首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Purified pig relaxin (3000 U/mg) was injected i.m. into pregnant Holstein dairy heifers on Day 276 or 277 to determine its effect on parturition and sequential measurements of the pelvic area, cervical dilatation, and peripheral blood-plasma concentrations of progesterone and relaxin. Treatments included phosphate-buffer saline (2 ml, Group C, N = 7), relaxin once (1 mg, Group 1R, N = 7), and twice (2 mg, 12 h apart; Group 2R, N = 7). Intervals (mean +/- s.e.) between the first injection of relaxin or PBS and calving were 64 +/- 17, 80 +/- 19 and 125 +/- 34 h for Groups 2R, 1R and C, respectively. The calving intervals were reduced in Groups 2R (P less than 0.01) and 1R (P less than 0.05) compared with Group C. The incidence of dystocia was 29% (2 of 7) in Group 2R and 43% (3 of 7) in Group 1R compared with 57% (4 of 7) in Group C (P less than 0.01). Body weights and ratios of males to females of the calves were similar (P greater than 0.05) between groups. Progesterone plasma concentrations decreased (P less than 0.01) earlier in Groups 1R and 2R compared with Group C, and this acute decrease began within 6 h of treatment. At 24 h after relaxin or PBS injection, progesterone concentrations were 2.7 +/- 1.1 ng/ml for Group 2R, 3.5 +/- 0.9 ng/ml for Group 1R, and 6.0 +/- 0.1 ng/ml for Group C. Relaxin reached peak blood-plasma levels of 19 +/- 2.2 ng/ml 1 h after injection of relaxin, but remained unchanged, 0.3 +/- 0.01 ng/ml, in Group C. Pelvic area was increased 26%, 22% and 14% and cervical dilatation was increased 109%, 76% and 53% 48 h after injection in Groups 2R, 1R and C, respectively, but these responses were similar among groups at the time of parturition. We conclude that two i.m. injections of relaxin facilitated earlier calving, acutely decreased progesterone secretion, increased cervical dilatation and pelvic area expansion, and decreased the incidence of dystocia in dairy heifers.  相似文献   

2.
Administration of procine relaxin (pRLX) to heifers 5 d prepartum has been reported to expedite parturition. Thirty-eight mature crossbred beef cows were randomly assigned to one of three treatment groups. Control animals (C; n = 13) received an intramuscular (i.m.) injection of 2 ml corn oil and 2 ml i.m. phosphate-buffered saline (PBS) 24 h later; relaxin treated animals (RLX; n = 13) received 2 ml i.m. corn oil and 1.0 mg i.m. pRLX 24 h later; estradiol-relaxin treated animals (E-RLX; n = 12) received 20 mg i.m. estradiol benzoate (EB) and 1.0 mg i.m. pRLX 24 h later. Treatment with pRLX occurred at 272.6+/-0.14 d of gestation. The pRLX had been purified to homogeneity from porcine ovaries collected during late pregnancy and was determined to have >/=3000 U/mg by the mouse interpubic ligament bioassay. Peripheral blood samples were collected from all cows at 0, 4, 8 and 24 h, respective to corn oil or EB administration, and assayed for plasma estradiol-17beta. At 24 h post administration of EB, plasma estradiol-17beta concentrations were 48.0+/-10.5 pg/ml for C and RLX cows and 178.5+/-14.8 pg/ml for E-RLX cows. There were no treatment effects (P>/=0.10) for elapsed time from treatment to parturition (304.2+/-22.4 h), gestation length (285.2+/-0.9 d), calving difficulty score (1.05+/-0.04), calf vigor score (1.05+/-0.04) or calf birth weight (38.0+/-0.88 kg). Additionally, there were no retained placental membranes in any cows. Administration of pRLX intramuscularly to beef cows at 10 d before expected parturition was not effective in inducing premature parturition. Furthermore, the effectiveness of pRLX in inducing parturition was not enhanced by pretreatment with estradiol benzoate.  相似文献   

