首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PRINTS and PRINTS-S shed light on protein ancestry   总被引:2,自引:0,他引:2       下载免费PDF全文
The PRINTS database houses a collection of protein fingerprints. These may be used to make family and tentative functional assignments for uncharacterised sequences. The September 2001 release (version 32.0) includes 1600 fingerprints, encoding ~10 000 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. In addition to its continued steady growth, we report here its use as a source of annotation in the InterPro resource, and the use of its relational cousin, PRINTS-S, to model relationships between families, including those beyond the reach of conventional sequence analysis approaches. The database is accessible for BLAST, fingerprint and text searches at http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/.  相似文献   

2.
PRINTS-S: the database formerly known as PRINTS   总被引:10,自引:0,他引:10  
The PRINTS database houses a collection of protein family fingerprints. These are groups of motifs that together are diagnostically more potent than single motifs by virtue of the biological context afforded by matching motif neighbours. Around 1200 fingerprints have now been created and stored in the database. The September 1999 release (version 24.0) encodes approximately 7200 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. In addition to its continued steady growth, we report here several major changes to the resource, including the design of an automated strategy for database maintenance, and implementation of an object-relational schema for more efficient data management. The database is accessible for BLAST, fingerprint and text searches at http://www.bioinf.man.ac. uk/dbbrowser/PRINTS/  相似文献   

3.
PRINTS prepares for the new millennium.   总被引:7,自引:1,他引:6       下载免费PDF全文
PRINTS is a diagnostic collection of protein fingerprints. Fingerprints exploit groups of motifs to build characteristic family signatures, offering improved diagnostic reliability over single-motif approaches by virtue of the mutual context provided by motif neighbours. Around 1000 fingerprints have now been created and stored in PRINTS. The September 1998 release (version 20.0), encodes approximately 5700 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. The database is accessible via the DbBrowser Web Server at http://www.biochem.ucl.ac.uk/bsm/dbbrowser /. In addition to supporting its continued growth, recent enhancements to the resource include a BLAST server, and more efficient fingerprint search software, with improved statistics for estimating the reliability of retrieved matches. Current efforts are focused on the design of more automated methods for database maintenance; implementation of an object-relational schema for efficient data management; and integration with PROSITE, profiles, Pfam and ProDom, as part of the international InterPro project, which aims to unify protein pattern databases and offer improved tools for genome analysis.  相似文献   

4.
A tool for searching pattern and fingerprint databases is described.Fingerprints are groups of motifs excised from conserved regionsof sequence alignments and used for iterative database scanning.The constituent motifs are thus encoded as small alignmentsin which sequence information is maximised with each databasepass; they therefore differ from regular-expression patterns,in which alignments are reduced to single consensus sequences.Different database formats have evolved to store these disparatetypes of information, namely the PROSITE dictionary of patternsand the PRINTS fingerprint database, but programs have not beenavailable with the flexibility to search them both. We havedeveloped a facility to do this: the system allows query sequencesto be scanned against either PROSITE, the full PRINTS database,or against individual fingerprints. The results of fingerprintsearches are displayed simultaneously in both text and graphicalwindows to render them more tangible to the user. Where structuralcoordinates are available, identified motifs may be visualisedin a 3D context. The program runs on Silicon Graphics machinesusing GL graphics libraries and on machines with X servers supportingthe PEX extension: its use is illustrated here by depictingthe location of low-density lipoprotein-binding (LDL) motifsand leucine-rich repeats in a mosaic G-protein-coupled receptor(GPCR).  相似文献   

5.
The PRINTS database houses a collection of protein fingerprints. These may be used to assign uncharacterised sequences to known families and hence to infer tentative functions. The September 2002 release (version 36.0) includes 1800 fingerprints, encoding approximately 11 000 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. In addition to its continued steady growth, we report here the development of an automatic supplement, prePRINTS, designed to increase the coverage of the resource and reduce some of the manual burdens inherent in its maintenance. The databases are accessible for interrogation and searching at http://www.bioinf.man.ac.uk/dbbrowser/PRINTS/.  相似文献   

6.
Motif3D is a web-based protein structure viewer designed to allow sequence motifs, and in particular those contained in the fingerprints of the PRINTS database, to be visualised on three-dimensional (3D) structures. Additional functionality is provided for the rhodopsin-like G protein-coupled receptors, enabling fingerprint motifs of any of the receptors in this family to be mapped onto the single structure available, that of bovine rhodopsin. Motif3D can be used via the web interface available at: http://www.bioinf.man.ac.uk/dbbrowser/motif3d/motif3d.html.  相似文献   

