首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Fungi are amongst the most industrially important microorganisms in current use within the biotechnology industry. Most such fungal cultures are highly aerobic in nature, a character that has been frequently referred to in both reactor design and fungal physiology. The most fundamentally significant outcome of the highly aerobic growth environment in fermenter vessels is the need for the fungal culture to effectively combat in the intracellular environment the negative consequences of high oxygen transfer rates. The use of oxygen as the respiratory substrate is frequently reported to lead to the development of oxidative stress, mainly due to oxygen-derived free radicals, which are collectively termed as reactive oxygen species (ROS). Recently, there has been extensive research on the occurrence, extent, and consequences of oxidative stress in microorganisms, and the underlying mechanisms through which cells prevent and repair the damage caused by ROS. In the present study, we critically review the current understanding of oxidative stress events in industrially relevant fungi. The review first describes the current state of knowledge of ROS concisely, and then the various antioxidant strategies employed by fungal cells to counteract the deleterious effects, together with their implications in fungal bioprocessing are also discussed. Finally, some recommendations for further research are made.  相似文献   

2.
Crops’ wild relatives host a wide range of microorganisms, including some beneficial species that are not found or are under-represented in the domesticated crops. Our goal was to study the underexplored composition of root-associated fungal communities in endangered wild grapevines. We found high taxonomic diversity representing multiple trophic guilds that include beneficial symbiotrophs and endophytes. Soil factors explain a relatively small part of their overall variability. In contrast, the majority of the associated fungal taxa shows a close fit to the neutral model for prediction of their distributions. Only beneficial arbuscular mycorrhizal fungi and the pathogenic Ilyonectria depart from the neutral distribution model and form intimate interactions with the plant host. In addition, pathogenic fungi rarely occurred in samples that included ectomycorrhizal fungi, which suggested potentially applicable inter-microorganism interactions. High abundance and diversity of fungal endophytes on the wild grapevine roots highlight the need for their careful consideration in future studies.  相似文献   

3.
Endophyte fungi are ubiquitous within vascular plants and recent evidence suggests that they have a number of effects on other organisms that attack those plants, such as insects and pathogens. Endophytes produce an array of metabolites in culture and it is possible that these fungi could be used in targeted programmes of application to plants, to provide a degree of pest protection. Such programmes would be most effective if the fungi grew systemically through their hosts. To date, evidence for systemic growth is equivocal and the aim of this study was to determine whether systemic growth occurs, through a detailed study of endophytes in one host plant species. We isolated a number of endophytes from the forb Silene dioica and examined fungal interactions in dual culture. We found very little evidence for any systemic growth within leaves and none within plants. Antagonistic interactions between fungi were extremely common, suggesting that any systemic effects of these fungi on other organisms are likely to be due to chemical movement, not fungal growth.  相似文献   

4.
Ferns represent the basal group of vascular plants and are known to have fungal interactions with arbuscular mycorrhizal fungi, but diversity of endophytic fungi from ferns is rarely studied. Moreover, fungal diversity associated with ferns is likely underestimated as most studies have been performed based on a microscopic or culture-dependent approach. In this study, we investigated the endophytic fungal diversity within roots and sporophore of an endangered Korean fern (Mankyua chejuense), and compared it to fungi in surrounding soil using a metabarcoding approach. A high diversity of endophytic fungi (236 OTUs), mostly belonging to Ascomycota, was detected and fungal richness and composition were significantly different between habitats. Indicator species analysis showed that endophytic fungi have similar ecological characteristics to fungal species found from other land plants. Our results suggest that various fungal species are associated with ferns, thus understanding fern-associated fungal diversity can have a great implication for fern biology and conservation.  相似文献   

5.
The question of how phenotypic and genomic complexity are inter‐related and how they are shaped through evolution is a central question in biology that historically has been approached from the perspective of animals and plants. In recent years, however, fungi have emerged as a promising alternative system to address such questions. Key to their ecological success, fungi present a broad and diverse range of phenotypic traits. Fungal cells can adopt many different shapes, often within a single species, providing them with great adaptive potential. Fungal cellular organizations span from unicellular forms to complex, macroscopic multicellularity, with multiple transitions to higher or lower levels of cellular complexity occurring throughout the evolutionary history of fungi. Similarly, fungal genomes are very diverse in their architecture. Deep changes in genome organization can occur very quickly, and these phenomena are known to mediate rapid adaptations to environmental changes. Finally, the biochemical complexity of fungi is huge, particularly with regard to their secondary metabolites, chemical products that mediate many aspects of fungal biology, including ecological interactions. Herein, we explore how the interplay of these cellular, genomic and metabolic traits mediates the emergence of complex phenotypes, and how this complexity is shaped throughout the evolutionary history of Fungi.  相似文献   

