosynthetic limitation in higher plants. Limitations in electron transport and Rubisco activase capacity should be more common in the warmer, high CO(2) conditions expected by the end of the century.  相似文献   

5.
We demonstrate for the first time the presence of species exhibiting C3-C4 intermediacy in Heliotropium (sensu lato), a genus with over 100 C3 and 150 C4 species. CO2 compensation points (Gamma) and photosynthetic water-use efficiencies (WUEs) were intermediate between C3 and C4 values in three species of Heliotropium: Heliotropium convolvulaceum (Gamma = 20 micromol CO2 mol(-1) air), Heliotropium racemosum (Gamma = 22 micromol mol(-1)) and Heliotropium greggii (Gamma = 17 micromol mol(-1)). Heliotropium procumbens may also be a weak C3-C4 intermediate based on a slight reduction in Gamma (48.5 micromol CO2 mol(-1)) compared to C3Heliotropium species (52-60 micromol mol(-1)). The intermediate species H. convolvulaceum, H. greggii and H. racemosum exhibited over 50% enhancement of net CO2 assimilation rates at low CO2 levels (200-300 micromol mol(-1)); however, no significant differences in stomatal conductance were observed between the C3 and C3-C4 species. We also assessed the response of Gamma to variation in O2 concentration for these species. Heliotropium convolvulaceum, H. greggii and H. racemosum exhibited similar responses of Gamma to O2 with response slopes that were intermediate between the responses of C3 and C4 species below 210 mmol O2 mol(-1) air. The presence of multiple species displaying C3-C4 intermediate traits indicates that Heliotropium could be a valuable new model for studying the evolutionary transition from C3 to C4 photosynthesis.  相似文献   

6.
Panicum milioides, a naturally occurring species with C4-like Kranz leaf anatomy, is intermediate between C3 and C4 plants with respect to photo-respiration and the associated oxygen inhibition of photosynthesis. This paper presents direct evidence for a limited degree of C4 photosynthesis in this C3-C4 intermediate species based on: (a) the appearance of 24% of the total 14C fixed following 4 s photosynthesis in 14CO2-air by excised leaves in malate and aspartate and the complete transfer of label from the C4 acids to Calvin cycle intermediates within a 15 s chase in 12CO2-air; (b) pyruvate- or alanine-enhanced light-dependent CO2 fixation and pyruvate stimulation ote- or alanine-enhanced light-dependent CO2 fixation and pyruvate stimulation of oxaloacetate- or 3-phosphoglycerate-dependent O2 evolution by illuminated mesophyll protoplasts, but not bundle sheath strands; and (c) NAD-malic enzyme-dependent decarboxylation of C4 acids at the C-4 carboxyl position, C4 acid-dependent O2 evolution, and 14CO2 donation from (4-14C)C4 acids to Calvin cycle intermediates during photosynthesis by bundle sheath strands, but not mesophyll protoplasts. However, P. milloides differs from C4 plants in that the activity of the C4 cycle enzymes is only 15 to 30% of a C4 Panicum species and the Calvin cycle and phosphoenolpyruvate carboxylase are present in both cell types. From these and related studies (Rathnam, C.K.M. and Chollet, R. (1979) Arch. Biochem. Biophys. 193, 346-354; (1978) Biochem. Biophys. Res. Commun. 85, 801-808) we conclude that reduced photorespiration in P. milioides is due to a limited degree of NAD-malic enzyme-type C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath, but not mesophyll, ribulose-bisphosphate carboxylase-oxygenase.  相似文献   

7.
Climate change and the evolution of C(4) photosynthesis   总被引:2,自引:0,他引:2  
Plants assimilate carbon by one of three photosynthetic pathways, commonly called the C(3), C(4), and CAM pathways. The C(4) photosynthetic pathway, found only among the angiosperms, represents a modification of C(3) metabolism that is most effective at low concentrations of CO(2). Today, C(4) plants are most common in hot, open ecosystems, and it is commonly felt that they evolved under these conditions. However, high light and high temperature, by themselves, are not sufficient to favor the evolution of C(4) photosynthesis at atmospheric CO(2) levels significantly above the current ambient values. A review of evidence suggests that C(4) plants evolved in response to a reduction in atmospheric CO(2) levels that began during the Cretaceous and continued until the Miocene.  相似文献   

