首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have demonstrated the presence of high affinity binding sites for [3H] imipramine in membrane preparations derived from rat brain, human platelet, and human brain. Although initial reports concluded that there was no relationship between these binding sites and the reuptake sites for biogenic amines, subsequent studies in our laboratory suggested a close relationship between the high affinity imipramine binding site and the serotonin uptake or transport site (cf. ref. 9). To further establish whether these binding sites are associated with either platelet or neuronal uptake of serotonin, the relative potencies of a series of tricyclic antidepressants in inhibiting [3H] imipramine binding and serotonin uptake were determined under identical assay conditions. A close correlation between inhibition of serotonin uptake and [3H] imipramine binding was observed (r = 0.99, p < 0.001). In addition, electrolytic lesions of the midbrain raphe produced a decrease in [3H] imipramine binding in hypothalamic synaptosomes that paralleled the decrease in [3H] serotonin uptake. Finally incubation of synaptosomal membranes with 2,8-dinitroimipramine, an irreversible inhibitor of [3H] imipramine binding, produced a dose-dependent decrease in serotonin uptake, without altering the uptake of nonrepinephrine or dopamine. Taken together our results strongly suggest that high affinity binding of [3]] imipramine selectively labels serotonin uptake sites in brain and platelet.  相似文献   

2.
Tricyclic antidepressant drugs inhibit [3H]imipramine binding to the rat brain cortex in a competitive manner, giving linear Hofstee plots and Hill coefficients of approximately 1.0. Serotonin, the only neurotransmitter to inhibit [3H]imipramine binding, does so in a complex manner, exhibiting a Hill coefficient of 0.40-0.50. Nontricyclic inhibitors of serotonin uptake such as fluoxetine, paroxetine, norzimelidine, and citalopram inhibit [3H]imipramine binding in the same complex manner as serotonin. These results are interpreted as suggesting that [3H]imipramine binds to a site associated with the serotonin uptake system but different from either the substrate recognition site for serotonin or the site of action of the nontricyclic inhibitors of neuronal uptake of serotonin.  相似文献   

3.
Tricyclic antidepressants and nontricyclic serotonin (5-hydroxytryptamine) uptake blockers monophasically inhibit [3H]imipramine binding in human platelets. Similarly, serotonin and tryptamine inhibit the binding of [3H]imipramine in the low micromolar range and with a pseudo-Hill coefficient near unity. Dissociation of the [3H]imipramine receptor complex in the presence of uptake inhibitors follows first-order kinetics with a half-life of approximately 60 min. Although serotonin and tryptamine do not decrease [3H]imipramine binding when added under equilibrium conditions, simultaneous addition of serotonin or tryptamine with serotonin uptake inhibitors decreases the rate of ligand-receptor dissociation in a concentration-dependent manner. These data suggest a common site of action for serotonin, which is the substrate of the transporter system, and of tryptamine, its nonhydroxylated analog. This hypothesis is supported by the identification of a high-affinity (Km = 0.55 microM), saturable, and temperature-dependent uptake of [3H]tryptamine in human platelets. Uptake of [3H]tryptamine was inhibited potently by imipramine and nontricyclic serotonin uptake inhibitors with a potency similar to that observed for [3H]serotonin uptake. These data support the hypothesis that in platelets, [3H]imipramine, tricyclic, and nontricyclic serotonin uptake inhibitors bind to a common recognition site that is associated with the serotonin transporter but that differs from the substrate recognition site of the carrier through which serotonin and tryptamine exert a heterotropic allosteric modulation on [3H]imipramine binding.  相似文献   