3.
Crossbred beef heifers (N = 36) were assigned to one of three treatment groups: untreated controls (C; N = 15); Group R4, treated with pig relaxin (1.0 mg i.m.) 4 days pre partum (N = 11); or Group R7, treated with pig relaxin (1.0 mg i.m.) 7 days pre partum (N = 10). Bioactivity of the pig relaxin (UMC-R-P8) was determined by the mouse interpubic ligament assay to be greater than or equal to 3000 U/mg, both before and after the experiment was conducted. Peripheral serum immunoreactive relaxin values were 7.5, 3.4, 2.5, and 1.5 ng/ml at 2, 4, 6 and 8 h after injection of relaxin, respectively. Gestation lengths were 282.9 +/- 1.1, 285.5 +/- 1.3 and 285.6 +/- 1.5 days for Groups C, R4 and R7 (C vs R4 + R7; P congruent to 0.08). Calving difficulty score (1 to 4) tended to be greater (P congruent to 0.08) for Group R4 and R7 heifers (C vs R4 + R7; 1.3 +/- 0.24 vs 1.75 +/- 0.28 + 2.04 +/- 0.32), but the incidences of dystocia and retained placentae were not influenced by treatment (P greater than or equal to 0.10). The mean concentration and concentration profile of daily serum progesterone, oestradiol-17 beta, dihydroprostaglandin F-2 alpha and relaxin were not affected by treatment from 6 days pre partum through 2 days post partum. Cervical diameter, cervical softness score, pelvic measurements, and vulva opening length during the periparturient period were not affected (P greater than or equal to 0.10) by treatment, but all of these characteristics changed over time (P less than or equal to 0.01), relative to calving. We conclude that i.m. administration of pig relaxin (greater than or equal to 3000 U) does not effectively alter periparturient characteristics of beef heifers. Discrepancies between these results and those reported for intracervical administration cannot be readily explained.  相似文献   

4.
The effects of porcine relaxin (3000 units/mg) on oxytocin (OT) and progesterone secretion were studied in beef heifers on Day 274 (10 days before expected parturition). Heifers (n = 11) were randomly assigned to three treatments: relaxin iv infusions combined with im injection (RLX-INF, 9000 units), relaxin im injection (RLX-im, 6000 units), and phosphate-buffered saline-treated controls (PBS). RLX-INF heifers received infusions of PBS and 1000 units of relaxin for 165 min, followed by 2000 units of relaxin im and finally 2000 units of relaxin infusion followed by 4000 units of relaxin im. Endogenous relaxin (immunoreactive) in the PBS-treated group was 0.2-0.9 ng/ml peripheral plasma. For the RLX-im group, peak relaxin was 81 +/- 12 ng/ml (+/- SE) at 45 min after treatment. There were two peaks of relaxin, 18 +/- 5.3 ng/ml and 74 +/- 7.5 ng/ml, 3.5-4.5 hr apart in the RLX-INF group. Significant peak releases of OT were evident in the relaxin-treated heifers. For the RLX-im group, an OT peak (42 +/- 16 pg/ml) occurred within 30 min after relaxin treatment. For the RLX-INF heifers, 2000 and 4000 units of relaxin were associated with major peaks of 14 +/- 0.5 and 43 +/- 1.7 pg/ml OT, respectively. Basal OT plasma levels in the PBS group were 2.5-3.1 pg/ml. Mean plasma progesterone for all heifers was 6.2 +/- 2.11 ng/ml before treatment. There was a significant decrease in progesterone (-2.5 ng/ml) in the RLX-im group within 60 min after relaxin treatment and 45 min after peak OT secretion. The maximum decrease in progesterone (-3.2 +/- 0.68 ng/ml) occurred 135 min after treatment in the RLX-im group. In the RLX-INF group, 2000 units of relaxin infusion combined with 4000 units of relaxin im significantly decreased progesterone (-3.2 +/- 1.59 ng/ml) in peripheral plasma. These results clearly indicate that relaxin causes an acute peak release of oxytocin within 30 min, followed by a marked decrease in plasma progesterone concentration in late-pregnancy cattle.  相似文献   

5.
Four experiments were conducted (with crossbred beef heifers) to determine the effects of dose and route of administration of cloprostenol on luteolysis, estrus and ovulation. In Experiment 1, 19 heifers with a CL > or = 17 mm in diameter were randomly allocated to receive cloprostenol as follows: 100 microg s.c., 250 microg s.c., or 500 microg i.m. Heifers given 100 microg s.c. had a longer (P<0.03) interval (120.0 h+/-10.7 h; mean+/-S.E.M.) from treatment to ovulation than those given either 250 microg s.c. or 500 microg i.m. (92.0 h+/-7.4 h and 84.0 h+/-8.2 h, respectively). In Experiment 2, 28 heifers were given porcine LH (pLH), followed in 7 days by cloprostenol (same doses and routes as in Experiment 1), and a second dose of pLH 48 h after cloprostenol. Luteolysis occurred in all heifers, and no difference was detected among treatment groups in the interval from cloprostenol treatment to ovulation (mean, 101 h; P<0.9). In Experiment 3, 38 heifers at random stages of the estrous cycle (but with plasma progesterone concentrations > or =1.0 ng/ml) received 500 or 125 microg cloprostenol by either i.m. or s.c. injection (2/2 factorial design). There was no difference (P<0.4) among groups in the proportions of heifers that were detected in estrus or that ovulated. However, the interval from cloprostenol treatment to estrus was shorter (P<0.02) in the group that received 500 microg i.m. (58.5h) than in the other three groups (500 microg s.c., 75.0 h; 125 microg i.m., 78.0 h; and 125 microg s.c., 82.3h). In Experiment 4, 36 heifers were treated (as in Experiment 3) on Day 7 after ovulation. The proportions of heifers detected in estrus and ovulating after 125 microg s.c. (33 and 44%, respectively) or 125 microg i.m. (55 and 55%) were lower (P<0.05) than in those that received 500 microg s.c. (100 and 100%), but not different from those receiving 500 microg i.m. (78 and 89%, respectively). Overall, ovulation was detected in 9/18 heifers given 125 microg and 17/18 heifers given 500 microg of cloprostenol, on Day 7 (P<0.01) and was detected in 17/20 heifers given 125 microg and 18/18 heifers given 500 microg of cloprostenol, at random stages of the estrous cycle (P>0.05). Although there was no significant difference in luteolytic efficacy between i.m. and s.c. injections of the recommended dose (500 microg) of cloprostenol, variability in responsiveness to a reduced dose depended upon CL sensitivity, therefore, reduced doses cannot be recommended for routine use.  相似文献   