8.
Plants using the C(4) pathway of carbon metabolism are marked by greater photosynthetic water and nitrogen-use efficiencies (PWUE and PNUE, respectively) than C(3) species, but it is unclear to what extent this is the case in C(3) -C(4) intermediate species. In this study, we examined the PWUE and PNUE of 14 species of Flaveria Juss. (Asteraceae), including two C(3) , three C(4) and nine C(3) -C(4) species, the latter containing a gradient of C(4) -cycle activities (as determined by initial fixation of (14) C into C-4 acids). We found that PWUE, PNUE, leaf ribulose 1·5-bisphosphate carboxylase/oxygenase (Rubisco) content and intercellular CO(2) concentration in air (C(i) ) do not change gradually with C(4) -cycle activity. These traits were not significantly different between C(3) species and C(3) -C(4) species with less than 50% C(4) -cycle activity. C(4) -like intermediates with greater than 65% C(4) -cycle activity were not significantly different from plants with fully expressed C(4) photosynthesis. These results indicate that a gradual increase in C(4) -cycle activity has not resulted in a gradual change in PWUE, PNUE, intercellular CO(2) concentration and leaf Rubisco content towards C(4) levels in the intermediate species. Rather, these traits arose in a stepwise manner during the evolutionary transition to the C(4) -like intermediates, which are contained in two different clades within Flaveria.  相似文献   

9.
Characteristics related to C4 photosynthesis were studied in reciprocal F1 hybrids and F2 plants from Flaveria brownii (C4 like) and Flaveria linearis (C3-C4). The reciprocal F1 plants differed in 13C/12C ratios of leaves and the percentage of 14C initially incorporated into C4 acids, being more like the pollen parents in these traits. They did not differ in apparent photosynthesis or in O2 inhibition of apparent photosynthesis and differed only slightly in CO2 compensation concentration at 175 [mu]mol quanta m-2 s-1 and 400 mL L-1 O2. The 13C/12C ratios of 78 F2 progeny from the two F1 plants exhibited a normal distribution centered between those of the parents, with a few values slightly higher and lower than the parents. Apparent photosynthesis at 130 [mu]L L-1 CO2 and inhibition of photosynthesis by O2 was nearly normally distributed in the F2 population, but no values for F2 plants approached those for F. brownii (15.4 [mu]mol m-2 s-1 and 7.8%, respectively). Distribution of the CO2 compensation concentration measured at 1000 [mu]mol quanta m-2 s-1 and 400 mL L-1 of O2 in the F2 population was skewed toward F. brownii with 72% of the progeny having values <9 [mu]L of CO2 L-1 compared to 1.5 and 27.2 [mu]L L-1 for F. brownii and F. linearis, respectively. Correlations among traits of F2 plants were low (coefficients of 0.30 to -0.49), indicating that the C4- related traits are not closely linked in segregating populations. Plants in the F2 population selected for high or low apparent photosynthesis at 130 [mu]L of CO2 L-1 (six each) did not rank consistently high or low for 13C/12C ratios, O2 inhibition of apparent photosynthesis, CO2 compensation concentration, or activities of phosphoenolpyruvate carboxylase or NADP-malic enzyme. This study confirms results of earlier work that indicates independent segregation of C4 traits and also shows that the C4-like parental type can be recovered, at least for some characteristics (13C/12C ratio), in segregating populations. Recovery of fully functional C4 plants awaits further experimentation with C4 x C3 or C4 x C3-C4 hybrid plants that produce fertile progeny.  相似文献   