7.
VISTAS is a suite of programs for protein sequence and structure analysis. The system allows the simultaneous display, in separate windows, of multiple sequence alignments, of known or model 3D structures, and of 2D graphic representations of sequence and/or alignment properties. The displays are fully integrated, and therefore manipulations in one window can be reflected in each of the others. Beyond its display facilities, VISTAS brings together a number of existing tools under a single, user-friendly umbrella: these include a fully functional interactive color alignment procedure, conserved motif selection, a range of database-scanning routines, and interactive access to the OWL composite sequence database and to the PRINTS protein fingerprint database. Exploration of the sequence database is thus straightforward, and predefined structural motifs from the fingerprint database may be readily visualized. Of particular note is the ability to calculate conservation criteria from sequence alignments and to display the information in a 3D context: this renders VISTAS a powerful tool for aiding mutagenesis studies and for facilitating refinement of molecular models.  相似文献   

8.
InterPro, an integrated documentation resource of protein families, domains and functional sites, was created in 1999 as a means of amalgamating the major protein signature databases into one comprehensive resource. PROSITE, Pfam, PRINTS, ProDom, SMART and TIGRFAMs have been manually integrated and curated and are available in InterPro for text- and sequence-based searching. The results are provided in a single format that rationalises the results that would be obtained by searching the member databases individually. The latest release of InterPro contains 5629 entries describing 4280 families, 1239 domains, 95 repeats and 15 post-translational modifications. Currently, the combined signatures in InterPro cover more than 74% of all proteins in SWISS-PROT and TrEMBL, an increase of nearly 15% since the inception of InterPro. New features of the database include improved searching capabilities and enhanced graphical user interfaces for visualisation of the data. The database is available via a webserver (http://www.ebi.ac.uk/interpro) and anonymous FTP (ftp://ftp.ebi.ac.uk/pub/databases/interpro).  相似文献   

9.
The PRINTS protein fingerprint database in its fifth year.   总被引:5,自引:0,他引:5       下载免费PDF全文
PRINTS is a database of protein family 'fingerprints' offering a diagnostic resource for newly-determined sequences. By contrast with PROSITE, which uses single consensus expressions to characterise particular families, PRINTS exploits groups of motifs to build characteristic signatures. These signatures offer improved diagnostic reliability by virtue of the mutual context provided by motif neighbours. To date, 800 fingerprints have been constructed and stored in PRINTS. The current version, 17.0, encodes approximately 4500 motifs, covering a range of globular and membrane proteins, modular polypeptides, and so on. The database is accessible via the UCL Bioinformatics World Wide Web (WWW) Server at http://www. biochem.ucl.ac.uk/bsm/dbbrowser/ . We have recently enhanced the usefulness of PRINTS by making available new, intuitive search software. This allows both individual query sequence and bulk data submission, permitting easy analysis of single sequences or complete genomes. Preliminary results indicate that use of the PRINTS system is able to assign additional functions not found by other methods, and hence offers a useful adjunct to current genome analysis protocols.  相似文献   

10.
The PRINTS database: a resource for identification of protein families   总被引:4,自引:0,他引:4  
The PRINTS database houses a collection of protein fingerprints, which may be used to assign family and functional attributes to uncharacterised sequences, such as those currently emanating from the various genome-sequencing projects. The April 2002 release includes 1,700 family fingerprints, encoding approximately 10,500 motifs, covering a range of globular and membrane proteins, modular polypeptides and so on. Fingerprints are groups of conserved motifs that, taken together, provide diagnostic protein family signatures. They derive much of their potency from the biological context afforded by matching motif neighbours; this makes them at once more flexible and powerful than single-motif approaches. The technique further departs from other pattern-matching methods by readily allowing the creation of fingerprints at superfamily-, family- and subfamily-specific levels, thereby allowing more fine-grained diagnoses. Here, we provide an overview of the method of protein fingerprinting and how the results of fingerprint analyses are used to build PRINTS and its relational cousin, PRINTS-S.  相似文献   

11.
Increased coverage of protein families with the blocks database servers   总被引:34,自引:0,他引:34  
The Blocks Database WWW (http://blocks.fhcrc.org ) and Email (blocks@blocks.fhcrc.org ) servers provide tools to search DNA and protein queries against the Blocks+ Database of multiple alignments, which represent conserved protein regions. Blocks+ nearly doubles the number of protein families included in the database by adding families from the Pfam-A, ProDom and Domo databases to those from PROSITE and PRINTS. Other new features include improved Block Searcher statistics, searching with NCBI's IMPALA program and 3D display of blocks on PDB structures.  相似文献   

12.
With the ever-increasing need to handle large volumes of sequence data efficiently and reliably, we have developed the EASY system for performing combined protein sequence and pattern database searches. EASY runs searches simultaneously and distils results into a concise 1-line diagnosis. By bringing together results of several different analyses, EASY provides a rapid means of evaluating biological significance, minimising the risk of inferring false relationships, for example from relying exclusively on top BLAST hits. The program has been tested using a variety of protein families and was instrumental in resolving family assignments in a major update of the PRINTS database.  相似文献   