4.
High affinity [3H]imipramine binding, endogenous levels of serotonin and noradrenaline, and serotonin uptake were determined in brain regions of rats with selective destruction of serotonergic neurons by 5,7-dihydroxytryptamine (5,7-DHT), of adrenergic neurons by 6-hydroxydopamine (6-OHDA), and of rats treated with reserpine. Neonatal treatment with 5,7-DHT resulted in a significant decrease of both serotonin levels and density (Bmax) of high affinity [3H]imipramine binding sites in the hippocampus. In contrast, an elevation of serotonin levels and an increase in Bmax of [3H]imipramine binding were noted in the pons--medulla region. No changes were observed in the noradrenaline content in either of these regions. Intracerebral 6-OHDA lesion produced a drastic suppression of noradrenaline levels in cerebral cortex but failed to alter the binding affinity (KD) or density (Bmax) of [3H]imipramine recognition sites. A single injection of reserpine (2.5 mg/kg) resulted in marked depletion of both serotonin (by 57%) and noradrenaline (by 86%) content and serotonin uptake (by 87%) in the cerebral cortex but had no significant influence of the parameters of high affinity [3H]imipramine binding in this brain region. The results suggest that high affinity [3H]imipramine binding in the brain is directly related to the integrity of serotonergic neurons but not to the magnitude of the uptake or the endogenous levels of the transmitter, and is not affected by damage to noradrenergic neurons or by low levels of noradrenaline.  相似文献   

5.
Brain astroglial cells, whether from a bulk isolated preparation or in culture, have been shown to take up serotonin actively. [3H]imipramine has been proposed as a specific label for serotonin uptake sites in brain. We therefore studied the binding of [3H]imipramine to C6 astroglial cells in culture to determine if some of the binding of this radioligand in brain homogenates is actually to serotonin transporting sites on glia. [3H]Imipramine binds saturably (Bmax = 202 fmol/mg protein) and with high affinity (KD = 1.72 nM) to C6 cells. This binding is competitively inhibited by other tricyclic antidepressants. The C6 cells actively transport [3H]serotonin with a Km of 2 microM and a Vmax of 1080 fmol/10(6) cells/min. However, the pharmacological profile for inhibition of serotonin uptake does not correlate with the pharmacological profile for inhibition of [3H]imipramine binding. These results suggest that the binding of [3H]imipramine to astroglial cells is not related to their capacity for active uptake of serotonin. Further, in brain homogenates, some of the binding of [3H]imipramine may not be to neuronal uptake sites but rather may be to sites on astroglial cells.  相似文献   

6.
The effect(s) of a new imipramine analogue, 2-nitroimipramine, on high affinity [3H] imipramine binding and [3H] serotonin uptake in human platelets were studied. 2-Nitroimipramine was found not only to be a very potent inhibitor of [3H] imipramine binding and [3H] serotonin uptake but was found to irreversibly inhibit binding and uptake simultaneously. This finding supports previous observations from our laboratory and others that high affinity imipramine binding labels serotonin uptake or transport sites. 2-Nitroimipramine should prove an important tool for subsequent studies of the molecular mechanism(s) involved in the transport of serotonin and the binding of imipramine to platelet and brain membranes.  相似文献   

7.
The relationship of [3H]imipramine recognition sites and serotonergic function was investigated by simultaneously determining the desipramine-defined and sodium-dependent components of [3H]imipramine binding and the serotonin levels and uptake in hippocampus of rats without and with selective lesion of serotonergic neurons with 5,7-dihydroxytryptamine. In control rats, the desipramine-defined [3H]imipramine binding to hippocampal membranes showed a high affinity (Kd = 2 nM) and low affinity (Kd = 31 nM) component. In contrast, the Scatchard analysis of sodium-dependent binding revealed a single class of sites of high affinity (Kd = 1.5 nM). Displacement of sodium-dependent [3H]imipramine binding by cold imipramine resulted in a steep curve best fitted to a one-site model. Sodium-dependent binding of [3H]imipramine at 4 nM concentration represented only about 38% of desipramine-defined binding. 5,7-Dihydroxytryptamine treatment resulted in marked reduction of hippocampal serotonin concentration and uptake without any changes in norepinephrine levels. Virtually only the low affinity component of desipramine-defined [3H]imipramine binding was detected by Scatchard analysis in 5,7-dihydroxytryptamine lesioned rats. The desipramine-defined "specific" [3H]imipramine binding in hippocampi of lesioned rats was decreased by 46%, whereas the sodium-dependent binding was only 18% of that seen in controls. Desipramine-defined specific binding in absence of sodium was not altered by lesion to serotonergic neurons. The results suggest that desipramine-defined specific [3H]imipramine binding may not be appropriate for studying the role of imipramine sites in relation to serotonin neuronal uptake and that determination of sodium-dependent binding components of both [3H]imipramine binding and serotonin uptake should be used in future studies.  相似文献   