6.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

7.
Two methods for synchronization of parturition in beef cattle were examined. In the first experiment, four groups of cows and heifers were used: untreated (C, n=9), 10 mg flumethasone on day 281 of gestation (F, n=9), 100 mg progesterone daily from days 276 through 283 and 50 mg progesterone on day 284 (P, n=6), and (P + F on day 284, n=7). Variances in gestation lengths (C, 26.01; F, 0.77; P, 11.97; P + F, 1.93) and proportions of cows and heifers with retained placentas (C, 0 9 ; F, 4 9 ; P, 1 6 ; P + E, 0 7 ) differed significantly among groups. Differences among groups in calving difficulty scores and proportions of dead calves were not significant. Four of the thirteen cows and heifers treated with progesterone required assistance in calving and all four delivered dead calves. Pulling of these calves was not accompanied by uterine contractions. Conversely, the difficult calvings in the control- and flumetha-sone-treated cows and heifers were accompanied by uterine contractions. In the second experiment, two groups of cows were used: 1) a single injection of 20 mg dexamethasone on either day 276, 277 or 278 followed by injections of saline every 12 h for 2.5 additional days (n=6), and 2) repeated injections of 20 mg dexamethasone every 12 h for 3 days beginning on day 276, 277 or 278 (n=8). The interval from time of first treatment to calving was not different between groups (43.6 and 43.0 h, respectively). Differences between calving difficulty scores, proportions of dead calves and incidence of retained placentas were not significant. Induction very close to the expected calving date could reduce the problems of retained placenta; however, methods must be identified to safely delay parturition.  相似文献   

8.
The use of exogenous progestagens for estrus synchronization in cattle can result in a persistent dominant follicle which is associated with reduced fertility. We examined whether the LHRH agonist, deslorelin, would prevent the formation of a persistent follicle in heifers synchronized with norgestomet. The estrous cycles of heifers were synchronized with cloprostenol, and on Day 7 of the ensuing cycle the heifers received one of the following treatments for 10 d: Group C (n = 5), untreated control; Group N (n = 6), injection of a luteolytic dose of cloprostenol on Days 7 and 8 and implant of norgestomet from Day 7 to Day 17 (i.e. typical 10-day norgestomet implant period); Group D (n = 6), injection of cloprostenol on Days 7 and 8 and implants of deslorelin from Day 7 to Day 17; Group ND (n = 6), injections of cloprostenol and both norgestomet and deslorelin implants as above. Follicle growth was monitored using ultrasonography. Group-N heifers showed continued follicle growth and had larger follicles on Day 17 of the cycle than Group-C heifers (16.8 +/- 1.6 and 10.4 +/- 1.6 mm). Follicle growth for Group-D and ND heifers was similar and variable, and seemed to depend on follicle status at the initiation of treatment. Heifers with follicles of 5 to 10 mm (n = 9) in diameter either showed no follicle growth (2 9 ) or developed large follicles (7 9 ), while heifers with follicles approximately 12 mm (n = 3) in diameter showed follicle atresia with no further significant growth. On Day 17, size of the largest follicle was similar for Group-ND (14.3 +/- 2.9) and Group-D (16.8 +/- 1.6) heifers. Heifers in Group N showed estrous behavior 1.8 +/- 0.2 d after treatment, whereas heifers in Groups D and ND did not show estrus for 2 to 4 wk. The results show that combined treatment with progestagen and an LHRH agonist does not consistently prevent the development of a persistent dominant follicle and that return to estrus can be delayed after treatment with an LHRH agonist.  相似文献   

