首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arterial acid-base balance, lactate, pyruvate, lactate dehydrogenase activity (LDH), 2,3-diphosphoglycerate content (2,3-DPG) of normoxic control rats were compared with those of rats exposed to a hypoxic normobaric environment (10% O2 in N2) within a few hours after birth (hypoxic animals of first generation or H1), and with those of rats of second generation (H2) conceived and born in the above mentioned hypoxic environment of H1 parents and maintained always in the same place since their utilization. The H1 rats showed a displacement of acid-base balance towards acidosis and an increase of lactate, pyruvate, LDH and 2,3-DPG in comparison with normoxic controls. The H2 rats showed a significant attenuation of acidosis in comparison with H1 rats; the values of lactate, pyruvate, LDH and 2,3-DPG were intermediate between those found in H1 and normoxic control rats. We believe that these results are in relation with the evolution of adaptative processes to hypoxic environment in hypoxic animals of second generation.  相似文献   

2.
Albino rats Wistar family raised in normobaric hypoxic environment (10% O2 in N2) since one or two generations showed a displacement of the acid-base balance of the arterial blood towards acidosis and an increase of blood lactate and pyruvate when compared with normoxic controls. Found differences were significant in all considered parameters except for lactate-pyruvate ratio. Moreover in hypoxic animals of second generation these differences were quantitatively less strong. In effect when we compared the two groups of hypoxic animals between them, they showed significant differences-estimated with Duncan's test - in the pH, B.E., S.B., lactate and pyruvate values. All the above mentioned differences pointed out less blood acidification and less increase of lactate and pyruvate in hypoxic animals of second generation. The results seem to indicate the beginning of adaptative processes to the extraordinary hypoxic normobaric environment in albino rat and the evolution of these processes when named species remain in hypoxic environment for more than one generation.  相似文献   

3.
We determined the "in vivo" (arterial pH and PCO2) and standard (pH = 7.4, PCO2 = 40 mm Hg) PO2 at 50% O2 saturation of hemoglobin (P50, vv and P50, st) in Wistar albino rats when living in a normobaric hypoxic environment. Two generations of hypoxic rats were observed for changes in their P50, vv, P50, st, (n50) 2,3-diphosphoglycerate (2,3-DPG), hemoglobin (Hb) and DPG-Hb ratio: the first generation (H1) and the second generation (H2). A few hours after birth, the H1 rats were placed and raised in a normobaric hypoxic environment (10% O2 in N2). The H2 rats were born from hypoxic parents of first generation and were raised in the same hypoxic environment. The control group had a normoxic environment. The P50, st was significantly higher in H1 rats than both H2 and controls. P50, st was similar in H2 and control rats. The P50, vv was significantly higher in H1 rats than both H2 and controls but it was significantly lower in H2 when compared with both controls and H1. Hb and 2,3-DPG had values significantly greater for both H1 and H2 when compared with their controls. However, the values of H2 were significantly lower than H1. The effectiveness of an increase in Hb-O2 affinity as an adaptive mechanism in H2 rats is discussed.  相似文献   

4.
Albino rats Wistar family were raised since birth in normobaric hypoxic environment (10% O2 in N2). This hypoxic animal group and a normoxic control group were subjected to acute hypoxia in two spaced tests. The rats were exposed for 15 minutes to 7% O2 and later to 5% O2 gas mixture. At the end of the test with 7% O2 the hypoxic animals since birth showed a smaller quantity of blood lactate and their acid-base balance was more acid when compared to control animals. These differences were significant. In the considered metabolic parameters the differences between the 2 groups became not significant at the end of the test with 5% O2. We believe that the found differences in mentioned parameters between hypoxic and normoxic animals, also according to cellular adaptative processes, occurred during the rearing in hypoxic environment. In the test with 5% O2 the seriousness of the hypoxia overcomes the effects of adaptative mechanisms in hypoxic animals since birth. We believe that hypoxic rats since birth represent, limitedly to some aspects, different metabolic models compared to normoxic animals.  相似文献   