8.
Previous studies have demonstrated a close functional and structural relationship between the “high affinity” binding site for [3H]imipramine and the presynaptic and platelet uptake site(s) for serotonin. Recently we have synthesized several nitro derivatives of imipramine which have a very high affinity for the imipramine binding site and which dissociate very slowly when incubations are performed at 0–4°C. In this report, we describe the characteristics of [3H]2-nitroimipramine binding to platelet and brain membranes. Our results support the relative utility of this ligand for studying the impramine binding site (serotonin transporter) since this analogue has both a higher affinity and specific activity than [3H]imipramine. [3H]2-Nitroimipramine by virtue of its extremely slow dissociation rate should be a valuable tool in subsequent characterization and purification of the serotonin uptake or transport site.  相似文献   

9.
The binding of the 5-hydroxytryptamine (5-HT, serotonin) uptake inhibitor [3H]paroxetine to rat cortical homogenates has been characterized. The effect of tissue concentration was examined and, with 0.75 mg wet weight tissue/ml in a total volume of 1,600 microliter, the binding was optimized with an apparent dissociation constant (KD) of 0.03-0.05 nM. Competition experiments with 5-HT, citalopram, norzimeldine, and desipramine revealed a high (90%) proportion of displaceable binding that fitted a single-site binding model. Fluoxetine and imipramine revealed, in addition to a high-affinity (nanomolar) site, also a low-affinity (micromolar) site representing approximately 10% of the displaceable binding. The specificity of the [3H]paroxetine binding was emphasized by the fact that 5-HT was the only active neurotransmitter bound and that the serotonin S1 and S2 antagonist methysergide was without effect on the binding. Both 5-HT- and fluoxetine-sensitive [3H]paroxetine binding was completely abolished after protease treatment, suggesting that the binding site is of protein nature. Saturation studies with 5-HT (100 microM) sensitive [3H]paroxetine binding were also consistent with a single-site binding model, and the binding was competitively inhibited by 5-HT and imipramine. The number of binding sites (Bmax) for 5-HT-sensitive [3H]paroxetine and [3H]imipramine binding was the same, indicating that the radioligands bind to the same sites. Lesion experiments with p-chloroamphetamine resulted in a binding in frontal and parietal cortices becoming undetectable and a greater than 60% reduction in the striatum and hypothalamus, indicating a selective localization on 5-HT terminals. Together these findings suggest that [3H]paroxetine specifically and selectively labels the substrate recognition site for 5-HT uptake in rat brain.  相似文献   

10.
NCB-20 cells (neuroblastoma X fetal Chinese hamster brain hybrids) are equipped with a [3H]5-hydroxytryptamine [( 3H]5-HT) uptake system and [3H]imipramine recognition sites. Approximately 80% of the radioactivity taken up by cells incubated with [3H]5-HT was identified with 5-HT. [3H]5-HT uptake was temperature-dependent, partially sodium-dependent, saturable (Km = 7.3 +/- 0.6 microM; Vmax = 2.0 +/- 0.6 pmol/min/mg), and inhibited by clomipramine, imipramine, fluoxetine, and desipramine, but not by iprindole, mianserin, or opipramol. Lineweaver-Burk plots showed a competitive type of inhibition by imipramine and fluoxetine. [3H]5-HT uptake was not inhibited by nisoxetine or benztropine. [3H]Imipramine binding sites had a KD of 12 +/- 2 nM and a Bmax of 22 +/- 7 pmol/mg protein. The binding was sodium-sensitive although to a lesser extent than that found with brain membranes. Imipramine binding was displaced by tricyclic antidepressants with the following order of potency: clomipramine greater than imipramine greater than fluoxetine greater than desipramine much greater than iprindole = mianserin greater than opipramol. These results suggest that imipramine binding sites are present together with the 5-HT uptake sites in NCB-20 cells and that these sites interact functionally but are different biochemically.  相似文献   