9.
The plasma estrogen and progesterone concentrations of 19 pregnant cows (average duration of pregnancy 266.0 +/- 2.3 d at the start of the study) were determined daily from Day 6 pre partum to Day 1 post partum. Parturition was induced in all cows by administration of 10 mg i.m. flumethasone. Values were centered around the delivery date (Day 0) following either induced normal calving (n = 3) or surgical delivery (n = 16). In animals showing spontaneous expulsion of the fetal membranes (Group 1, n = 6) the average total estrogen concentration increased significantly from Day 6 until Day 1 before parturition (1329.2 +/- 317.9 to 3719.8 +/- 951.2 pg/ml in total estrogens). A marked decrease was observed on Day 1 post partum (459.4 +/- 344.2 pg/ml). In comparison with Group 1, animals showing either a delayed or partial expulsion of the fetal membranes, or in which the placenta could be withdrawn 16 h after calving (Group 2, n = 5), had consistently lower total estrogen concentrations between Day 6 (595.4 +/- 174.8 pg/ml) and Day 1 (1884.3 +/- 565.1 pg/ml) before parturition. The estrogen values of the cows with retained placenta (Group 3, n = 8) from Days 6 to 0 pre partum were significantly lower than those of Group 2. Total estrogen concentrations of the three groups 1 d post partum did not differ significantly. It is generally recognized that estrogens play an important role in the maturation process of the placentomes. Our investigation demonstrates that not only is the magnitude of the prepartum rise in estrogens of great influence of the maturation process but the duration of this rise is likewise important. These two factors are vital for a normal expulsion of the fetal membranes.  相似文献   

10.
The objective of this study was to evaluate the effects of treatment with an intravaginal progesterone-releasing device (CIDR) and estradiol benzoate (EB) on follicular dynamics in Bos indicus (n=23), Bos taurus (n=25), and cross-bred (n=23) heifers. To assess the influence of reduced serum progesterone concentrations during 8 days of treatment with a progesterone-releasing device on follicular dynamics, half of the heifers received PGF at CIDR insertion (Day 0; 3 x 2 factorial design). Mean (+/-S.E.M.) serum progesterone concentrations during CIDR treatment varied (P<0.05) among genetic groups: B. indicus (5.4+/-0.1 ng/mL), B. taurus (3.3+/-0.0 ng/mL), and cross-bred (4.3+/-0.1 ng/mL). Maximum diameter of the dominant follicle (DF) was smaller (P<0.01) in B. indicus heifers (9.5+/-0.5 mm) than in cross-bred (12.3+/-0.4 mm) or B. taurus heifers (11.6+/-0.5 mm). B. indicus experienced lower (P<0.01) ovulation rate (39.1%) than did B. taurus (72.7%) and cross-bred (84.0%). Heifers treated with PGF on Day 0 had lower (P<0.05) serum progesterone concentrations during progesterone treatment. The PGF treatment on Day 0 increased (P<0.01) the diameter of the DF (11.9+/-0.4 mm vs. 10.5+/-0.4 mm). Moreover, greater (P=0.02) ovulation rates (78.8 vs. 54.0%) occurred in heifers treated with PGF on Day 0. In summary, B. indicus heifers had greater serum progesterone concentrations, smaller DF diameter, and a lower ovulation rate compared to B. taurus heifers. Prostaglandin treatment on the day of CIDR insertion reduced serum progesterone during treatment, and resulted in increased maximum DF diameter and ovulation rate.  相似文献   

11.
Brahman cows (n = 54) and heifers (n = 18) were randomly allotted by calving date, sex of calf and age to one of four treatment groups. Group 1 received no treatment (control), Group 2 received 5 mg alfaprostol (AP) i.m. on Day 21 postpartum, Group 3 received 5 mg AP i.m. on Day 32 postpartum and Group 4 received 5 mg AP i.m. on both Days 21 and 32 postpartum. Blood samples were collected via tail vessel puncture at 30 min-intervals for 8 h from half the animals in each group on Days 21 and 32 postpartum, with AP injection administered 2 h after sampling had begun. All cows were bled at weekly intervals. Samples were processed to yield serum and stored at -20 degrees C until assayed for luteinizing hormone (LH) or progesterone (P(4)). All cattle were maintained with epididymectomized marker bulls and were artificially inseminated (A.I.) at first estrus. Serum P(4) was below 1 ng/ml prior to AP treatment in all animals and did not differ (P > 0.10) between treatments. Alfaprostol treatment affected mean postpartum interval (from parturition to return to standing estrus and subsequent corpus luteum formation with serum progesterone concentrations > 1 ng/ml; P < 0.08). The control group (84.8 +/- 7.9 d) did not differ from Group 2 (86.3 +/- 11.1 d) or Group 3 (66.7 +/- 5.5 d) but did differ (P < 0.09) from Group 4 (65.1 +/- 6.4 d). Cattle injected on Day 32 had a shorter (P < 0.01) postpartum interval than those not receiving treatment on that day (65.9 +/- 4.2 vs 85.7 +/- 6.8 d). Pregnancy rate was affected (P < 0.05) by AP treatment. The control group (72.2%) did not differ (P > 0.10) from any group but, Group 2 (50.0%) was lower (P < 0.04) than Group 3 (83.3%) and (P < 0.02) Group 4 (88.9%). Cattle treated on Day 32 (Groups 3 and 4) had a higher (P < 0.02) pregnancy rate (86.1%) than those not treated on Day 32 (Groups 1 and 2; 61.1%). Serum LH was affected by day (P < 0.0003) and treatment by day (P < 0.07) but not by time (P > 0.10). Treatment Group 3 (P < 0.08) and Group 4 (P < 0.0003) mean LH concentrations differed between Days 21 and 32 postpartum. Cattle receiving AP treatment on Day 32 postpartum had a higher (P < 0.04) cumulative frequency of return to estrus by 100 days postpartum than nontreated cattle.  相似文献   