10.
The activity of the enzymes catalyzing the first two steps of sulfate assimilation, ATP sulfurylase and adenosine 5'-phosphosulfate reductase (APR), are confined to bundle sheath cells in several C(4) monocot species. With the aim to analyze the molecular basis of this distribution and to determine whether it was a prerequisite or a consequence of the C(4) photosynthetic mechanism, we compared the intercellular distribution of the activity and the mRNA of APR in C(3), C(3)-C(4), C(4)-like, and C(4) species of the dicot genus Flaveria. Measurements of APR activity, mRNA level, and protein accumulation in six Flaveria species revealed that APR activity, cysteine, and glutathione levels were significantly higher in C(4)-like and C(4) species than in C(3) and C(3)-C(4) species. ATP sulfurylase and APR mRNA were present at comparable levels in both mesophyll and bundle sheath cells of C(4) species Flaveria trinervia. Immunogold electron microscopy demonstrated the presence of APR protein in chloroplasts of both cell types. These findings, taken together with results from the literature, show that the localization of assimilatory sulfate reduction in the bundle sheath cells is not ubiquitous among C(4) plants and therefore is neither a prerequisite nor a consequence of C(4) photosynthesis.  相似文献   

11.
This study investigated whether Euphorbia subgenus Chamaesyce subsection Acutae contains C(3)-C(4) intermediate species utilizing C(2) photosynthesis, the process where photorespired CO(2) is concentrated into bundle sheath cells. Euphorbia species in subgenus Chamaesyce are generally C(4), but three species in subsection Acutae (E. acuta, E. angusta, and E. johnstonii) have C(3) isotopic ratios. Phylogenetically, subsection Acutae branches between basal C(3) clades within Euphorbia and the C(4) clade in subgenus Chamaesyce. Euphorbia angusta is C(3), as indicated by a photosynthetic CO(2) compensation point (Г) of 69 μmol mol(-1) at 30 °C, a lack of Kranz anatomy, and the occurrence of glycine decarboxylase in mesophyll tissues. Euphorbia acuta utilizes C(2) photosynthesis, as indicated by a Г of 33 μmol mol(-1) at 30 °C, Kranz-like anatomy with mitochondria restricted to the centripetal (inner) wall of the bundle sheath cells, and localization of glycine decarboxlyase to bundle sheath mitochondria. Low activities of PEP carboxylase, NADP malic enzyme, and NAD malic enzyme demonstrated no C(4) cycle activity occurs in E. acuta thereby classifying it as a Type I C(3)-C(4) intermediate. Kranz-like anatomy in E. johnstonii indicates it also utilizes C(2) photosynthesis. Given the phylogenetically intermediate position of E. acuta and E. johnstonii, these results support the hypothesis that C(2) photosynthesis is an evolutionary intermediate condition between C(3) and C(4) photosynthesis.  相似文献   

12.
Determining effects of elevated CO2 on the tolerance of photosynthesis to acute heat-stress (heat wave) is necessary for predicting plant responses to global warming, as photosynthesis is thermolabile and acute heat-stress and atmospheric CO2 will increase in the future. Few studies have examined this, and past results are variable, which may be due to methodological variation. To address this, we grew two C3 and two C4 species at current or elevated CO2 and three different growth temperatures (GT). We assessed photosynthetic thermotolerance in both unacclimated (basal tolerance) and preheat-stressed (preHS = acclimated) plants. In C3 species, basal thermotolerance of net photosynthesis (Pn) was increased In high CO2, but in C4 species, Pn thermotlerance was decreased by high CO2 (except Zea maya at low GT); CO2 effects in preHS plants were mostly small or absent, though high CO2 was detrimental in one C3 and one C4 species at warmer GT. Though high CO2 generally decreased stomatal conductance, decreases in Pn during heat stress were mostly due to non-stomatal effects. Photosystem II (PSII) efficiency was often decreased by high CO2 during heat stress, especially at high GT; CO2 effects on post-PSll electron transport were variable. Thus, high CO2 often affected photosynthetic theromotolerance, and the effects varied with photosynthetic pathway, growth temperature, and acclimation state. Most importantly, in heat-stressed plants at normal or warmer growth temperatures, high CO2 may often decrease, or not benefit as expected, tolerance of photosynthesis to acute heat stress. Therefore, interactive effects of elevated CO2 and warmer growth temperatures on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

