首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wilson BA  Ho M 《The FEBS journal》2011,278(23):4616-4632
The mitogenic toxin from Pasteurella multocida (PMT) is a member of the dermonecrotic toxin family, which includes toxins from Bordetella, Escherichia coli and Yersinia. Members of the dermonecrotic toxin family modulate G-protein targets in host cells through selective deamidation and/or transglutamination of a critical active site Gln residue in the G-protein target, which results in the activation of intrinsic GTPase activity. Structural and biochemical data point to the uniqueness of PMT among these toxins in its structure and action. Whereas the other dermonecrotic toxins act on small Rho GTPases, PMT acts on the α subunits of heterotrimeric G(q) -, G(i) - and G(12/13) -protein families. To date, experimental evidence supports a model in which PMT potently stimulates various mitogenic and survival pathways through the activation of G(q) and G(12/13) signaling, ultimately leading to cellular proliferation, whilst strongly inhibiting pathways involved in cellular differentiation through the activation of G(i) signaling. The resulting cellular outcomes account for the global physiological effects observed during infection with toxinogenic P. multocida, and hint at potential long-term sequelae that may result from PMT exposure.  相似文献   

2.
Pasteurella multocida toxin (PMT) activates Galpha(q) and facilitates stimulation of inositol phosphate accumulation induced by agonists via G(q)-coupled membrane receptors. Here, we studied the effects of PMT on agonist-induced GTPgammaS binding to G(q) in cell membranes and a role of G-protein-coupled receptors in the action of PMT. Pre-treatment of Swiss 3T3 cells with PMT increased bombesin or vasopressin-induced GTPgammaS-binding in cell membranes by about 50 to 150%. Increase in agonist-stimulated GTPgammaS-binding caused by PMT pretreatment was specific for Galpha(q) and not observed with Galpha(11). PMT-induced effects on GTPgammaS-binding were persistent after removing the toxin or in the presence of anti-PMT antibody. Stimulation of agonist-induced GTPgammaS-binding by PMT was independent of phosphorylation of the C-terminal tyrosine356 of Galpha(q). Activation of phospholipase C by PMT occurred via Galpha(q) which was fused to the alpha(1b)-adrenoceptor and also with a C-terminally deleted Galpha(q), which is not able to interact with G protein-coupled membrane receptors. The data indicate that activation of Galpha(q) by PMT is persistent and independent of a functional interaction of G(q) with G-protein-coupled receptors.  相似文献   

3.
Pasteurella multocida toxin (PMT) is a highly potent mitogen for a variety of cell types. PMT has been shown to induce various cellular signaling processes, and it has been suggested to function through the heterotrimeric G-proteins G(q)/G(11). To analyze the role of G(q)/G(11) in the action of PMT, we have studied the effect of the toxin in Galpha(q)/Galpha(11) double-deficient fibroblasts as well as in fibroblasts lacking only Galpha(q) or Galpha(11). Interestingly, formation of inositol phosphates in response to PMT was exclusively dependent on Galpha(q) but not on the closely related Galpha(11). Although Galpha(q)/Galpha(11) double-deficient and Galpha(q)-deficient cells did not respond with any production of inositol phosphates to PMT, PMT was still able to induce various other cellular effects in these cells, including the activation of Rho, the Rho-dependent formation of actin stress fibers and focal adhesions, as well as the stimulation of c-Jun N-terminal kinase and extracellular signal-regulated kinase. These data show that PMT leads to a variety of cellular effects that are mediated only in part by the heterotrimeric G-protein G(q).  相似文献   

4.
5.
Pasteurella multocida toxin (PMT) is a potent mitogen, which is known to activate phospholipase Cbeta by stimulating the alpha-subunit of the heterotrimeric G protein G(q). PMT also activates RhoA and RhoA-dependent pathways. Using YM-254890, a specific inhibitor of G(q/11), we studied whether activation of RhoA involves G proteins other than G(q/11). YM-254890 inhibited PMT or muscarinic M3-receptor-mediated stimulation of phospholipase Cbeta at similar concentrations in HEK293m3 cells. In these cells, PMT-induced RhoA activation and enhancement of RhoA-dependent luciferase activity were partially inhibited by YM-254890. In Galpha(q/11)-deficient fibroblasts, PMT induced activation of RhoA, increase in RhoA-dependent luciferase activity, and increase in ERK phosphorylation. None of these effects were influenced by YM-254890. However, RhoA activation by PMT was inhibited by RGS2, RGS16, lscRGS, and dominant negative G(13)(GA), indicating involvement of Galpha(12/13) in the PMT effect on RhoA. In Galpha(12/13) gene-deficient cells, PMT-induced stimulation of RhoA, luciferase activity, and ERK phosphorylation were blocked by YM-254890, indicating the involvement of G(q). Infection with a virus harboring the gene of Galpha(13) reconstituted the increase in RhoA-dependent luciferase activity by PMT even in the presence of YM-254890. The data show that YM-254890 is able to block PMT activation of Galpha(q) and indicate that, in addition to Galpha(q), the Galpha(12/13) G proteins are targets of PMT.  相似文献   