12.
The effectiveness of dexamethasone and prostaglandin in combination for induction and synchronization of parturition in cattle was evaluated in 100 pregnant Angus, Hereford, Charolais and Simmental cows. Cows were distributed equally by breed, day of gestation and cow age to one of three treatments: 1) Control, 2) Dexamethasone (25 mg) plus prostaglandin F(2alpha) (25 mg) or 3) Dexamethasone (25 mg) plus fenprostalene (1 mg). Hormones were administered simultaneously from 275 to 283 d of gestation. Gestation length at calving for control cows differed significantly (P < 0.01) among breeds: Angus, 278.5 +/- 0.9; Hereford, 283.1 +/- 1.1; Charolais, 283.2 +/- 1.5; and Simmental, 285.4 +/- 1.2 d. For hormone-treated cows, 80% of the calves were born between 30 and 46 h after the hormone injections; overall mean was 37.6 +/- 1.1 h. Calving response did not differ (P >0.1) between cows treated with prostaglandin F(2alpha) versus fenprostalene (36.5 +/- 1.6 vs 38.6 +/- 1.6 h) or among cow age, day of gestation, or breed. Also, duration of labor, calving difficulty and calf viability did not differ between calves born at an induced or spontaneous parturition. The incidence of placenta retained for >24 h was higher for induced than spontaneous parturition (21.0 vs 0.0%), but it did not differ (P >0.1) between cows treated with prostaglandin F(2alpha) or fenprostalene (19.2 vs 22.6%). An acceptable degree of synchrony of parturition was attained by the administration of prostaglandin F(2alpha) or fenprostalene in combination with dexamethasone. The higher incidence of retained placenta in treated than control cows did not affect subsequent fertility. The longer biological half-life for fenprostalene than for prostaglandin F(2alpha) provided no improvement in increasing synchrony of parturition or decreasing frequency of retained placenta.  相似文献   

13.
Chohan KR 《Theriogenology》1998,50(7):1101-1108
Two experiments were conducted to determine luteal regression, estrous response and fertility in buffalo receiving cloprostenol via 2 routes of administration. In Experiment 1, cyclic buffalo (n = 10) were assigned to 2 equal groups receiving either 500 micrograms i.m. cloprostenol (Estrumate, ICI) or 125 micrograms cloprostenol injected intravulvosubmucosal (ivsm) ipsilateral to the side of the corpus luteum (CL) on Day 11 of an induced estrous cycle. Serum progesterone (P4) concentrations were evaluated immediately before treatment and at 24, 48, 72, 96 and 120 h after PGF2 alpha administration. The decline in serum P4 concentrations was significantly different (P < 0.05) between groups up to 48 hrs after treatment. However, no significant difference (P > 0.05) was observed for the interval from treatment to the onset of estrus (94.9 +/- 10.7 vs 96.0 +/- 15.9 h) for 500 or 125 micrograms of cloprostenol groups, respectively. In Experiment 2, multiparous, lactating subestrous buffaloes (n = 137) were treated either with 125 micrograms ivsm cloprostenol or 500 micrograms i.m. cloprostenol (n = 28 vs 33, respectively) during peak breeding (September-February) or low breeding (March-August) season (n = 37 vs 39, respectively). Buffalo observed in estrus were inseminated twice with frozen-thawed semen at 12 and 22 h after the onset of estrus. Buffalo that failed to exhibit estrus were given a second equal dose of cloprostenol at an 11-d interval and underwent fixed-time insemination at 72 and 96 h. The interval to the onset of estrus was 85.0 +/- 4.4 vs 73.2 +/- 2.6 h during peak breeding and 96.1 +/- 2.6 vs 92.1 +/- 3.8 h during the low breeding season for buffalo treated with 125 and 500 micrograms cloprostenol, respectively. These intervals were different (P < 0.05) between seasons but not between treatments in the same season. Conception rates of 47.8 vs 53.1% during peak breeding and 23.5 vs 25.6% during low breeding season were also different (P < 0.05) between seasons but not between the treatments in the same season for buffalo treated with 125 and 500 micrograms cloprostenol, respectively. These results indicated that 125 micrograms ivsm and 500 micrograms i.m. cloprostenol were equally effective for synchronizing estrus in subestrous buffalo. No negative effect of a lower dose of cloprostenol was observed on estrus synchrony and subsequent fertility; however, season of treatment had a significant effect on conception rates.  相似文献   