5.
Changes in respiratory frequencies with hypoxic or hyperoxic exposure were studied in: 12 normoxic control rats (N) born and raised in normoxic environment at sea level; 12 rats (A) born and raised in normoxic environment at sea level exposed to normobaric hypoxia (10% O2 in N2) as adults; 12 rats of first generation (G1) raised in the above mentioned hypoxic environment since a few hours after birth; 12 rats of third generation (G3) conceived and born in the hypoxic environment of hypoxic parents of second generation and maintained continuously under hypoxic conditions until their utilization. The response of A rats to 10% O2 and 7% O2 breathing was elevated (57% and 86% over air breathing). The mean respiratory frequency of A rats exposed to 7% O2 rose to a greater extent than did that of N rats. The G1 and G3 rats were less responsive to 7% O2 (64% and 37% over air breathing, respectively) than N and A rats; however, in G1 rats the exposure to 7% O2 produced a greater rise of frequency than in G3 rats. Furthermore A rats, G1 rats and G3 rats were less responsive to 97% O2 breathing (19%, 19% and 11% below air breathing, respectively). Comparing these data with previous findings we suggest that, with chronic exposure to hypoxia, changes in ventilatory response to hypoxia and hyperoxia occur in the following manner: I) loss of response to hypoxia if chronic exposure is begun in the immediate postnatal period; 2) degree of response to hypoxia or hyperoxia influenced by duration of chronic exposure.  相似文献   

6.
本文的目的是研究长时间低氧对离体培养的大鼠颈动脉体球细胞(glomuscell)的影响。对实验组Sprague-Dawley(SD)大鼠,首先将其置于模拟5000m高度低氧环境的低压舱中饲养7—10d,然后麻醉动物,取出颈动脉体,将其分离成单个细胞和细胞群体(clusters)。这些细胞在低氧条件(11%O2,5%CO2,84%N2)下培养2—3d。取自正常SD大鼠的颈动脉体细胞被分为两组,分别将其培养在常氧(21%O2,5%CO2,74%N2)或低氧环境中。球细胞的细胞内pH(pHi)和膜电位(MP)分别用H+选择性微电极和常规微电极同时测量。结果表明:长时间低氧降低球细胞的pHi,增加MP,其变化程度远远大于急性低氧的影响,而且当将细胞置于常氧中测量时其值不恢复。  相似文献   

7.
The distribution and abundance of substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactive nerve fibers in four different regions of the laryngeal mucosa were compared between normoxic and chronically hypoxic rats (10% O2 and 3.0-4.0% CO2 for 3 months). In the chronically hypoxic laryngeal mucosa, the number of SP and CGRP fibers within and just beneath the epithelium, and around the laryngeal gland was increased in comparison with those in the normoxic controls. Especially in the epiglottic and arytenoid regions, the number of intraepithelial SP fibers was increased remarkably. Most intraepithelial SP and CGRP fibers penetrated into the epithelium to extend to the luminal surface. There was no distinct difference in the distribution and abundance of these peptidergic fibers in the mucosa of the normoxic and chronically hypoxic vocal cord regions. These results suggest that the increased density of SP and CGRP fibers within the epithelium of the upper laryngeal mucosa is a predominant feature of hypoxic adaptation, and this may be involved in airway protection, swallowing, and other functions in the chronically hypoxic environment. In addition, the increased SP and CGRP fibers around the laryngeal gland suggest an enhanced mucous secretion, and this may participate in the airway defense mechanism in low O2 conditions.  相似文献   

8.
Chronic hypoxia (CH) increases pulmonary endothelial nitric oxide synthase (eNOS) protein levels in adult rats but decreases eNOS protein levels in neonatal pigs. We hypothesized that this differing response to CH is due to developmental rather than species differences. Adult and neonatal rats were placed in either hypobaric hypoxia or normoxia for 2 wk. At that time, body weight, hematocrit, plasma nitrite/nitrate (NOx(-)), and right ventricular and total ventricular heart weights were measured. Percent pulmonary arterial wall area of 20-50 and 51-100 microm arteries were also determined. Total lung protein extracts were assayed for eNOS levels by using immunoblot analysis. Compared with their respective normoxic controls, both adult and neonatal hypoxic groups demonstrated significantly decreased body weight, elevated hematocrit, and elevated right ventricular-to-total ventricular weight ratios. Both adult and neonatal hypoxic groups also demonstrated significantly larger percent pulmonary arterial wall area compared with their respective normoxic controls. Hypoxic adult pulmonary eNOS protein and plasma NOx(-) were significantly greater than levels found in normoxic adults. In contrast, hypoxic neonatal pulmonary eNOS protein and plasma NOx(-) were significantly less compared with normoxic neonates. We conclude that there is a developmental difference in eNOS expression and nitric oxide production in response to CH.  相似文献   