6.
The dermatonecrotic toxin produced by Pasteurella multocida is one of the most potent mitogenic substances known for fibroblasts in vitro. Exposure to recombinant P. multocida toxin (rPMT) causes phospholipase C-mediated hydrolysis of inositol phospholipids, calcium mobilization, and activation of protein kinase C via a poorly characterized mechanism involving G(q/11) family heterotrimeric G proteins. To determine whether the regulation of G protein pathways contributes to the mitogenic effects of rPMT, we have examined the mechanism whereby rPMT stimulates the Erk mitogen-activated protein kinase cascade in cultured HEK-293 cells. Treatment with rPMT resulted in a dose and time-dependent increase in Erk 1/2 phosphorylation that paralleled its stimulation of inositol phospholipid hydrolysis. Both rPMT- and alpha-thrombin receptor- stimulated Erk phosphorylation were selectively blocked by cellular expression of two peptide inhibitors of G(q/11) signaling, the dominant negative mutant G protein-coupled receptor kinase, GRK2(K220R), and the Galpha(q) carboxyl-terminal peptide, Galpha(q)-(305-359). Like alpha-thrombin receptor-mediated Erk activation, the effect of rPMT was insensitive to the protein kinase C inhibitor GF109203X, but was blocked by the epidermal growth factor receptor-specific tyrphostin, AG1478 and by dominant negative mutants of mSos1 and Ha-Ras. These data indicate that rPMT employs G(q/11) family heterotrimeric G proteins to induce Ras-dependent Erk activation via protein kinase C-independent "transactivation" of the epidermal growth factor receptor.  相似文献   

7.
Regulator of G protein signaling (RGS) proteins constitute a family of over 20 proteins that negatively regulate heterotrimeric G protein-coupled receptor signaling pathways by enhancing endogenous GTPase activities of G protein alpha subunits. RGSZ1, one of the RGS proteins specifically localized to the brain, has been cloned previously and described as a selective GTPase accelerating protein for Galpha(z) subunit. Here, we employed several methods to provide new evidence that RGSZ1 interacts not only with Galpha(z,) but also with Galpha(i), as supported by in vitro binding assays and functional studies. Using glutathione S-transferase fusion protein pull-down assays, glutathione S-transferase-RGSZ1 protein was shown to bind (35)S-labeled Galpha(i1) protein in an AlF(4)(-)dependent manner. The interaction between RGSZ1 and Galpha(i) was confirmed further by co-immunoprecipitation studies and yeast two-hybrid experiments using a quantitative luciferase reporter gene. Extending these observations to functional studies, RGSZ1 accelerated endogenous GTPase activity of Galpha(i1) in single-turnover GTPase assays. Human RGSZ1 functionally regulated GPA1 (a yeast Galpha(i)-like protein)-mediated yeast pheromone response when expressed in a SST2 (yeast RGS protein) knockout strain. In PC12 cells, transfected RGSZ1 blocked mitogen-activated protein kinase activity induced by UK14304, an alpha(2)-adrenergic receptor agonist. Furthermore, RGSZ1 attenuated D2 dopamine receptor agonist-induced serum response element reporter gene activity in Chinese hamster ovary cells. In summary, these data suggest that RGSZ1 serves as a GTPase accelerating protein for Galpha(i) and regulates Galpha(i)-mediated signaling, thus expanding the potential role of RGSZ1 in G protein-mediated cellular activities.  相似文献   