14.
Lactating Holstein cows (n=288) were grouped as pairs at parturition and randomly assigned to two treatments (control, C vs intervenient treatment, T). The reproductive management of the Group C cows (n=130) consisted of the intramuscular administration of 500 microg PGF2alpha analogue (PG) on Days 28 and 63 postpartum and breeding on the basis of estrus signs with the a.m.-p.m. rule after Day 63. Cows that were not bred by 77 d postpartum received another injection of PG and were bred at estrus or 84 h after PG treatment. Pregnancy diagnoses were perfomed by palpation of the uterus per rectum 42 to 48 d after AI. Cows in the T group (n=139) received intramuscular injections of 100 microg GnRH 14 d and PG 28 d after calving. On Day 56 postpartum, cows were given a second dose of GnRH followed by PG on Day 63 postpartum and a third GnRH injection 48 h after PG (OvSynch). Cows were inseminated at a fixed time (22+/-1 h) after GnRH. Five days after the fixed-time insemination cows were given 1500 IU hCG i.m.. Group C and T cows that returned to service or were diagnosed as non-pregnant continued to receive PG at intervals of 14 d with breeding at estrus or 84 h after the second PGF2alpha dose. A sustained increase in milk progesterone concentration was observed in 59.0% of T cows after GnRH administration on Day 14. A similar rise in milk progesterone concentrations was observed in 53.8% of C cows. The PG on Day 28 induced luteolysis more in Group T cows (53.2%) than in Group C cows (36.9%). The PG on Day 63 reduced milk progesterone concentrations to basal levels in 50.7% of T and 49.2% of Group C animals. The first service pregnancy rates (T, 40.3% vs C, 36.2%) and the overall pregnancy rates (all services, T, 83.5% vs C, 86.9%) were not different between the two groups. The two treatments did not differ in the interval from first service to pregnancy, calving to pregnancy or in calving interval, number of services per pregnancy or culling rates.  相似文献   

15.
This study examined the effects of altered serum FSH concentration on subsequent ovarian response to superovulation. Synchronized heifers were assigned randomly on Day 1 of the cycle (estrus = Day 0) to three pretreatment groups that consisted of 6-d of saline (7ml, s.c., b.i.d.; Group I), FSH-P (0.5 mg, i.m., b.i.d.; Group II) or charcoal-extracted bovine follicular fluid (BFF; 7 ml, s.c., b.i.d.; Group III) injections. Superovulation was initiated on Day 7 and consisted of FSH-P in decreasing dosages over 4 d (4,3,2,1 mg; i.m., b.i.d.), with cloprostenol (500 mug) on the morning of the third day. A second replicate with 14 heifers was conducted using the same protocol but twice the pretreatment dosage of FSH-P (1 mg) and BFF (14 ml). Endogenous plasma FSH decreased during BFF and FSH-P pretreatments compared to controls (P < 0.02). Endogenous FSH concentrations in both primed groups (II and III) were similar to control values (Group I) 12 h after the start of superovulation. Basal LH concentrations were not different between pretreatment groups. The interval from cloprostenol treatment to the preovulatory LH surge in Group III was 21.3 and 23.9 h longer (P < 0.0001) than it was in Groups I and II. The postovulation progesterone rise was delayed in Group III. The number of corpora lutea (CL) was lowest in the BFF-primed group (4.2 +/- 0.8) compared with the FSH-primed (7.4 +/- 1.3) and the control (12.0 +/- 1.8; P < 0.003) groups. In the FSH-primed group (0.68 +/- 0.06 cm(3)), CL volumes were larger than in the control group (0.45 +/- 0.03 cm(3)), whereas in the BFF-primed group (0.27 +/- 0.02 cm(3)) CL volumes were smaller compared with the control group (P < 0.0001). Mean FSH concentrations for 48 h preceding superovulation and the number of CL per cow were positively correlated (r = 0.55; P < 0.004; n = 26). We concluded that both FSH-P and BFF pretreatments decreased the superovulatory response of heifers to FSH-P. The mechanism for this would appear to be associated with reduced endogenous FSH prior to the start of superovulation.  相似文献   

