首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flow cytometer has been constructed which measures total fluorescence and the distribution of fluorescence along isolated, stained mammalian chromosomes. In this device, chromosomes flow lengthwise at 4 m/sec through a 1-micrometer thick laser beam. The fluorescence from each chromosome is recorded at 10 nsec intervals; the sequence of recorded values represents the distribution of fluorescence along the chromosome and is stored in the memory of a waveform recorder. The total fluorescence of each chromosome is also measured and recorded. Preliminary studies show that doublets of 1.83 micrometers diameter microspheres flow with their long axes parallel to the direction of flow and that the two microspheres are resolved in the slit-scan profile. Ethidium bromide stained Muntjac and Chinese hamster chromosomes have also been slit-scanned. Centromeres were resolved in many of the Nos. 1 and 2 Chinese hamster chromosomes and the Nos. 1 and X + 3 Muntjac chromosomes.  相似文献   

2.
OBJECTIVE: To analyse how DNA ploidy and S-phase fraction (SPF) by flow cytometry (FCM) and an optimised fully automatic DNA image cytometer (ICM) correlate with grade in TaT1 urothelial cell carcinomas (UC) of the urinary bladder. MATERIALS AND METHODS: Two-hundred-and twenty-eight consensus cases were analysed. Single cell suspensions were stained (DAPI for FCM, Feulgen for ICM). There was enough material for both FCM and ICM in 202 of these cases. FCM and optimised ICM measurements were performed on the 202 UCs. To discriminate between different grades, single- and multivariate analyses was performed on DNA histogram features obtained with the MultiCycle program (using DNA index (DI) and SPF). RESULTS: Overall measurement time of the adapted ICM method was 10.7 minutes per case (range 5.9-29.8 min.) and required little additional interactive object rejection (average 152 objects (84-298) on 3000 objects per case measured, which took 9.9 minutes on average, range 8.3-15.5 minutes). The ICM histograms looked much "cleaner" with less noise than the FCM graphs. The coefficient of variation (CV) of the diploid peak for ICM (5.4%) was significantly lower than for FCM (5.9%) (p<0.0001). ICM features were more strongly correlated to grade than FCM features. In multivariate analysis, the best discriminating set of features was DNA ploidy and SPF (both by ICM). CONCLUSIONS: The adapted fully automated DNA ICM works very well for UCs. Low CV DNA ICM histograms are obtained in a time comparable to FCM. The DNA ICM results have stronger discriminative power than DNA FCM for grade in TaT1 UCs.  相似文献   

3.
Somatic cell genetics and flow cytometry   总被引:1,自引:0,他引:1  
Human genes coding cell surface molecules can be introduced into mouse host cells using a variety of somatic cell genetic techniques. Because these human gene products can be detected using indirect immunofluorescence on viable cells, the genes themselves can be monitored and manipulated using flow cytometry and sorting. In this paper, we review ways that we have used cell sorting to develop a somatic cell genetic analysis of the human cell surface.  相似文献   

4.
D M Segal  D A Stephany 《Cytometry》1984,5(2):169-181
The Fc receptor-mediated aggregation of antibody-coated spleen cells with cells from the P388D1 mouse macrophage line was followed using a novel flow cytometric technique. P388D1 and spleen cells were directly labeled with green-emitting (fluorescein isothiocyanate) and red-emitting (substituted rhodamine isothiocyanate) fluorophores, respectively. They were mixed, incubated in suspension at 4 degrees C, and analyzed for aggregation with a dual laser flow cytometer. Unconjugated cells appeared as particles which were either red or green, while conjugates were detected as particles which were both red and green. Using this assay procedure, 5 X 10(4) cells were analyzed in 2-3 min for the percentages of conjugates, free spleen cells, and free P388D1 cells. Intercellular aggregation required both antibody on the spleen cells and free Fc receptors on the P388D1 cells; nonspecific aggregates accounted for 1% or less of the total particles analyzed. Measurements of the fluorescence distributions within conjugates indicated that the majority of conjugates contained a single P388D1 cell bound to 1-3 spleen cells, and that only heterophilic aggregation occurred. The flow cytometric technique described here should be applicable for the measurement of the initial events of intercellular aggregation in other systems as well.  相似文献   