8.
Pasteurella multocida toxin (PMT) is a virulence factor responsible for the pathogenesis of some Pasteurellosis. PMT exerts its toxic effects through the activation of heterotrimeric GTPase (G(q), G(12/13) and G(i))-dependent pathways, by deamidating a glutamine residue in the α subunit of these GTPases. However, the enzymatic characteristics of PMT are yet to be analyzed in detail because the deamidation has only been observed in cell-based assays. In the present study, we developed rat monoclonal antibodies, specifically recognizing the deamidated Gα(q), to detect the actions of PMT by immunological techniques such as western blotting. Using the monoclonal antibodies, we found that the toxin deamidated Gα(q) only under reducing conditions. The C-terminal region of PMT, C-PMT, was more active than the full-length PMT. The C3 domain possessing the enzyme core catalyzed the deamidation in vitro without any other domains. These results not only support previous observations on toxicity, but also provide insights into the enzymatic nature of PMT. In addition, we present several lines of evidence that Gα(11), as well as Gα(q), could be a substrate for PMT.  相似文献   

9.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

10.
Pasteurella multocida produces a 146-kDa protein toxin (PMT), which activates multiple cellular signal transduction pathways, resulting in the activation of phospholipase Cbeta, RhoA, Jun kinase, and extracellular signal-regulated kinase. Using Galpha(q)/Galpha(11) -deficient cells, it was shown that the PMT-induced pleiotropic effects are mediated by Galpha(q) but not by the highly related Galpha(11) protein (Zywietz, A., Gohla, A., Schmelz, M., Schultz, G., and Offermanns, S. (2001) J. Biol. Chem. 276, 3840-3845). Here we studied the molecular basis of the unique specificity of PMT to distinguish between Galpha(q) and/or Galpha(11). Infection of Galpha(q) -deficient cells with retrovirus-encoding Galpha(q) caused reconstitution of PMT-induced activation of phospholipase Cbeta, whereas Galpha(11) -encoding virus did not reconstitute PMT activity. Chimeras between Galpha(q) and/or Galpha(11) revealed that a peptide region of Galpha(q), covering amino acid residues 105-113, is essential for the action of PMT to activate phospholipase Cbeta. Exchange of glutamine 105 or asparagine 109 of Galpha(11), which are located in the all-helical domain of the Galpha subunit, with the equally positioned histidines of Galpha(q), renders Galpha(11) capable of transmission PMT-induced phospholipase Cbeta activation. The data indicate that the all-helical domain of Galpha(q) is essential for the action of PMT and suggest an essential functional role of this domain in signal transduction via G(q) proteins.  相似文献   

11.
Insulin signaling to generate inositol phosphoglycans (IPGs) was demonstrated to occur via the participation of the heterotrimeric G-proteins G(q/11). IPGs were measured as two specific inositol markers, myo-inositol and chiro-inositol after strong acid hydrolysis. Insulin and Pasteurella multocida toxin (PMT) generated both myo-inositol and chiro-inositol IPGs in a dose-dependent manner. PMT has been shown to activate G(q) specifically. Insulin action was abrogated by pre-treatment with anti G(q/11) antibody. Western blotting demonstrated the enrichment of both insulin receptor beta subunit and G(q/11) in the liver membrane vesicles. Vesicles also contained clathrin, caveolin PLC beta 1 and PLC Delta. Immunogold staining revealed the co-localization of both insulin receptor beta subunit and G(q/11) in an approximate stochiometric ratio of 1:3. No vesicles were detected with either component alone. The present and considerable published data provide strong evidence for insulin signaling both via a tyrosine kinase cascade mechanism and via heterotrimeric G-protein interactions.  相似文献   

12.
To examine the contribution of different G-protein pathways to lysophosphatidic acid (LPA)-induced protein kinase D (PKD) activation, we tested the effect of LPA on PKD activity in murine embryonic cell lines deficient in Galpha(q/11) (Galpha(q/11) KO cells) or Galpha(12/13) (Galpha(12/13) KO cells) and used cells lacking rhodopsin kinase (RK cells) as a control. In RK and Galpha(12/13) KO cells, LPA induced PKD activation through a phospholipase C/protein kinase C pathway in a concentration-dependent fashion with maximal stimulation (6-fold for RK cells and 4-fold for Galpha(12/13) KO cells in autophosphorylation activity) achieved at 3 microm. In contrast, LPA did not induce any significant increase in PKD activity in Galpha(q/11) KO cells. However, LPA induced a significantly increased PKD activity when Galpha(q/11) KO cells were transfected with Galpha(q). LPA-induced PKD activation was modestly attenuated by prior exposure of RK cells to pertussis toxin (PTx) but abolished by the combination treatments of PTx and Clostridium difficile toxin B. Surprisingly, PTx alone strikingly inhibited LPA-induced PKD activation in a concentration-dependent fashion in Galpha(12/13) KO cells. Similar results were obtained when activation loop phosphorylation at Ser-744 was determined using an antibody that detects the phosphorylated state of this residue. Our results indicate that G(q) is necessary but not sufficient to mediate LPA-induced PKD activation. In addition to G(q), LPA requires additional G-protein pathways to elicit a maximal response with G(i) playing a critical role in Galpha(12/13) KO cells. We conclude that LPA induces PKD activation through G(q), G(i), and G(12) and propose that PKD activation is a point of convergence in the action of multiple G-protein pathways.  相似文献   