13.
Determining the effect of elevated CO(2) on the tolerance of photosynthesis to acute heat stress (AHS) is necessary for predicting plant responses to global warming because photosynthesis is heat sensitive and AHS and atmospheric CO(2) will increase in the future. Few studies have examined this effect, and past results were variable, which may be related to methodological variation among studies. In this study, we grew 11 species that included cool and warm season and C(3), C(4), and CAM species at current or elevated (370 or 700 ppm) CO(2) and at species-specific optimal growth temperatures and at 30°C (if optimal ≠ 30°C). We then assessed thermotolerance of net photosynthesis (P(n)), stomatal conductance (g(st)), leaf internal [CO(2)], and photosystem II (PSII) and post-PSII electron transport during AHS. Thermotolerance of P(n) in elevated (vs. ambient) CO(2) increased in C(3), but decreased in C(4) (especially) and CAM (high growth temperature only), species. In contrast, elevated CO(2) decreased electron transport in 10 of 11 species. High CO(2) decreased g(st) in five of nine species, but stomatal limitations to P(n) increased during AHS in only two cool-season C(3) species. Thus, benefits of elevated CO(2) to photosynthesis at normal temperatures may be partly offset by negative effects during AHS, especially for C(4) species, so effects of elevated CO(2) on acute heat tolerance may contribute to future changes in plant productivity, distribution, and diversity.  相似文献   

14.
Predictions of future ecosystem function and food supply from staple C(4) crops, such as maize, depend on elucidation of the mechanisms by which environmental change and growing conditions interact to determine future plant performance. To test the interactive effects of elevated [CO(2)], drought, and nitrogen (N) supply on net photosynthetic CO(2) uptake (A) in the world's most important C(4) crop, maize (Zea mays) was grown at ambient [CO(2)] (~385 ppm) and elevated [CO(2)] (550 ppm) with either high N supply (168 kg N ha(-1) fertilizer) or limiting N (no fertilizer) at a site in the US Corn Belt. A mid-season drought was not sufficiently severe to reduce yields, but caused significant physiological stress, with reductions in stomatal conductance (up to 57%), A (up to 44%), and the in vivo capacity of phosphoenolpyruvate carboxylase (up to 58%). There was no stimulation of A by elevated [CO(2)] when water availability was high, irrespective of N availability. Elevated [CO(2)] delayed and relieved both stomatal and non-stomatal limitations to A during the drought. Limiting N supply exacerbated stomatal and non-stomatal limitation to A during drought. However, the effects of limiting N and elevated [CO(2)] were additive, so amelioration of stress by elevated [CO(2)] did not differ in magnitude between high N and limiting N supply. These findings provide new understanding of the limitations to C(4) photosynthesis that will occur under future field conditions of the primary region of maize production in the world.  相似文献   