9.
Exposure to chronic hypoxia results in hypoxic pulmonary hypertension (HPH). In rats HPH develops during the first two weeks of exposure to hypoxia, then it stabilizes and does not increase in severity. We hypothesize that free radical injury to pulmonary vascular wall is an important mechanism in the early days of the hypoxic exposure. Thus antioxidant treatment just before and at the beginning of hypoxia should be more effective in reducing HPH than antioxidant therapy of developed pulmonary hypertension. We studied adult male rats exposed for 4 weeks to isobaric hypoxia (F(iO2) = 0.1) and treated with the antioxidant, N-acetylcysteine (NAC, 20 g/l in drinking water). NAC was given "early" (7 days before and the first 7 days of hypoxia) or "late" (last two weeks of hypoxic exposure). These experimental groups were compared with normoxic controls and untreated hypoxic rats (3-4 weeks hypoxia). All animals kept in hypoxia had significantly higher mean pulmonary arterial blood pressure (PAP) than normoxic animals. PAP was significantly lower in hypoxic animals with early (27.1 +/- 0.9 mmHg) than late NAC treatment (30.5 +/- 1.0 mmHg, P < 0.05; hypoxic without NAC 32.6 +/- 1.2 mmHg, normoxic controls 14.9 +/- 0.7 mmHg). Early but not late NAC treatment inhibited hypoxia-induced increase in right ventricle weight and muscularization of distal pulmonary arteries assessed by quantitative histology. We conclude that release of free oxygen radicals in early phases of exposure to hypoxia induces injury to pulmonary vessels that contributes to their structural remodeling and development of HPH.  相似文献   

10.
血管内皮舒张因子在氧自由基所致慢性缺氧大鼠肺内动...   总被引:1,自引:1,他引:0  
郑永芳  李俊发 《生理学报》1992,44(3):254-260
The role of endothelium-derived relaxing factor (EDRF) on the effect of oxygen-derived free radicals (generated by xanthine-xanthine oxidase system) on intrapulmonary arterial in chronic hypoxic rats was studied by a microbioassay method. Intrapulmonary artery rings with intact or denuded endothelium of hypoxic (5,000 m, 10 days) and normoxic rats were prepared for observation of oxygen-derived free radicals induced contraction. It was shown that oxygen-derived free radicals induced contractions of intrapulmonary arterial rings with intact endothelium were obviously augmented in hypoxic rats than in normoxic controls. The augmented responses could be further potentiated by the addition of EDRF inactivator reduced hemoglobin (RHb), but diminished or even abolished by applying superoxide dismutase (Cu-Zn SOD). However, no effect on denuded rings was observed when RHb or SOD was added. It is concluded that chronic hypoxia may attenuate the action of EDRF in the enhancement of the reactivity of intrapulmonary artery to oxygen-derived free radicals.  相似文献   

11.
以黄嘌岭(X)-黄嘌呤氧化酶(XO)系统产生氧自由基,应用微量生物测定法观察慢性缺氧(5000m,10d)对大鼠氧自由基所致肺内动脉收缩的影响及内皮舒张因子(EDRF)在其中的作用。慢性缺氧大鼠有内皮的肺内动脉环对氧自由基的收缩反应较正常环境中的对照动物明显增强,加入EDRF灭活剂还原型血红蛋白(RHb)后更加显著;而加入超氧化物歧化酶(铜锌SOD)后则减弱,甚至消除。反之,不论加入RHb或SOD对氧自由基所致去内皮肺内动脉环的收缩反应均无明显影响。上述结果表明慢性缺氧引起肺内动脉收缩增强与EDRF有密切关系:慢性缺氧可能使EDRF的作用减弱,肺内动脉对氧自由基的反应性增强。表示EDRF及其与氧自由基的关系在慢性缺氧性肺动脉高压的形成中可能具有十分重要的意义。  相似文献   