11.
The tomoxetine analog, R-4-iodotomoxetine, binds in vitro to a single site of rat cortical membranes with high affinity (Kd = 0.03 +/- 0.01 nM, n = 4) and can be blocked by a selective serotonin reuptake site inhibitor, paroxetine. The [125I]R-4-iodotomoxetine binding at equilibrium is saturable and is temperature- and Na(+)-dependent. The number of specific [125I]R-4-iodotomoxetine binding sites (Bmax = 356 +/- 20 fmol/mg protein) is similar to that of [3H]citalopram (329 +/- 30 fmol/mg protein), a known serotonin uptake inhibitor. The binding of [125I]R-4-iodotomoxetine is selectively inhibited by several serotonin uptake blockers, and a good correlation is demonstrated between the potency of various drugs to inhibit in vitro binding of [125I]R-4-iodotomoxetine and [3H]citalopram. In addition, lesions performed with the neurotoxin p-chloroamphetamine, which destroys monoamine neurons, including serotonergic neuronal system, result in a 90% reduction of [125I]R-4-iodotomoxetine binding when compared to sham controls. These results indicate that the binding sites labeled by [125I]R-4-iodotomoxetine are associated with the neuronal serotonin uptake sites. However, the in vivo and ex vivo results do not show regional localization corresponding to the distribution of serotonin uptake sites. The nonspecific uptake may be related to this compound's high lipophilicity (octanol-buffer partition coefficient = 1100 - 1400 at pH 7). Although the in vivo properties of [125I]R-4-iodotomoxetine make it an unlikely candidate for mapping serotonin uptake sites with SPECT, the high affinity and selectivity should make it a useful tool for in vitro studies of the serotonin uptake sites.  相似文献   

12.
Previously we found close similarities between high-affinity binding sites for [3H]cocaine and those for [3H]imipramine in the mouse cerebral cortex in regard to their association with neuronal uptake of serotonin. In the present study we investigated whether the two ligands bind to the same site. The two ligands had the following high-affinity binding properties in common: localization in both synaptosomal and microsomal fractions; vulnerability to treatment with N-ethylmaleimide, trypsin, and phospholipase A2; and resistance to exposure to dithiothreitol. In contrast, cocaine binding in the cerebral cortex was more sensitive to heat inactivation than imipramine binding. In addition, the mechanism by which cocaine inhibited [3H]imipramine binding differed from that by which imipramine inhibited [3H]cocaine binding. These data suggest that the high-affinity binding sites for [3H]cocaine and [3H]imipramine in the cerebral cortex are distinct entities.  相似文献   

13.
Abstract: High-affinity binding sites (apparent K D= 1.5 nM) for [3H]desipramine have been demonstrated and characterized in membranes prepared from rat brain. The binding of [3H]desipramine was found to be saturable, reversible, heat-sensitive, sodium-dependent, and regionally distributed among various regions of the brain. High concentrations of [3H]desipramine binding sites were found in the septum, cerebral cortex, and hypothalamus, whereas lower concentrations were found in the medulla, cerebellum, and corpus striatum. A very good correlation ( r = 0.81, P < 0.001) was observed between the potencies of a series of drugs in inhibiting high-affinity [3H]desipramine binding and their capacity to block norepinephrine uptake into synaptosomes. In 6-hydroxydopamine-lesioned rats there was a marked decrease in [3H]norepinephrine uptake and [3H]desipramine binding with no significant alterations in either [3H]serotonin uptake or [3H]imipramine binding. These results suggest that the high-affinity binding of [3HJdesipramine to rat brain membranes is pharmacologically and biochemically distinct from the high-affinity binding of [3H]imipramine, and that there is a close relationship between the high-affinity binding site for [3H]desipramine and the uptake site for norepinephrine.  相似文献   