15.
Watling JR  Press MC  Quick WP 《Plant physiology》2000,123(3):1143-1152
We analyzed the impact of growth at either 350 (ambient) or 700 (elevated) microL L(-1) CO(2) on key elements of the C(4) pathway (photosynthesis, carbon isotope discrimination, and leaf anatomy) using the C(4) cereal sorghum (Sorghum bicolor L. Moench.). Gas-exchange analysis of the CO(2) response of photosynthesis indicated that both carboxylation efficiency and the CO(2) saturated rate of photosynthesis were lower in plants grown at elevated relative to ambient CO(2). This was accompanied by a 49% reduction in the phosphoenolpyruvate carboxylase content of leaves (area basis) in the elevated CO(2)-grown plants, but no change in Rubisco content. Despite the lower phosphoenolpyruvate carboxylase content, there was a 3-fold increase in C isotope discrimination in leaves of plants grown at elevated CO(2) and bundle sheath leakiness was estimated to be 24% and 33%, respectively, for the ambient and elevated CO(2)-grown plants. However, we could detect no difference in quantum yield. The ratio of quantum yield of CO(2) fixation to PSII efficiency was lower in plants grown at elevated CO(2), but only when leaf internal was below 50 microL L(-1). This suggests a reduction in the efficiency of the C(4) cycle when [CO(2)] is low, and also implies increased electron transport to acceptors other than CO(2). Analysis of leaf sections using a transmission electron microscope indicated a 2-fold decrease in the thickness of the bundle sheath cell walls in plants grown at elevated relative to ambient CO(2). These results suggest that significant acclimation to increased CO(2) concentrations occurs in sorghum.  相似文献   

16.
Species in the Laxa and Grandia groups of the genus Panicum are adapted to low, wet areas of tropical and subtropical America. Panicum milioides is a species with C3 photosynthesis and low apparent photorespiration and has been classified as a C3/C4 intermediate. Other species in the Laxa group are C3 with normal photorespiration. Panicum prionitis is a C4 species in the Grandia group. Since P. milioides has some leaf characteristics intermediate to C3 and C4 species, its photosynthetic response to irradiance and temperature was compared to the closely related C3 species, P. laxum and P. boliviense and to P. prionitis. The response of apparent photosynthesis to irradiance and temperature was similar to that of P. laxum and P. boliviense, with saturation at a photosynthetic photo flux density of about 1 mmol m-2 s-1 at 30°C and temperature optimum near 30°C. In contrast, P. prionitis showed no light saturation up to 2 mmol m-2 s-1 and an optimum temperature near 40°C. P. milioides exhibited low CO2 loss into CO2-free air in the light and this loss was nearly insensitive to temperature. Loss of CO2 in the light in the C3 species, P. laxum and P. boliviense, was several-fold higher than in P. milioides and increased 2- to 5-fold with increases in temperature from 10 to 40°C. The level of dark respiration and its response to temperature were similar in all four Panicum species examined. It is concluded that the low apparent photorespiration in P. milioides does not influence its response of apparent photosynthesis to irradiance and temperature in comparison to closely related C3 Panicum species.Abbreviations AP apparent photosynthesis - I CO2 compensation point - gl leaf conductance; gm, mesophyll conductance - PPFD photosynthetic photon flux density - PR apparent photorespiration rate - RuBPC sibulose bisphosphate carboxylase  相似文献   

17.
The capacity of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) to consume RuBP is a major limitation on the rate of net CO(2) assimilation (A) in C(3) and C(4) plants. The pattern of Rubisco limitation differs between the two photosynthetic types, as shown by comparisons of temperature and CO(2) responses of A and Rubisco activity from C(3) and C(4) species. In C(3) species, Rubisco capacity is the primary limitation on A at light saturation and CO(2) concentrations below the current atmospheric value of 37 Pa, particularly near the temperature optimum. Below 20 degrees C, C(3) photosynthesis at 37 and 68 Pa is often limited by the capacity to regenerate phosphate for photophosphorylation. In C(4) plants, the Rubisco capacity is equivalent to A below 18 degrees C, but exceeds the photosynthetic capacity above 25 degrees C, indicating that Rubisco is an important limitation at cool but not warm temperatures. A comparison of the catalytic efficiency of Rubisco (k(cat) in mol CO(2) mol(-1) Rubisco active sites s(-1)) from 17 C(3) and C(4) plants showed that Rubisco from C(4) species, and C(3) species originating in cool environments, had higher k(cat) than Rubisco from C(3) species originating in warm environments. This indicates that Rubisco evolved to improve performance in the environment that plants normally experience. In C(4) plants, and C(3) species from cool environments, Rubisco often operates near CO(2) saturation, so that increases in k(cat) would enhance A. In warm-habitat C(4) species, Rubisco often operates at CO(2) concentrations below the K(m) for CO(2). Because k(cat) and K(m) vary proportionally, the low k(cat) indicates that Rubisco has been modified in a manner that reduces K(m) and thus increases the affinity for CO(2) in C(3) species from warm climates.  相似文献   