12.
低氧作为青藏高原最为特殊的环境因素之一,对高原动物的适应进化产生了深刻的影响。持续的低氧暴露会损伤肝脏功能,引起动物机体代谢紊乱,但连续低氧处理对子代肝脏的影响仍缺乏相关研究。本研究将成年小鼠转移至高原低氧环境(海拔3 220 m)饲养并繁殖,以常氧条件下饲养小鼠为对照,统计低氧处理小鼠(低氧第0代)及其子代(低氧第1~5代)生长数据,发现长期低氧暴露导致小鼠肝脏比重增加,肝细胞肿胀,肝索间红细胞浸润,并且子一代小鼠肝小叶出现脂肪变性。血液生化指标显示,相比于对照组(常氧第0代),低氧第0代和低氧第1代的谷丙转氨酶和谷草转氨酶水平显著上升(P <0.05);血清白蛋白、球蛋白、总胆红素和总胆固醇水平在低氧第0代中下降,低氧第1代中上升(P <0.05)。空腹注射葡萄糖和胰岛素后低氧组小鼠的葡萄糖耐受能力和胰岛素敏感性显著减弱(P <0.05)。常氧第0代、低氧第0代及低氧第1代肝脏RNA-seq分析发现,低氧第0代和低氧第1代共有的459个差异基因显著富集在MAPK、细胞凋亡、脂质代谢和内质网等信号通路。本研究发现低氧胁迫对子代小鼠肝脏具有重要影响,此结果对肝脏低氧生...  相似文献   

13.
ObjectiveThis study aims to investigate the effects of TRPV4 on acute hypoxic exercise-induced central fatigue, in order to explore the mechanism in central for exercise capacity decline of athletes in the early stage of altitude training.Methods120 male Wistar rats were randomly divided into 12 groups: 4 normoxia groups (quiet group, 5-level group, 8-level group, exhausted group), 4 groups at simulated 2500 m altitude (grouping as before), 4 groups at simulated 4500 m altitude (grouping as before), 10 in each group. With incremental load movement, materials were drawn corresponding to the load. Intracellular calcium ion concentration was measured by HE staining, enzyme-linked immunosorbent assay, immunohistochemistry, RT-qPCR, Fluo-4/AM and Fura-2/AM fluorescence staining.Results(1) Hypoxic 2–5 groups showed obvious venous congestion, with symptoms similar to normoxia-8 group; Hypoxic 2–8 groups showed meningeal loosening edema, infra-meningeal venous congestion, with symptoms similar to normoxia-exhausted group and hypoxic 1-exhaused group. (2) For 5,6-EET, regardless of normoxic or hypoxic environment, significant or very significant differences existed between each exercise load group (normoxic ? 5 level 20.58 ± 0.66 pg/mL, normoxic ? 8 level 23.15 ± 0.46 pg/mL, normoxic - exhausted 26.66 ± 0.71 pg/mL; hypoxic1-5 level 21.72 ± 0.43 pg/mL, hypoxic1-8 level 24.73 ± 0.69 pg/mL, hypoxic 1-exhausted 28.68 ± 0.48 pg/mL; hypoxic2-5 level 22.75 ± 0.20 pg/mL, hypoxic2-8 level 25.62 ± 0.39 pg/mL, hypoxic 2-exhausted 31.03 ± 0.41 pg/mL) and quiet group in the same environment(normoxic-quiet 18.12 ± 0.65 pg/mL, hypoxic 1-quiet 19.94 ± 0.43 pg/mL, hypoxic 2-quiet 21.72 ± 0.50 pg/mL). The 5,6-EET level was significantly or extremely significantly increased in hypoxic 1 environment and hypoxic 2 environment compared with normoxic environment under the same load. (3) With the increase of exercise load, expression of TRPV4 in the rat prefrontal cortex was significantly increased; hypoxic exercise groups showed significantly higher TRPV4 expression than the normoxic group. (4) Calcium ion concentration results showed that in the three environments, 8 level group (normoxic-8 190.93 ± 6.11 nmol/L, hypoxic1-8 208.92 ± 6.20 nmol/L, hypoxic2-8 219.13 ± 4.57 nmol/L) showed very significant higher concentration compared to quiet state in the same environment (normoxic-quiet 107.11 ± 0.49 nmol/L, hypoxic 1-quiet 128.48 ± 1.51 nmol/L, hypoxic 2-quiet 171.71 ± 0.84 nmol/L), and the exhausted group in the same environment (normoxic-exhausted 172.51 ± 3.30 nmol/L, hypoxic 1-exhausted 164.54 ± 6.01 nmol/L, hypoxic 2-exhausted 154.52 ± 1.80 nmol/L) had significant lower concentration than 8-level group; hypoxic2-8 had significant higher concentration than normoxic-8.ConclusionAcute hypoxic exercise increases the expression of TRPV4 channel in the prefrontal cortex of the brain. For a lower ambient oxygen concentration, expression of TRPV4 channel is higher, suggesting that TRPV4 channel may be one important mechanism involved in calcium overload in acute hypoxic exercise.  相似文献   