13.
Suppression of the expression of the heterotrimeric G-protein Galpha(i2) in vivo has been shown to provoke insulin resistance, whereas enhanced insulin signaling is observed when Galpha(i2) is overexpressed in vivo. The basis for Galpha(i2) regulation of insulin signaling was explored in transgenic mice with targeted expression of the GTPase-deficient, constitutively active Q205L Galpha(i2) in fat and skeletal muscle. Phosphorylation of insulin receptor and IRS-1 in response to insulin challenge in vivo was markedly amplified in fat and skeletal muscle expressing Q205L Galpha(i2). The expression and activity of the protein-tyrosine phosphatase 1B (PTP1B), but not protein-tyrosine phosphatases SHP-1, SHP-2, and LAR, were constitutively decreased in tissues expressing the Q205L Galpha(i2), providing a direct linkage between insulin signaling and Galpha(i2). The loss of PTP1B expression may explain, in part, the loss of PTP1B activity in the iQ205L transgenic mice. Activation of Galpha(i2) in mouse adipocytes with lysophosphatidic acid was shown to decrease PTP1B activity, whereas pertussis toxin inactivates Galpha(i2), blocks lysophosphatidic acid-stimulated inhibition of PTP1B activity, and blocks tonic suppression of PTP1B activity by Galpha(i2). Elevation of intracellular cAMP in fat cells is shown to increase PTP1B activity, whereas either depression of cAMP levels or direct activation of Galpha(i2) suppresses PTP1B. These data provide the first molecular basis for the interplay between Galpha(i2) and insulin signaling, i.e. activation of Galpha(i2) can suppress both the expression and activity of PTP1B in insulin-sensitive tissues.  相似文献   

14.
Like somatic cells, mammalian spermatozoa appear to contain several different heterotrimeric G protein alpha-subunits that could mediate specialized cell responses. However, the precise Galpha subunits present, their subcellular location and their possible roles are still incompletely defined. In this study, using commercially available specific antibodies, we have shown by immunoblotting that Galpha(s) is present in human and mouse sperm lysates. Immunolocalization using intact spermatozoa from both species revealed this protein to be in the acrosomal cap region and the flagellum, particularly the principal piece. Treatment of permeabilized mouse spermatozoa with cholera toxin led to enhanced ADP-ribosylation of a protein the same size as Galpha(s), as well as an increase in cAMP, providing further proof for Galpha(s). Evidence for the presence and distinct localizations of Galpha(i2), Galpha(i3), Galpha(o), Galpha(q/11), and Galpha(olf) was also obtained. Of particular interest was Galpha(i2) which, like Galpha(s), was present in the acrosomal cap region and flagellum, the same regions where stimulatory and inhibitory adenosine receptors are localized. These observations are consistent with our hypothesis that G proteins mediate adenosine receptor modulation of adenylyl cyclase, with consequent alterations in cAMP production, apparently crucial for the spermatozoon's acquisition and maintenance of fertilizing ability.  相似文献   