13.
Novel developments with the PRINTS protein fingerprint database.   总被引:4,自引:2,他引:2       下载免费PDF全文
The PRINTS database of protein family 'fingerprints' is a diagnostic resource that complements the PROSITE dictionary of sites and patterns. Unlike regular expressions, fingerprints exploit groups of conserved motifs within sequence alignments to build characteristic signatures of family membership. Thus fingerprints inherently offer improved diagnostic reliability by virtue of the mutual context provided by motif neighbours. To date, 600 fingerprints have been constructed and stored in PRINTS, representing a 50% increase in the size of the database in the last year. The current version, 13.0, encodes approximately 3000 motifs, covering a range of globular and membrane proteins, modular polypeptides, and so on. The database is accessible via UCL's Bioinformatics World Wide Web (WWW) server at http://www.biochem.ucl.ac.uk/bsm/dbbrowser / . We describe here progress with the database, its Web interface, and a recent exciting development: the integration of a novel colour alignment editor (http://www.biochem.ucl.ac.uk/bsm/dbbrowser++ +/CINEMA ), which allows visualisation and interactive manipulation of PRINTS alignments over the Internet.  相似文献   

14.
PRINTS--a database of protein motif fingerprints.   总被引:4,自引:1,他引:3       下载免费PDF全文
PRINTS is a compendium of protein motif 'fingerprints'. A fingerprint is defined as a group of motifs excised from conserved regions of a sequence alignment, whose diagnostic power or potency is refined by iterative databasescanning (in this case the OWL composite sequence database). Generally, the motifs do not overlap, but are separated along a sequence, though they may be contiguous in 3D-space. The use of groups of independent, linearly- or spatially-distinct motifs allows protein folds and functionalities to be characterised more flexibly and powerfully than conventional single-component patterns or regular expressions. The current version of the database contains 200 entries (encoding 950 motifs), covering a wide range of globular and membrane proteins, modular polypeptides, and so on. The growth of the databaseis influenced by a number of factors; e.g. the use of multiple motifs; the maximisation of sequence information through iterative database scanning; and the fact that the database searched is a large composite. The information contained within PRINTS is distinct from, but complementary to the consensus expressions stored in the widely-used PROSITE dictionary of patterns.  相似文献   

15.
MOTIVATION: The blastp and tblastn modules of BLAST are widely used methods for searching protein queries against protein and nucleotide databases, respectively. One heuristic used in BLAST is to consider only database sequences that contain a high-scoring match of length at most 5 to the query. We implemented the capability to use words of length 6 or 7. We demonstrate an improved trade-off between running time and retrieval accuracy, controlled by the score threshold used for short word matches. For example, the running time can be reduced by 20-30% while achieving ROC (receiver operator characteristic) scores similar to those obtained with current default parameters. AVAILABILITY: The option to use long words is in the NCBI C and C++ toolkit code for BLAST, starting with version 2.2.16 of blastall. A Linux executable used to produce the results herein is available at: ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/protein_longwords  相似文献   

16.
未知基因组及蛋白质序列数据库有限的物种的蛋白质组学分析是当前一些非模式生物物种蛋白质组学研究领域的瓶颈之一.基于同源性搜索的BLAST方法(MS BLAST),是近年新发展起来的一种用于未知基因组的蛋白质鉴定的搜索工具,已成功应用于许多未知基因组物种的蛋白质鉴定.SPITC化学辅助方法是本实验室建立的一种改进的de novo质谱测序方法.采用MS BLAST方法对经Mascot软件数据库搜索未能鉴定到的19个金鱼胚胎蛋白质进行鉴定,其中12个蛋白质是直接测序后进行MS BLAST搜索得到的结果,另外7个蛋白质是联合MS BLAST和SPITC衍生方法得到的鉴定结果.实验结果证明,采用MS BLAST方法进行蛋白质的跨物种鉴定具有可行性和可靠性,给蛋白质的跨物种鉴定提供了一条新的途径.  相似文献   

17.
The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.  相似文献   

18.

Background

BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i?+?1. Biegert and S?ding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch.

Results

We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI??s Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST.

Conclusions

DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the ??Protein BLAST?? link at http://blast.ncbi.nlm.nih.gov.

Reviewers

This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.  相似文献   

19.
Progress with the PRINTS protein fingerprint database.   总被引:2,自引:1,他引:1       下载免费PDF全文
PRINTS is a compendium of protein motif 'fingerprints' derived from the OWL composite sequence database. Fingerprints are groups of motifs within sequence alignments whose conserved nature allows them to be used as signatures of family membership. To date, 400 fingerprints have been constructed and stored in Prints, the size of which has doubled in the last year. The current version, 9.0, encodes approximately 2000 motifs, covering a range of globular and membrane proteins, modular polypeptides, and so on. Fingerprints inherently offer improved diagnostic reliability over single motif methods by virtue of the mutual context provided by motif neighbours. PRINTS thus provides a useful adjunct to the widely used PROSITE dictionary of patterns. The database is now accessible via the Database Browser on the UCL Bioinformatics server at http://www.biochem.ucl.ac.uk/bsm/dbbrowser .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号