5.
Epitope mapping by flow cytometry is a very modern approach that not only identifies T-cell epitopes but simultaneously allows for detailed analysis of the responding T-cell subsets including lineage, activation marker expression, and other markers of interest. The most frequently used approach is based on the identification of intracellular cytokines in secretion-inhibited activated T cells following stimulation with peptides or peptide pools. A more recently developed assay analyzes T-cell proliferation by measuring the decrease in carboxyfluorescein diacetate succinimidyl ester staining in proliferated cells. This article includes information on peptide configuration, a section on the design and efficient application of peptide pools, and working laboratory protocols for both assays.  相似文献   

6.
F L Battye  W Darling  J Beall 《Cytometry》1985,6(5):492-494
A simple device has been developed for delivering samples into a flow cytometer. Designed with economy, simplicity, and flexibility in mind, this device, having only one moving part, can be used for sample volumes as small as 20 microliter, for virtually any form of cell sample container, and for a wide range of cell concentrations. It consists essentially of a lever-operated disc valve that allows the cell sample to be loaded into a loop of tubing and then to be injected into the cytometer nozzle under pressure from a saline source. The sampler has lifted the maximum analytical throughput of a FACS II cell sorter to better than 120 samples per hour.  相似文献   

7.
8.
BACKGROUND: The microfabricated impedance spectroscopy flow cytometer used in this study permits rapid dielectric characterization of a cell population with a simple microfluidic channel. Impedance measurements over a wide frequency range provide information on cell size, membrane capacitance, and cytoplasm conductivity as a function of frequency. The amplitude, opacity, and phase information can be used for discrimination between different cell populations without the use of cell markers. METHODS: Polystyrene beads, red blood cells (RBCs), ghosts, and RBCs fixed in glutaraldehyde were passed through a microfabricated flow cytometer and measured individually by using two simultaneously applied discrete frequencies. The cells were characterized at 1,000 per minute in the frequency range of 350 kHz to 20 MHz. RESULTS: Cell size was easily measured with submicron accuracy. Polystyrene beads and RBCs were differentiated using opacity. RBCs and ghosts were differentiated using phase information, whereas RBCs and fixed RBCs were differentiated using opacity. RBCs fixed using increasing concentrations of glutaraldehyde showed increasing opacity. This increased opacity was linked to decreased cytoplasm conductivity and decreased membrane capacitance, both resulting from protein cross-linking. CONCLUSIONS: This work presents label-free differentiation of cells in an on-chip flow cytometer based on impedance spectroscopy, which will be a powerful tool for cell characterization.  相似文献   

9.
Characterization of neurosphere cell phenotypes by flow cytometry   总被引:14,自引:0,他引:14  
BACKGROUND: Neural stem cell research regularly utilizes neurosphere cultures as a continuous source of primitive neural cells. Results from current progenitor cell assays show that these cultures contain a low number of neural progenitors. Our goal is to characterize neurosphere cultures and define subpopulations in order to purify neural progenitor cells. METHODS: Cells from embryonic mouse neurosphere cultures were stained with Hoechst 33342 and analyzed by flow cytometry. Subpopulations were sorted based on their relative fluorescence intensity in the blue and red regions of the spectrum. Individual sorted subpopulations were reanalyzed after 7 days in culture. RESULTS: Neurosphere cultures contain a relatively high number of cells that stain weakly with Hoechst 33342. This subpopulation is present when cultured as an entire batch in the presence of epidermal growth factor (EGF). When cultured separately, this subpopulation gives rise to a neurosphere population with essentially the same characteristics as freshly isolated embryonic mouse brain cells but contains substantially fewer weakly Hoechst-stained cells. CONCLUSIONS: Similar to hemopoietic systems, neurosphere cultures contain a subpopulation that can be characterized by a low emission of Hoechst fluorescence. When cultured separately, this subpopulation gives rise to a phenotype similar to freshly isolated, uncultured neural cells.  相似文献   