15.
Lysophosphatidic acid is a bioactive phospholipid that is produced by and stimulates ovarian cancer cells, promoting proliferation, migration, invasion, and survival. Effects of LPA are mediated by cell surface G-protein coupled receptors (GPCRs) that activate multiple heterotrimeric G-proteins. G-proteins are deactivated by Regulator of G-protein Signaling (RGS) proteins. This led us to hypothesize that RGS proteins may regulate G-protein signaling pathways initiated by LPA in ovarian cancer cells. To determine the effect of endogenous RGS proteins on LPA signaling in ovarian cancer cells, we compared LPA activity in SKOV-3 ovarian cancer cells expressing G(i) subunit constructs that are either insensitive to RGS protein regulation (RGSi) or their RGS wild-type (RGSwt) counterparts. Both forms of the G-protein contained a point mutation rendering them insensitive to inhibition with pertussis toxin, and cells were treated with pertussis toxin prior to experiments to eliminate endogenous G(i/o) signaling. The potency and efficacy of LPA-mediated inhibition of forskolin-stimulated adenylyl cyclase activity was enhanced in cells expressing RGSi G(i) proteins as compared to RGSwt G(i). We further showed that LPA signaling that is subject to RGS regulation terminates much faster than signaling thru RGS insensitive G-proteins. Finally, LPA-stimulated SKOV-3 cell migration, as measured in a wound-induced migration assay, was enhanced in cells expressing Galpha(i2) RGSi as compared to cells expressing Galpha(i2) RGSwt, suggesting that endogenous RGS proteins in ovarian cancer cells normally attenuate this LPA effect. These data establish RGS proteins as novel regulators of LPA signaling in ovarian cancer cells.  相似文献   

16.
Control of cell proliferation depends on intracellular mediators that determine the cellular response to external cues. In neuroendocrine cells, the dopamine D2 receptor short form (D2S receptor) inhibits cell proliferation, whereas in mesenchymal cells the same receptor enhances cell proliferation. Nontransformed BALB/c 3T3 fibroblast cells were stably transfected with the D2S receptor cDNA to study the G proteins that direct D2S signaling to stimulate cell proliferation. Pertussis toxin inactivates G(i) and G(o) proteins and blocks signaling of the D2S receptor in these cells. D2S receptor signaling was reconstituted by individually transfecting pertussis toxin-resistant Galpha(i/o) subunit mutants and measuring D2-induced responses in pertussis toxin-treated cells. This approach identified Galpha(i)2 and Galpha(i)3 as mediators of the D2S receptor-mediated inhibition of forskolin-stimulated adenylyl cyclase activity; Galpha(i)2-mediated D2S-induced stimulation of p42 and p44 mitogen-activated kinase (MAPK) and DNA synthesis, whereas Galpha(i)3 was required for formation of transformed foci. Transfection of toxin-resistant Galpha(i)1 cDNA induced abnormal cell growth independent of D2S receptor activation, while Galpha(o) inhibited dopamine-induced transformation. The role of Gbetagamma subunits was assessed by ectopic expression of the carboxyl-terminal domain of G protein receptor kinase to selectively antagonize Gbetagamma activity. Mobilization of Gbetagamma subunits was required for D2S-induced calcium mobilization, MAPK activation, and DNA synthesis. These findings reveal a remarkable and distinct G protein specificity for D2S receptor-mediated signaling to initiate DNA synthesis (Galpha(i)2 and Gbetagamma) and oncogenic transformation (Galpha(i)3), and they indicate that acute activation of MAPK correlates with enhanced DNA synthesis but not with transformation.  相似文献   

17.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

18.
The β1 integrin-stimulating antibody TS2/16 induces cAMP-dependent migration of MCF-10A breast cells on the extracellular matrix protein laminin-5. TS2/16 stimulates a rise in intracellular cAMP within 20 min after plating. Pertussis toxin, which inhibits both antibody-induced migration and cAMP accumulation, targets the Gαi3 subunit of heterotrimeric G proteins in these cells, suggesting that Gαi3 may link integrin activation and migration via a cAMP signaling pathway.  相似文献   

19.
Clark MA  Sethi PR  Lambert NA 《FEBS letters》2007,581(4):764-770
RGS proteins accelerate the GTPase activity of heterotrimeric G proteins at the plasma membrane. Association of RGS proteins with the plasma membrane can be mediated by interactions with other membrane proteins and by direct interactions with the lipid bilayer. Here we use fluorescence recovery after photobleaching (FRAP) to characterize interactions between RGS2 and M3 acetylcholine receptors (M3Rs), Galpha subunits and the lipid bilayer. Active Galpha(q) and M3Rs both recruited RGS2-EGFP to the plasma membrane. RGS2-EGFP remained bound to the plasma membrane between interactions with active Galpha(q), but rapidly exchanged between membrane-associated and cytosolic pools when recruited by M3Rs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号