6.
不同功能群的根部真菌可能会与植物差异性地互作, 并进一步影响地下真菌与植物群落构建。本研究采用Illumina Miseq测序方法检测了海南尖峰岭热带山地雨林中常见植物的根部真菌; 采用网络分析法比较了丛枝菌根(AM)真菌、外生菌根(ECM)真菌, 以及所有根部真菌与植物互作的二分网络(bipartite networks)结构特性。从槭树科、番荔枝科、夹竹桃科、冬青科、棕榈科、壳斗科、樟科和木犀科等8科植物的根系中, 检测到297,831条真菌ITS1序列, 这些序列被划为1,279个真菌分类单元(OTUs), 其中子囊菌门748个、担子菌门354个、球囊菌亚门80个, 以及未知真菌97个。核心根部真菌群落(420个OTUs)中, 至少有三类不同生态功能的真菌常见, 即丛枝菌根真菌(40个OTUs, 占总序列数23.4%)、外生菌根真菌(48个OTUs, 13.9%)和腐生型真菌(83个OTUs, 19.8%)。尖峰岭山地雨林根部真菌-植物互作网络结构特性的指标普遍显著高于/低于假定物种随机互作的零模型期待值。在群落水平, 不同功能型的根部真菌-植物互作网络表现出不同或相反的结构特性, 如丛枝菌根互作网络表现为比零模型预测值高的嵌套性和连接性, 以及比零模型低的专一性, 而外生菌根互作网络呈现出比零模型预测值低的嵌套性和连接性, 以及比零模型高的专一性。在功能群水平, 植物的生态位重叠度在AM互作网络高, 而ECM互作网络低; 真菌的生态位宽度在ECM互作网络窄, 而在AM互作网络较宽。共现(co-occurrence)网络分析进一步揭示, ECM群落的物种对资源的高度种间竞争(植物、真菌高C-score), 以及AM群落的物种无明显种间竞争(低C-score), 可能分别是形成反嵌套ECM互作网络及高嵌套AM互作网络结构的原因。上述结果说明, 尖峰岭山地雨林中至少有两种及以上的种间互作机制调节群落构建: 驱动AM互作网络冗余(nestedness)及ECM互作网络的高生态位分化(专一性)。本研究在同一个森林内探讨了不同功能型的真菌-植物互作特性, 对深入理解热带森林的物种共存机制和生态恢复具有重要意义。  相似文献   

7.
Different interactions between soil fungi competing in the rhizosphere with each other are necessary to understand their influence on plant growth and health. The interactions between the ectomycorrhizal (ECM) fungus Laccaria laccata and soil saprotrophic fungi (T. harzianum, T. virens) were studied by transmission electron microscopy, and by gold cytochemistry to assess the potential role of cell wall lytic enzymes in mycoparasitism. Anti-β-1,3-glucan antibody, WGA/ovomucoid-gold complex and PATAg test were used to localize β-1,3-glucan, chitin and polysaccharides. Cytoplasm disorganisation of the saprotrophic fungi occurred concurrently with dissolution of β-1,3-glucan in walls of hyphae and conidia of the saprotrophic fungi. Then digestion of polysaccharides and chitin of colonised fungal structures occurred. The studies suggest sequential contribution of cell wall lytic enzymes and importance of disturbing the host's cell integrity during mycoparasitism. We conclude that the ECM fungus can parasitise on the saprotrophic fungi not only in dual culture on artificial medium but also in the rhizosphere of Scots pine.  相似文献   

8.
Reactive oxygen species (ROS) are natural by products of cellular metabolism that were initially considered only deleterious towards the cellular macromolecules. Research advances have broadened the scope and now numerous studies are available rendering ROS molecules essential for plants to combat several biotic and abiotic stresses after being involved in essential defense mechanisms such as hypersensitivity reactions (HR) that lead to programmed cell death (PCD), cell wall reinforcement by cross-linking of cellular glycoproteins with other entities and salicylic acid mediated signal transduction pathways. During fungal attack, the fungal components like chitin and other elicitors activates the plant immune responses that employ ROS with other molecules like nitric oxide (NO), calcium ions to fight back the pathogen attack and restrict its spread to further plant parts. Here, several defense mechanisms mediated by ROS are discussed. Verticillium dahliae is one of the dreadful fungal pathogen to plants that cause wilts in many important plant species causing huge economic burden in food sector. The major constraint in its scenario being the deficit of field management systems based on chemicals or agronomics. It is evident by studying their interactions with the variety of hosts that in most cases, ROS mediated defenses play a key central role via cross-talk with other mechanisms making them a potential target for transgenics as well as resistant genotype selection.  相似文献   