16.
Factors affecting superovulation in heifers treated with PMSG   总被引:1,自引:0,他引:1  
In this study we determined 1) if the immunoneutralization of PMSG affected the ovulatory response, the number of large follicles and embryo yield compared with that of PMSG alone or pFSH, and 2) whether the stage of the estrous cycle at which PMSG was injected affected the ovulatory response and yield of embryos in superovulated heifers. Estrus was synchronized in 99 (Experiment 1) and 71 (Experiment 2) heifers using prostaglandin F2alpha (PG) analogue, cloprostenol, given 11 d apart in replicate experiments over 2 yr. In Experiments 1 and 2, heifers were randomly allocated to 1 of 3 treatments (initiated at mid-cycle): Treatment 1--24 mg of pFSH (Folltropin) given twice daily for 4 d; Treatment 2--a single injection of 2000 IU PMSG; Treatment 3--2000 IU PMSG followed by 2000 IU of Neutra-PMSG at the time of first insemination. In Experiment 3, 116 heifers were given 2000 IU PMSG on Day 2 (n = 28), Day 3 (n = 27), Day 10 (n = 41) or Day 16 (n = 20) of the estrous cycle. The PG was given at 48 h (500 microg cloprostenol) and 60 h (250 microg cloprostenol) after the first gonadotropin treatment. Heifers were inseminated twice during estrus, and embryos were recovered on Day 7, following slaughter and graded for quality. The numbers of ovulations and large follicles (> or =10 mm) were also counted. There was no effect of treatment on ovulation rate in Experiment 1, but in Experiment 2 it was greater (P < 0.002) in heifers given PMSG (14.7 +/- 1.5) than pFSH (7.5 +/- 1.4) or PMSG-neutra-PMSG (8.7 +/- 1.5). The number of large follicles was higher following PMSG than pFSH treatment in Experiment 1, and it was higher (P < 0.004) in heifers given PMSG (5.5 +/- 0.8) than pFSH (1.12 +/- 0.7) or PMSG-neutra-PMSG (2.7 +/- 0.8) in Experiment 2. The use of Neutra-PMSG did not affect the numbers of embryos recovered or numbers of Grade 1 or 2 embryos, but it did decrease the number of Grade 3 embryos in both experiments. In Experiment 3, the ovulation rate decreased (P < 0.004) when PMSG was given on Day 3 (5.7 +/- 1.46) of the cycle rather than on Day 2 (12.3 +/- 1.64), Day 10 (13.4 +/- 1.45) or Day 16 (12.5 +/- 1.87). There was no effect of day of treatment on the numbers of large follicles. The mean numbers of embryos recovered were lower (P < 0.01) in heifers treated on Day 3 (2.1 +/- 0.67) than on Day 2 (6.8 +/- 1.0), Day 10 (6.4 +/- 0.86) or Day 16 (7.8 +/- 1.87). It is concluded that Neutra-PMSG given to heifers treated with PMSG did not improve embryo yield or quality and that treatment with PMSG early in the cycle can result in acceptable embryo yields provided sufficient time elapses between treatment and luteolysis.  相似文献   

17.
Two trials were conducted to evaluate treatments combining progesterone pretreatment and prostaglandin F(2alpha) (PGF(2alpha)) on estrus response, pregnancy and calving rate in heifers. Treatments in Trial 1 were 1) control (T(1); n=59), 2) 25 mg PGF(2alpha) on Day 0 (T(2); n=58), 3) 150 mg progesterone (P(4), i.m.) in corn oil on Day -24 plus PGF(2alpha) (T(3); n=61), and 4) 150 mg P(4) on Day -5 plus PGF(2alpha) (T(4); n=59). Trial 2 had T(2) and T(4) only. Heifers were artificially inseminated 8 to 16 h after detection of estrus for 10 and 5 d in Trials 1 and 2, respectively. In Trial 1 more heifers in T(3) and T(4) showed estrus by 72 h compared to T(1) and T(2). In T(3), percentages were greater at 84 and 96 h than in T(1) and T(2). There were no differences between T(3) and T(4) or T(1) and T(2) over time. Cumulative distributions of responses showed that more heifers in T(3) and T(4) were in estrus by 84 h after PGF(2alpha) than after other treatments, while T(3) showed the greatest total number of heifers in estrus by 84 h; this difference persisted for 180 h. In Trial 2, percentages of heifers observed in estrus for T(1) and T(4) were not different. Average interval from PGF(2alpha) to estrus was shorter in Trial 1 for T(3) heifers compared to other treatments. No difference was observed in interval to estrus for T(2) and T(4) in Trial 2; this interval averaged 58 h. Artificial insemination pregnancy rates were not different among treatments in either trial and averaged 67.4%. In Trial 1, a greater proportion of heifers in T(2), T(3) and T(4) calved by 35 days into the calving season compared to T(1), but in Trial 2 calving rates for T(2) and T(4) were not different. Progesterone pretreatment combined with PGF(2alpha) appeared to enhance estrus synchronization without influencing either pregnancy or calving rates.  相似文献   