18.
Dai Z  Ku M  Edwards GE 《Plant physiology》1993,103(1):83-90
Despite previous reports of no apparent photorespiration in C4 plants based on measurements of gas exchange under 2 versus 21% O2 at varying [CO2], photosynthesis in maize (Zea mays) shows a dual response to varying [O2]. The maximum rate of photosynthesis in maize is dependent on O2 (approximately 10%). This O2 dependence is not related to stomatal conductance, because measurements were made at constant intercellular CO2 concentration (Ci); it may be linked to respiration or pseudocyclic electron flow. At a given Ci, increasing [O2] above 10% inhibits both the rate of photosynthesis, measured under high light, and the maximum quantum yield, measured under limiting light ([phi]CO2). The dual effect of O2 is masked if measurements are made under only 2 versus 21% O2. The inhibition of both photosynthesis and [phi]CO2 by O2 (measured above 10% O2) with decreasing Ci increases in a very similar manner, characteristically of O2 inhibition due to photorespiration. There is a sharp increase in O2 inhibition when the Ci decreases below 50 [mu]bar of CO2. Also, increasing temperature, which favors photorespiration, causes a decrease in [phi]CO2 under limiting CO2 and 40% O2. By comparing the degree of inhibition of photosynthesis in maize with that in the C3 species wheat (Triticum aestivum) at varying Ci, the effectiveness of C4 photosynthesis in concentrating CO2 in the leaf was evaluated. Under high light, 30[deg]C, and atmospheric levels of CO2 (340 [mu]bar), where there is little inhibition of photosynthesis in maize by O2, the estimated level of CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in the bundle sheath compartment was 900 [mu]bar, which is about 3 times higher than the value around Rubisco in mesophyll cells of wheat. A high [CO2] is maintained in the bundle sheath compartment in maize until Ci decreases below approximately 100 [mu]bar. The results from these gas exchange measurements indicate that photorespiration occurs in maize but that the rate is low unless the intercellular [CO2] is severely limited by stress.  相似文献   

19.
20.
Vogan PJ  Sage RF 《Oecologia》2012,169(2):341-352
This study evaluates acclimation of photosynthesis and stomatal conductance in three evolutionary lineages of C(3), C(3)-C(4) intermediate, and C(4) species grown in the low CO(2) and hot conditions proposed to favo r the evolution of C(4) photosynthesis. Closely related C(3), C(3)-C(4), and C(4) species in the genera Flaveria, Heliotropium, and Alternanthera were grown near 380 and 180 μmol CO(2) mol(-1) air and day/night temperatures of 37/29°C. Growth CO(2) had no effect on photosynthetic capacity or nitrogen allocation to Rubisco and electron transport in any of the species. There was also no effect of growth CO(2) on photosynthetic and stomatal responses to intercellular CO(2) concentration. These results demonstrate little ability to acclimate to low CO(2) growth conditions in closely related C(3) and C(3)-C(4) species, indicating that, during past episodes of low CO(2), individual C(3) plants had little ability to adjust their photosynthetic physiology to compensate for carbon starvation. This deficiency could have favored selection for more efficient modes of carbon assimilation, such as C(3)-C(4) intermediacy. The C(3)-C(4) species had approximately 50% greater rates of net CO(2) assimilation than the C(3) species when measured at the growth conditions of 180 μmol mol(-1) and 37°C, demonstrating the superiority of the C(3)-C(4) pathway in low atmospheric CO(2) and hot climates of recent geological time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号