9.
Despite the importance of mammal‐fungal interactions, tools to estimate the mammal‐assisted dispersal distances of fungi are lacking. Many mammals actively consume fungal fruiting bodies, the spores of which remain viable after passage through their digestive tract. Many of these fungi form symbiotic relationships with trees and provide an array of other key ecosystem functions. We present a flexible, general model to predict the distance a mycophagous mammal would disperse fungal spores. We modeled the probability of spore dispersal by combining animal movement data from GPS telemetry with data on spore gut‐retention time. We test this model using an exemplar generalist mycophagist, the swamp wallaby (Wallabia bicolor). We show that swamp wallabies disperse fungal spores hundreds of meters—and occasionally up to 1,265 m—from the point of consumption, distances that are ecologically significant for many mycorrhizal fungi. In addition to highlighting the ecological importance of swamp wallabies as dispersers of mycorrhizal fungi in eastern Australia, our simple modeling approach provides a novel and effective way of empirically describing spore dispersal by a mycophagous animal. This approach is applicable to the study of other animal‐fungi interactions in other ecosystems.  相似文献   

10.
草酸(oxalic acid)是一种重要的生物代谢产物,广泛分布于植物、动物和微生物中,在不同的生命体中发挥重要功能.本文回顾了国内外关于真菌草酸的相关研究进展.许多真菌能够分泌草酸,包括植物病原真菌、食药用真菌及工业真菌等.草酸作为一种简单的二元羧酸,在真菌中主要通过三羧酸循环途径、乙醛酸循环途径和草酰乙酸途径合成....  相似文献   

11.
Understanding the effects of root‐associated microbes in explaining plant community patterns represents a challenge in community ecology. Although typically overlooked, several lines of evidence point out that nonmycorrhizal, root endophytic fungi in the Ascomycota may have the potential to drive changes in plant community ecology given their ubiquitous presence, wide host ranges, and plant species‐specific fitness effects. Thus, we experimentally manipulated the presence of root endophytic fungal species in microcosms and measured its effects on plant communities. Specifically, we tested whether (1) three different root endophyte species can modify plant community structure; (2) those changes can also modified the way plant respond to different soil types; and (3) the effects are modified when all the fungi are present. As a model system, we used plant and fungal species that naturally co‐occur in a temperate grassland. Further, the soil types used in our experiment reflected a strong gradient in soil texture that has been shown to drive changes in plant and fungal community structure in the field. Results showed that each plant species responded differently to infection, resulting in distinct patterns of plant community structure depending on the identity of the fungus present. Those effects depended on the soil type. For example, large positive effects due to presence of the fungi were able to compensate for less nutrients levels in one soil type. Further, host responses when all three fungi were present were different from the ones observed in single fungal inoculations, suggesting that endophyte–endophyte interactions may be important in structuring plant communities. Overall, these results indicate that plant responses to changes in the species identity of nonmycorrhizal fungal community species and their interactions can modify plant community structure.  相似文献   

12.
1. Interest in the effects of biodiversity on ecosystem processes is increasing, stimulated by the global species decline. Different hypotheses about the biodiversity‐ecosystem functioning (BEF) relationship have been put forward and various underlying mechanisms proposed for different ecosystems. 2. We investigated BEF relationships and the role of species interactions in laboratory experiments focussing on aquatic decomposition. Species richness at three different trophic levels (leaf detritus, detritus‐colonising fungi and invertebrate detritivores) was manipulated, and its effects on leaf mass loss and fungal growth were assessed in two experiments. In the first, monocultures and mixtures of reed (Phragmites australis), alder (Alnus glutinosa) and oak (Quercus cerris) leaf disks were incubated with zero, one or eight fungal species. Leaf mixtures were also incubated with combinations of three and five fungal species. In the second experiment, reed leaf disks were incubated with all eight fungal species and offered to combinations of one, two, three, four or five macroinvertebrate detritivores with different feeding modes. 3. Results from the first experiment showed that leaf mass loss was directly related to fungal mass and varied unimodally with the number of fungi, with a maximum rate attained at intermediate diversity in oak and reed and at maximum diversity in alder (the fastest decomposing leaf). 4. Mixing litter species stimulated fungal growth but interactions between species of fungi slowed down decomposition. In contrast, mixtures of macroinvertebrate detritivores reduced fungal mass and accelerated leaf decomposition. Possible explanations of the positive relationship between detritivore diversity and decomposition are a reduction in fungal dominance and a differentiation in the use of different resource patches promoted by higher fungal diversity. 5. In conclusion, the results show a general increase in decomposition rate with increasing biodiversity that is controlled by within‐ and between‐trophic level interactions, and support the hypothesis of both bottom‐up and top‐down effects of diversity on this process.  相似文献   