10.
Flow cytometry has been used to accurately monitor cell events that indicate the spatio-temporal state of a bioreactor culture. The introduction of process analytical technology (PAT) has led to process improvements using real-time or semi real-time monitoring systems. Integration of flow cytometry into an automated scheme for improved process monitoring can benefit PAT in bioreactor-based biopharmaceutical productions by establishing optimum process conditions and better quality protocols. Herein, we provide detailed protocols for establishing an automated flow cytometry system that can be used to investigate and monitor cell growth, viability, cell size, and cell cycle data. A method is described for the use of such a system primarily focused on CHO cell culture, although it is foreseen the information gathered from automated flow cytometry can be applied to a variety of cell lines to address both PAT requirements and gain further understanding of complex biological systems.  相似文献   

11.
12.
Widrow RJ  Laird CD 《Cytometry》2000,39(2):126-130
BACKGROUND: One of the most dramatic events during the course of the mammalian cell cycle is mitosis, when chromosomes condense and segregate, the nuclear envelope breaks down, and the cell divides into two daughter cells. Although cells undergoing mitosis are cytologically distinguishable from nonmitotic cells, few molecular markers are available to specifically identify mitotic cells, especially cells within different stages of mitosis. METHODS: We applied the flow cytometric method of Juan et al. (Cytometry 32:71-77, 1998) to obtain cells with various levels of the molecular markers cyclin B1 and phosphorylated histone H3; fluorescence microscopy was then used to identify sorted cells in different stages of mitosis. RESULTS: We observed the substantial enrichment of submitotic cell populations. CONCLUSIONS: This method represents an effective approach to obtain an enriched population of submitotic cells without the use of drug treatments or prior synchronization.  相似文献   

13.
Apoptosis in CHO cell batch cultures: examination by flow cytometry   总被引:3,自引:0,他引:3  
Chinese hamster ovary cells grown under conditions which are optimal for the production of a genetically engineered protein in batch culture, lose significant viability shortly after entering the stationary phase. This cell death was investigated morphologically and was found to be almost exclusively via apoptosi. Furthermore, cells were analyzed by flow cytometry using a fluorescent DNA end-labeling assay to label apoptotic cells, in conjunction with cell cycle analysis using propidium iodide. Apoptotic cells could be detected by this method, and by the radioactive end-labeling of extracted DNA, on all days of culture from day 1 to day 7; however, the degree of apoptotic cell death increased dramatically when the cells entered the stationary phase, rising to 50–60% of the total cell number at the termination of the culture. Flow cytometric analysis showed that the majority of cells underwent apoptosis whilst in G1/G0 and formed an apoptotic population with high DNA FITC end-labeling and hypodiploid propidium iodide binding. Additionally, the ability or inability to secrete specific protein products did not appear to interfere with the development of the apoptotic population with time.  相似文献   

14.
Applications of flow cytometry to hematopoietic stem cell transplantation   总被引:2,自引:0,他引:2  
Applications of flow cytometry to clinical and experimental hematopoietic stem cell transplantation (HSCT) are discussed in this review covering the following topics: diagnosis and classification of lymphohematologic disorders, quantitation of hematopoietic progenitors in the graft, lymphohematopoietic reconstitution following HSCT and animal models of human HSCT. At the end, the utilization of flow cytometry in clinical HSCT by Brazilian transplant centers is briefly reviewed.  相似文献   

15.
Various sources of variability in flow cytometric determination of cell concentration have previously been investigated with respect to andrologic applications. Although common aspects related to the variation between samples, variation between operators, and accuracy have been extensively studied, specific sources of false-count estimation have found less attention. In particular, a major and well-recognized source of misestimation of cell counts (i.e., contamination of the sample by non-sperm particles) has not to date been characterized in detail. We show here by means of original mathematical research that not only the cell counts but also the percentages of cells expressing different fluorescence patterns are affected by the presence of alien particles often neglected in studies involving flow cytometric characterization. We demonstrate that there is a systematic overestimation in the proportion of unstained (viable) cells detected by flow cytometry in cases where the non-sperm particles are not excluded from analysis by additional identification other than light-scatter characteristics. Moreover, we provide an exact mathematical estimate for the magnitude of this overestimation, and we discuss the consequences for diagnostic applications and studies on sperm physiology, specifically for studies on sperm capacitation and evaluation of cryopreserved semen. Finally, equations are derived for the correction of the flow cytometric values for use in practical applications.  相似文献   