14.
Alveolar hypoxia (Fi(O(2)) 0.10) rapidly produces inflammation in the microcirculation of skeletal muscle, brain, and mesentery of rats. Dissociation between tissue Po(2) values and inflammation, plus the observation that plasma from hypoxic rats activates mast cells and elicits inflammation in normoxic tissues, suggest that the response to hypoxia is initiated when mast cells are activated by an agent released from a distant site and carried by the circulation. These experiments tested the hypothesis that this agent originates in alveolar macrophages (AM). Male rats were depleted of AM by tracheal instillation of clodronate-containing liposomes. Four days after treatment, AM recovered by bronchoalveolar lavage were <10% of control. Control rats received buffer-containing liposomes. As expected, alveolar hypoxia (Fi(O(2)) 0.10) in control rats increased leukocyte-endothelial adherence, produced degranulation of perivascular mast cells, and increased fluorescent albumin extravasation in the cremaster microcirculation. None of these effects was seen when AM-depleted rats were exposed to hypoxia. Plasma obtained from control rats after 5 min of breathing 10% O(2) elicited inflammation when applied to normoxic cremasters. In contrast, normoxic cremasters did not develop inflammation after application of plasma from hypoxic AM-depleted rats. Supernatant from AM cultured in 10% O(2) produced increased leukocyte-endothelial adherence, vasoconstriction, and albumin extravasation when applied to normoxic cremasters. Normoxic AM supernatant did not produce any of these responses. The effects of hypoxic supernatant were attenuated by pretreatment of the cremaster with the mast cell stabilizer cromolyn. These data support the hypothesis that AM are the source of the agent that initiates hypoxia-induced systemic inflammation by activating mast cells.  相似文献   

15.
16.
Chronic hypoxia protects the heart against injury caused by acute oxygen deprivation, but its salutary mechanism is poorly understood. The aim was to find out whether cardiomyocytes isolated from chronically hypoxic hearts retain the improved resistance to injury and whether the mitochondrial large-conductance Ca2+-activated K+ (BKCa) channels contribute to the protective effect. Adult male rats were adapted to continuous normobaric hypoxia (inspired O2 fraction 0.10) for 3 wk or kept at room air (normoxic controls). Myocytes, isolated separately from the left ventricle (LVM), septum (SEPM), and right ventricle, were exposed to 25-min metabolic inhibition with sodium cyanide, followed by 30-min reenergization (MI/R). Some LVM were treated with either 30 μM NS-1619 (BKCa opener), or 2 μM paxilline (BKCa blocker), starting 25 min before metabolic inhibition. Cell injury was detected by Trypan blue exclusion and lactate dehydrogenase (LDH) release. Chronic hypoxia doubled the number of rod-shaped LVM and SEPM surviving the MI/R insult and reduced LDH release. While NS-1619 protected cells from normoxic rats, it had no additive salutary effect in the hypoxic group. Paxilline attenuated the improved resistance of cells from hypoxic animals without affecting normoxic controls; it also abolished the protective effect of NS-1619 on LDH release in the normoxic group. While chronic hypoxia did not affect protein abundance of the BKCa channel regulatory β1-subunit, it markedly decreased its glycosylation level. It is concluded that ventricular myocytes isolated from chronically hypoxic rats retain the improved resistance against injury caused by MI/R. Activation of the mitochondrial BKCa channel likely contributes to this protective effect.  相似文献   

17.
We previously described the protection by calcitonin gene-related peptide (CGRP) against hypoxic pulmonary hypertension. Here, we examine the roles of its putative receptor RDC-1 and receptor activity-modifying protein (RAMP) 1 in mediating this protection by selectively inhibiting their synthesis. RAMP1 is an accessory protein for another putative CGRP receptor, calcitonin receptor-like receptor. Antisense oligodeoxyribonucleotides (ASODNs, 5 mg.kg-1.day-1 or 5 and 10 mg.kg-1.day-1 for RDC-1) targeting RAMP1 and RDC-1 mRNAs were chronically infused to the pulmonary circulation of male Sprague-Dawley rats during 7 days of normoxia or hypobaric hypoxia (380 mmHg), and alpha-CGRP ASODN was used as a technical control. CGRP, RAMP1, and RDC-1 ASODNs significantly elevated pulmonary artery pressure (PPA) in chronic hypoxic rats compared with hypoxic mismatched ASODN (MMODN) and saline vehicle controls. CGRP and RAMP1 ASODNs raised PPA in normoxic rats briefly exposed to 10% O2 above MMODN and saline controls. Moreover, normoxic rats treated with CGRP ASODN had higher basal pulmonary vascular tone compared with controls. These data confirm the protective role of CGRP in the pulmonary circulation and suggest that endogenous RAMP1 and RDC-1 are essential in regulation of PPA in hypoxia. This is the first in vivo evidence supporting RDC-1 and RAMP1 as functional CGRP receptor and receptor component.  相似文献   