14.
5-Methoxytryptoline potently inhibits [3H]imipramine binding to membranes from the cerebral cortex and platelets. Since 5-methoxytryptoline, which appears to occur endogenously with particularly high levels in the human pineal gland, also inhibits 5-hydroxytryptamine (5-HT, serotonin) uptake, it should be considered as a putative endogenous ligand modulating 5-HT transport. As the 5-HT transporter complex comprises the imipramine and the substrate recognition sites, which interact allosterically, it was essential to define the mechanism of inhibition of [3H]imipramine binding by 5-methoxytryptoline. Human platelets show an active and saturable uptake of 5-HT and tryptamine. The uptake of both substrates appears to be mediated by the same carrier and it is inhibited by 5-methoxytryptoline at submicromolar concentrations. 5-HT and tryptamine inhibit [3H]imipramine binding in human platelets with a Hill slope for inhibition close to unity and IC50 values of 3,265 and 3,475 nM, respectively. This inhibition is, however, not competitive because both 5-HT and tryptamine significantly decrease the rate of [3H]imipramine-receptor dissociation. Although 5-methoxytryptoline potently inhibits [3H]imipramine binding (IC50 = 44 nM) in human platelets with a Hill slope of unity, it does not affect the receptor-ligand dissociation rate of [3H]imipramine even at concentrations up to 100 microM. The present experiments show that 5-methoxytryptoline, in spite of its chemical similarity to the indoleamine transporter substrates, interacts with the imipramine receptor through a mechanism of competitive inhibition. This conclusion is supported by a selective effect of 5-methoxytryptoline on the Kd of [3H]imipramine binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The specific binding of [3H]imipramine to mouse brain membranes in an assay containing 120 mM NaCl and 5 mM KCl was similar in regional distribution and pharmacological specificity to that reported previously in rat and human brain. However, the absence of ions decreased the density of the specific binding of [3H]imipramine and did not affect the equilibrium dissociation constant. Sodium was the only cation, and halides were the only anions tested that enhanced the specific binding of [3H]imipramine. Chloride did not increase the density of binding in the absence of sodium. The ion-sensitive binding of [3H]imipramine was regionally dependent and was highly correlated with the uptake of 5-hydroxytryptamine (5-HT, serotonin) into synaptosomes from brain regions. 5-HT did not inhibit the binding of [3H]imipramine in the absence of ions. Antidepressants inhibited binding in the absence and presence of ions, but in the presence of ions inhibition curves were shifted to the left and the apparent complexity of inhibition was increased. Quantitative analysis of the inhibition of [3H]imipramine binding by antidepressants conducted in the presence of ions was consistent with two binding sites. Lesion of the serotonergic input to the cerebral cortex by 5,7-dihydroxytryptamine suggested that both the 5-HT-sensitive and ion-sensitive binding of [3H]imipramine were associated with serotonergic nerve terminals. [3H]Imipramine binding displaced by desipramine, but insensitive to 5-HT and ions, was not affected by the lesion. Thus, the binding of [3H]imipramine that is displaced by desipramine, the most common assay for [3H]imipramine binding, includes a component that is not associated with brain serotonergic nerve terminals and 5-HT uptake, and, in addition, a separable component that is highly correlated with serotonergic function. These data have important implications for studies of serotonergic neurons and for the interpretation of imipramine binding data.  相似文献   

16.
The nature of interaction between the site labeled by [3H]imipramine (IMI) and the 5-hydroxytryptamine (5-HT, serotonin) transporter in human platelets was examined. The sulfhydryl characterizing agent N-ethylmaleimide (NEM) differentially affected [3H]5-HT uptake and [3H]IMI binding in human platelet preparations. Concentrations of NEM that completely abolished [3H]5-HT uptake only minimally reduced [3H]IMI binding. Examining the effect of IMI on the kinetics of human platelet [3H]5-HT uptake revealed significant reductions in maximal velocity (Vmax) without altering affinity (Km). IC50 values for selected uptake blockers on [3H]IMI binding and [3H]5-HT uptake were determined. IC50 values of these compounds for uptake and binding revealed that agents such as IMI, chlorpromazine, amitriptyline, and nisoxetine were preferential inhibitors of [3H]IMI binding whereas fluoxetine, CL 216, 303, pyrilamine, and bicifadine were preferential [3H]5-HT uptake blockers. 5-HT was a weak displacer of [3H]IMI binding (IC25 = 3.0 microM) and exhibited a rather low Hill coefficient (nH app = 0.46). Results reported herein support the notion of an allosteric interaction between the [3H]IMI binding site and the 5-HT transporter complex in human platelets.  相似文献   