13.
Ammonia fungi invade forest floors immediately after a enrichment disturbance by a large input of ammonium-nitrogen. Latent form(s) of the ammonia fungi are spores and/or mycelium fragments. Ammonia fungi are characterized by their rapid germination stimulated by the presence of ammonium-nitrogen under neutral to weakly alkaline conditions. Each ammonia fungus establishes its territory during suppressed combative abilities of other microbes following ammonium-nitrogen disturbance. Earlyphase ammonia fungi (EP fungi) quickly sporulate before nonammonia fungi colonize with the declining of ammonium-nitrogen concentration associated with descending pH. Ectomycorrhizal species of late-phase ammonia fungi (LP fungi) escape from the L-F horizon as a result of interactions between EP fungi and form mycorrhizae in the H-A horizon when other fungal activities are suppressed by the ammonium-nitrogen disturbance. Ectomycorrhizal ammonia fungi initially use ammonium-nitrogen when the pH rises because of the ammonium-nitrogen disturbance and then gradually utilize both ammonium- and nitratenitrogen when the effects of the ammonium-nitrogen disturbance weaken. Early-stage EP fungi are ruderal stress-tolerant strategists whereas late-stage EP fungi are combative ruderal strategists. LP fungi are combative strategists from the standpoint of the interactions between other ammonia fungi. This classification is based on differences in their respective propagation strategies.  相似文献   

14.
Membrane bilayers of eukaryotic cells are an amalgam of lipids and proteins that distinguish organelles and compartmentalise cellular functions. The mammalian cell has evolved mechanisms to sense membrane tension or damage and respond as needed. In the case of the plasma membrane and phagosomal membrane, these bilayers act as a barrier to microorganisms and are a conduit by which the host interacts with pathogens, including fungi such as Candida, Cryptococcus, Aspergillus, or Histoplasma species. Due to their size, morphological flexibility, ability to produce long filaments, secrete pathogenicity factors, and their potential to replicate within the phagosome, fungi can assault host membranes in a variety of physical and biochemical ways. In addition, the recent discovery of a fungal pore‐forming peptide toxin further highlights the importance of membrane biology in the outcomes between host and fungal cells. In this review, we discuss the apparent “stretching” of membranes as a sophisticated biological response and the role of vesicular transport in combating membrane stress and damage. We also review the known pathogenicity factors and physical properties of fungal pathogens in the context of host membranes and discuss how this may contribute to pathogenic interactions between fungal and host cells.  相似文献   

15.
The effects of spatial heterogeneity in negative biological interactions on individual performance and species diversity have been studied extensively. However, little is known about the respective effects involving positive biological interactions, including the symbiosis between plants and ectomycorrhizal (EM) fungi. Using a greenhouse bioassay, we explored how spatial heterogeneity of natural soil inoculum influences the performance of pine seedlings and composition of their root‐associated EM fungi. When the inoculum was homogenously distributed, a single EM fungal taxon dominated the roots of most pine seedlings, reducing the diversity of EM fungi at the treatment level, while substantially improving pine seedling performance. In contrast, clumped inoculum allowed the proliferation of several different EM fungi, increasing the overall EM fungal diversity. The most dominant EM fungal taxon detected in the homogeneous treatment was also a highly beneficial mutualist, implying that the trade‐off between competitive ability and mutualistic capacity does not always exist.  相似文献   