18.
The effects of fenprostalene, cloprostenol sodium and prostaglandin F(2) alpha (PGF(2alpha)) on estrus, conception rate, pregnancy rate, and the interval from Day 1 of the breeding season to calving were studied on 135 purebred Angus cows and heifers. The cows and heifers were randomly allotted within age to the three estrus synchronization treatments and a control group. The calving percentages (for cows and heifers combined) that resulted from artificial insemination (AI) were 32.3, 31.4, 43.6, and 51.1% for the control, fenprostalene, cloprostenol sodium, and PGF(2alpha) groups, respectively. The calving percentage during the AI period by ages of dam at breeding were 54.2% for yearling heifers, 30.5% for two-year-olds, 47.6% for three-year-olds, and 26.1% for four-year-old or older cows. The percentage of cows and heifers detected in estrus and the percentage that conceived after the first injection for control, fenprostalene, cloprostenol sodium, and PGF(2alpha) groups were 51.6 and 22.3%, 59.3 and 32.1%, 76.8 and 44.1%, and 66.6 and 50.2%, respectively. The intervals from Day 1 of the breeding season to calving and from Day 1 of the calving season within each treatment to the birth of each calf were control, 285.9 and 23.8 d; fenprostalene, 283.6 and 13.4 d; cloprostenol sodium, 285.5 and 6.5 d; and PGF(2alpha), 284.0 and 11.1 d.  相似文献   

19.
The effects of fasting between Days 8 and 16 of the estrous cycle on plasma concentrations of luteinizing hormone (LH), progesterone, cortisol, glucose and insulin were determined in 4 fasted and 4 control heifers during an estrous cycle of fasting and in the subsequent cycle after fasting. Cortisol levels were unaffected by fasting. Concentrations of insulin and glucose, however, were decreased (p less than 0.05) by 12 and 36 h, respectively, after fasting was begun and did not return to control values until 12 h (insulin) and 4 to 7 days (glucose) after fasting ended. Concentrations of progesterone were greater (p less than 0.05) in fasted than in control heifers from Day 10 to 15 of the estrous cycle during fasting, while LH levels were lower (p less than 0.01) in fasted than in control heifers during the last 24 h of fasting. Concentrations of LH increased (p less than 0.01) abruptly in fasted heifers in the first 4 h after they were refed on Day 16 of the fasted cycle. Concentrations (means +/- SEM) of LH also were greater (p less than 0.05) in fasted (11.2 +/- 2.6 ng/ml) than in control (4.7 +/- 1.2 ng/ml) heifers during estrus of the cycle after fasting; this elevated LH was preceded by a rebound response in insulin levels in the fasted-refed heifers, with insulin increasing from 176 +/- 35 pg/ml to 1302 +/- 280 pg/ml between refeeding and estrus of the cycle after fasting. Concentrations of LH, glucose and insulin were similar in both groups after Day 2 of the postfasting cycle. Concentrations of progesterone in two fasted heifers and controls were similar during the cycle after fasting, whereas concentrations in the other fasted heifers were less than 1 ng/ml until Day 10, indicating delayed ovulation and (or) reduced luteal function. Thus, aberrant pituitary and luteal functions in fasted heifers were associated with concurrent fasting-induced changes in insulin and glucose metabolism.  相似文献   

20.
The objective was to evaluate the effects of 400 IU of eCG given on Days 5 or 8 of an estrus synchronization protocol with progesterone-releasing intravaginal devices (PRID) and estradiol benzoate (EB), in recipients for fixed-time embryo transfer. A secondary objective was to determine the effects of injectable progesterone (given concurrent with EB treatment). Three-hundred-and-four crossbred Bos taurus x Bos indicus beef heifers were randomly assigned to one of four treatment groups (2 x 2 factorial design). At unknown stages of the estrous cycle (Day 0), all heifers received a progesterone-releasing intravaginal device (PRID), plus 2mg of EB i.m., with or without a concurrent treatment of 50mg of progesterone i.m. Heifers were further subdivided to receive 0.15 mg of d-cloprostenol (PGF) i.m. and 400 IU of eCG i.m. on Days 5 or 8. In all heifers, intravaginal devices were removed on Day 8 and 1mg of EB was given i.m. on Day 9 (Day 10 was arbitrarily considered the day of estrus). On Day 17, all heifers with >1 CL or a single CL with a diameter > or =18 mm (based on ultrasonographic examination), received an in vitro produced (IVP) embryo by non-surgical transfer. On Day 17, there was an effect of day of eCG administration on the number of CL (1.35 +/- 0.08 versus 1.13 +/- 0.04, for Day 5 versus Day 8, respectively; P = 0.02) and (in a subset of 154 heifers) mean (+/-S.E.M.) plasma progesterone concentrations (2.41 +/- 0.26 versus 1.74 +/- 0.19 ng/mL; P = 0.03). Although the proportion of recipients transferred/treated and pregnant/transferred did not differ among groups, the proportion of recipients pregnant/treated tended (P = 0.1) to be higher in heifers treated with eCG on Day 5 versus Day 8 (47.0% versus 40.7%, respectively). Progesterone treatment had no significant effect. In conclusion, treatment with eCG (and D-cloprostenol) on Day 5 significantly increased the number of CL and plasma progesterone concentrations and tended to increase pregnancy rates, although progesterone treatment had no significant effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号