17.
The effects of learned helplessness on the 5-hydroxytryptamine (5-HT) uptake site were studied in rats using [3H]paroxetine binding. This ligand was chosen because it was demonstrated to label directly the 5-HT uptake site whereas the [3H]imipramine binding site has been demonstrated to be heterogeneous in nature. Moreover, [3H]imipramine appears to bind to a presynaptic recognition site different from the uptake site. Exposure to uncontrollable shock training and testing resulted in an overall increase in [3H]paroxetine binding in all the groups studied [nonhelpless (NLH), learned helpless (LH), spontaneously helpless (SPLH)] as compared to naive controls (NC). However, the increase in [3H]paroxetine binding was significantly higher in the LH and SPLH groups. The maximum number of [3H]paroxetine binding sites in the rat hippocampus was increased significantly in learned helpless rats (LH and SPLH) at day 4 and day 30 after the shock escape test as compared to NC and NLH rats. By contrast, in the rat hypothalamus the maximum number of [3H]paroxetine binding sites was reduced significantly in the LH rats as compared to naive controls and NLH rats during the same time course. There was no change in [3H]paroxetine binding sites in any other brain regions examined in LH, NLH, and NC rats. The results suggest that a hippocampal hypothalamic connection might play a role in the serotonergic mediation of learned helpless behavior.  相似文献   

18.
The present study demonstrates that [3H]imipramine binds to both high- and low-affinity imipramine binding components on membranes prepared from rat cerebral cortex. Scatchard and computer analyses of saturation experiments using a wide range of [3H]imipramine concentrations (0.5 nM-50 nM) revealed the presence of two binding components. Inhibition experiments in which membranes were incubated with [3H]imipramine and various concentrations of unlabelled imipramine gave shallow inhibition curves with a Hill coefficient of 0.60 +/- 0.04. When dissociation rates of imipramine were studied, biphasic dissociation curves were obtained with apparent half-times of dissociation of 2.5 +/- 0.4 min and 18.5 +/- 2.5 min. Thus analysis of saturation, competition, and dissociation experiments indicate that [3H]imipramine binds to low as well as high-affinity binding sites in rat cortex.  相似文献   

19.
Human blood plasma contains low-molecular substances that inhibit in a dose-dependent manner both high-affinity specific binding of imipramine and reverse serotonin uptake by platelets. Incubation of human blood plasma with alumina was made use of to extract and study these imipramine-like inhibitors. The extract obtained from human blood plasma inhibited imipramine binding and reverse uptake of serotonin with median inhibitory concentrations of 0.18 +/- 0.1 and 0.36 +/- 0.15 mg/ml, respectively. After gel chromatography on Biogel P-2 the elution profile of the extract showed 2 major peaks of reverse serotonin uptake and imipramine binding inhibition and 3 additional peaks of reverse serotonin uptake inhibition, which did not have any considerable effect on imipramine specific binding. It is assumed that endogenous inhibitors of imipramine binding and reverse serotonin uptake are involved in the development of affective disorders.  相似文献   

20.
The present study characterizes a serotonin (5-HT) binding site on human platelet membranes, using [3H]8-OH-DPAT as the radioligand. [3H]8-OH-DPAT binds specifically and saturably to a site on human platelet membranes with an average KD of 43 nM and Bmax of 1078 fmol/mg protein. Determinations of IC50 values for various serotonergic characterizing agents in platelets for displacement of [3H]8-OH-DPAT were performed. For example, 8-OH-DPAT 5HT1A had an IC50 of 117 nM; TFMPP 5HT1B (2.3 microM0 and PAPP 1A + 5HT2 (9 microM); ipsapirone 5HT1A (21.1 microM) and buspirone 5HT1A (greater than 100 microM); ketanserin 5HT2 (greater than 100 microM); 5-HT uptake inhibitors: paroxetine (13 nM); chlorimipramine (73 nM) and fluoxetine (653 nM). The pharmacological inhibitory profile of the platelet 8-OH-DPAT site is not consistent with profiles reported for brain. 8-OH-DPAT does not inhibit [3H]imipramine binding, however, it does inhibit [3H]5-HT uptake in human platelets near 5-HT's Km value (IC50 = 2-4 microM). These results suggest that the human platelet site labeled by [3H]8-OH-DPAT is pharmacologically different from the neuronal site and probably is a component of the 5-HT transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号