18.
In anesthetized rats, increases in phrenic nerve amplitude and frequency during brief periods of hypoxia are followed by a reduction in phrenic nerve burst frequency [posthypoxia frequency decline (PHFD)]. We investigated the effects of chronic exposure to hypoxia on PHFD and on peripheral and central O2-sensing mechanisms. In Inactin-anesthetized (100 mg/kg) Sprague-Dawley rats, phrenic nerve discharge and arterial pressure responses to 10 s N2 inhalation were recorded after exposure to hypoxia (10 +/- 0.5% O2) for 6-14 days. Compared with rats maintained at normoxia, PHFD was abolished in chronic hypoxic rats. Because of inhibition of PHFD, the increased phrenic burst frequency and amplitude after N2 inhalation persisted for 1.8-2.8 times longer in chronic hypoxic (70 s) compared with normoxic (25-40 s) rats (P < 0.05). After acute bilateral carotid body denervation, N2 inhalation produced a short depression of phrenic nerve discharge in both chronic hypoxic and normoxic rats. However, the degree and duration of depression of phrenic nerve discharge was smaller in chronic hypoxic compared with normoxic rats (P < 0.05). We conclude that after exposure to chronic hypoxia, a reduction in PHFD contributes to an increased duration of the acute hypoxic ventilatory response in anesthetized rats. Furthermore, after exposure to chronic hypoxia, the central network responsible for respiration is more resistant to the depressant effects of acute hypoxia in anesthetized rats.  相似文献   

19.
Fetal programming has profound effects on cardiovascular function in later adult life. We tested the hypothesis that chronic hypoxic exposure during fetal development downregulates endogenous cardioprotective mechanisms in adult rats. Time-dated pregnant rats were divided between normoxic and hypoxic (10.5% O2 from days 15 to 21 of gestation) groups. The male progeny were studied at 2 mo of age. Rats were subjected to heat stress (42 degrees C for 15 min). After 24 h, hearts were excised and subjected to 30 min of global ischemia and 1 h of reperfusion. Prenatal hypoxia did not change adult rat body weight and heart weight, but significantly increased the cross-sectional area of a left ventricular (LV) myocyte. Heat stress significantly improved postischemic recovery of LV function in normoxic control rats, but not in prenatally hypoxic rats. The infarct size in the LV resulting from ischemia-reperfusion was reduced by the heat stress pretreatment in control rats, but not in prenatally hypoxic rats. In accordance, heat stress significantly increased LV myocardial content of heat shock protein 70 only in normoxic control rats. In addition, there was a significant decrease in the LV myocardial content of the PKC-epsilon isoform in prenatally hypoxic rats compared with control rats. We conclude that prenatal hypoxia causes in utero programming of hsp70 gene in the LV, leading to an inhibition of its response to heat stress and a loss of cardioprotection in later adult life.  相似文献   

20.
The distribution of substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers in the taste buds of the epiglottis and aryepiglottic folds was compared between normoxic control and chronically isocapnic hypoxic rats (10% O2 and 3-4% CO2 for 3 months). In the normoxic laryngeal taste buds, SP- and CGRP-immunoreactive fibers were detected within the taste buds, where they appeared as thin processes with many varicosities. Most CGRP fibers showed coexistence with SP, but a few fibers showed the immunoreactivity of CGRP only. The density of intra- and subgemmal SP and CGRP fibers penetrating into the laryngeal taste buds was significantly higher in chronically hypoxic rats than in normoxic control rats. Water intake in the hypoxic rats was significantly lower than in the normoxic rats. These results indicate that the increased density of SP- and CGRP-containing nerve fibers within the laryngeal taste buds is a predominant feature of hypoxic adaptation. The altered peptidergic innervation and reduced water intake support the hypothesis that the laryngeal taste buds are involved in water reception, and that the water reception may be under the control of peptidergic innervation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号