16.
Abstract

Advances on plant–fungal interactions reveal that root symbiotic fungi actively modulate host growth, resistance response and secondary metabolism. Artemisia annua has been widely recognized as an important medicinal plant for artemisinin production, yet little is known about the fungal consortium associated with roots of A. annua. In this article, microscopic and culture-dependant methods were used to evaluate the identity and taxonomic affinities of root symbiotic fungi. Morphological evidence confirmed that arbuscular mycorrhizal fungi were dominant fungal group in naturally regenerated roots, but low colonization frequency in planted roots. Dark septate endophytes (DSEs) were easily found, which were characterized with dark pigmented hypha and a sclerotium-like structure in root cortex, and other endophytic fungi also occurred. A total of 36 isolates were recovered. Combined morphological and molecular identification (based on ITS sequences) determined 21 fungal taxa (genotype), which were placed into numerous lineages of Ascomycota. The best BLAST match indicated that almost half of total taxa were closely related to undescribed fungi, some of them may act as novel DSEs but experimental data were warranted. Interestingly, remarkable difference of fungal community associated with two types of roots was examined and no culturable fungi overlapped. Our findings provide some additional evidence that DSEs and other root endophytes may be as common as mycorrhizal fungi. Recovered fungi as raw materials for bioassay of endophytes-mediated promotion of artemisinin content in A. annua will be conducted in further research.  相似文献   

17.
Soil fungi play essential roles in many terrestrial processes, but our knowledge of the forces governing fungal distribution and community composition along broad-scale environmental gradients is still limited. In this study, we explored biogeographic distribution and composition of soil fungal communities associated with 62 tussock grasslands across different regions of Australia. Climatic parameters had only a limited correlation with fungal community structure, while edaphic variables and spatial distance were significantly associated with changes in fungal community composition. We also observed high variations in composition among fungal assemblages from different ecological regions, suggesting some regional endemism in these communities. The discrete distribution of fungi in soil was further confirmed by indicator analysis, which identified distinct indicator operational taxonomic units associated with grasslands from different climatic regions. Finally, fungi with flexible trophic interactions had a central role in the network architecture of both arid and temperate communities. Taken together, the results from our study confirm the prominent role of soil physico-chemical status and geographic location in determining fungal biogeographic patterns over large scales in Australia.  相似文献   

18.
Mutualistic interactions are likely to exhibit a strong geographic mosaic in their coevolutionary dynamics, but the structure of geographic variation in these interactions is much more poorly characterized than in host-parasite interactions. We used a cross-inoculation experiment to characterize the scales and patterns at which geographic structure has evolved in an interaction between three pine species and one ectomycorrhizal fungus species along the west coast of North America. We found substantial and contrasting patterns of geographic interaction structure for the plants and fungi. The fungi exhibited a clinal pattern of local adaptation to their host plants across the geographic range of three coastal pines. In contrast, plant growth parameters were unaffected by fungal variation, but varied among plant populations and species. Both plant and fungal performance measures varied strongly with latitude. This set of results indicates that in such widespread species interactions, interacting species may evolve asymmetrically in a geographic mosaic because of differing evolutionary responses to clinally varying biotic and abiotic factors.  相似文献   

19.
植物与内生真菌互作的生理与分子机制研究进展   总被引:15,自引:0,他引:15  
袁志林  章初龙  林福呈 《生态学报》2008,28(9):4430-4439
在自然生态系统中,植物组织可作为许多微生物定居的生态位.内生真菌普遍存在于植物组织内,与宿主建立复杂的相互作用(互惠、拮抗和中性之间的相互转化),并且存在不同的传播方式(垂直和水平传播).内生真菌通过多样化途径来增强植物体的营养生理和抗性机能.但这种生理功能的实现有赖于双方精细的调控机制,表明宿主和真菌双方都进化形成特有的分子调控机制来维持这种互惠共生关系.环境因子(如气候、土壤性质等)、宿主种类和生理状态、真菌基因型的变化都将改变互作结果.此外,菌根真菌和真菌病毒等也可能普遍参与植物-内生真菌共生体,形成三重互作体系,最终影响宿主的表型.研究试图从形态、生理和分子水平阐述内生真菌与植物互作的基础.  相似文献   

20.
Genetic processes in arbuscular mycorrhizal fungi   总被引:2,自引:0,他引:2  
Arbuscular mycorrhizal (AM) fungi (Glomeromycota) colonize roots of the majority of land plants and facilitate their mineral nutrient uptake. Consequently, AM fungi play an important role in terrestrial ecosystems and are becoming a component of sustainable land management practices. The absence of sexual reproductive structures in modern Glomeromycota combined with their long evolutionary history suggest that these fungi may represent an ancient asexual lineage of great potential interest to evolutionary biology. However, many aspects of basic AM fungal biology, including genome structure, within-individual genetic variation, and reproductive mode are poorly understood. These knowledge gaps hinder research on the mechanisms of AM fungal interactions with individual plants and plant communities, and utilization of AM fungi in agricultural practices. I present here the current state of research on the reproduction in AM fungi and indicate what new findings can be expected in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号