16.
Flow cytometric methods for recognizing several groups of eukaryotic marine phytoplankton were tested using 26 laboratory cultures. Each culture was divided into three aliquots, and these samples were analyzed for 1) Coulter volume; 2) light scatter (magnitude and polarization properties of forward scattered light and magnitude of right-angle scattered light) and autofluorescence emission (phycoerythrin and chlorophyll); and 3) autofluorescence excitation (by 488 nm and 515 nm light). Three kinds of cells could be easily distinguished from others in the culture collection: 1) The two cryptophytes and the rhodophyte had high phycoerythrin/chlorophyll ratios; 2) the two coccolithophores depolarized forward scattered light; and 3) the two pennate diatoms scattered only a relatively small amount of light in the forward direction compared with that at right angles. Mean chlorophyll fluorescence excited by blue light relative to that excited by green light was highest in the four chlorophytes, but there was overlap between some of these and some other kinds of cells. Unresolved cell types included centric diatoms, dinoflagellates, and naked coccolithophores. Forward light scatter and Coulter volume were closely related (except for the pennate diatoms) over a range of about 0.01 to 30 pL (equivalent spherical diameter about 3 to 40 microns), according to a logarithmic function.  相似文献   

17.
Relative molecular size distributions of pectic and hemicellulosic polysaccharides of pea (Pisum sativum cv Alaska) third internode primary walls were determined by gel filtration chromatography. Pectic polyuronides have a peak molecular mass of about 1100 kilodaltons, relative to dextran standards. This peak may be partly an aggregate of smaller molecular units, because demonstrable aggregation occurred when samples were concentrated by evaporation. About 86% of the neutral sugars (mostly arabinose and galactose) in the pectin cofractionate with polyuronide in gel filtration chromatography and diethylaminoethyl-cellulose chromatography and appear to be attached covalently to polyuronide chains, probably as constituents of rhamnogalacturonans. However, at least 60% of the wall's arabinan/galactan is not linked covalently to the bulk of its rhamnogalacturonan, either glycosidically or by ester links, but occurs in the hemicellulose fraction, accompanied by negligible uronic acid, and has a peak molecular mass of about 1000 kilodaltons. Xyloglucan, the other principal hemicellulosic polymer, has a peak molecular mass of about 30 kilodaltons (with a secondary, usually minor, peak of approximately 300 kilodaltons) and is mostly not linked glycosidically either to pectic polyuronides or to arabinogalactan. The relatively narrow molecular mass distributions of these polymers suggest mechanisms of co- or postsynthetic control of hemicellulose chain length by the cell. Although the macromolecular features of the mentioned polymers individually agree generally with those shown in the widely disseminated sycamore cell primary wall model, the matrix polymers seem to be associated mostly noncovalently rather than in the covalently interlinked meshwork postulated by that model. Xyloglucan and arabinan/galactan may form tightly and more loosely bound layers, respectively, around the cellulose microfibrils, the outer layer interacting with pectic rhamnogalacturonans that occupy interstices between the hemicellulose-coated microfibrils.  相似文献   

18.
Measurement of cellular DNA content and the analysis of the cell cycle can be performed by flow cytometry. Protocols for DNA measurement have been developed including Bivariate cytokeratin/DNA analysis, Bivariate BrdU/DNA analysis, and multiparameter flow cytometry measurement of cellular DNA content. This review summarises the methods for measurement of cellular DNA and analysis of the cell cycle and discusses the commercial software available for these purposes.  相似文献   

19.
20.
The intracellular distribution of important chemotherapeutic antibiotics belonging to the anthracycline group (e.g. adriamycin) can be detected by laser flow cytometry. The indirect method is based on the interference of these compounds with the binding of propidium iodide to the nuclear DNA. While in the direct method, the intracellular fluorescence of these antibiotics is excited and detected with a laser beam in a flow system. The present report demonstrates the use of these two methods for intracellular detection and quantitation of a number of important anthracyclines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号