首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PTEN is a well known tumor suppressor through the negative regulation of the PI3K signaling pathway. Here we report that PTEN plays an important role in regulating mitotic timing, which is associated with increased PTEN phosphorylation in the C-terminal tail and its localization to chromatin. Pulldown analysis revealed that Plk1 physically interacted with PTEN. Biochemical studies showed that Plk1 phosphorylates PTEN in vitro in a concentration-dependent manner and that the phosphorylation was inhibited by Bi2635, a Plk1-specific inhibitor. Deletional and mutational analyses identified that Plk1 phosphorylated Ser-380, Thr-382, and Thr-383, but not Ser-385, a cluster of residues known to affect the PTEN stability. Interestingly, a combination of molecular and genetic analyses revealed that only Ser-380 was significantly phosphorylated in vivo and that Plk1 regulated the phosphorylation, which was associated with the accumulation of PTEN on chromatin. Moreover, expression of phospho-deficient mutant, but not wild-type PTEN, caused enhanced mitotic exit. Taken together, our studies identify Plk1 as an important regulator of PTEN during the cell cycle.  相似文献   

2.
The dual specificity phosphatase PTEN exerts its tumour suppressor and cell-migration regulatory functions by dephosphorylating the phospholipid substrate, phosphatidylinositol-3,4,5-trisphosphate (PI(3,4,5)P(3)), and phosphotyrosine protein substrates. PTEN functions are regulated by phospholipid binding, interactions with other cellular proteins and phosphorylation at multiple sites. Precisely, how the phosphorylation and binding events modulate PTEN activity and structure remains mostly unclear. Detailed studies of this issue require the availability of significant quantity of both the unphosphorylated and phosphorylated forms of purified recombinant PTEN. Here, we describe the successful expression and purification of recombinant rat PTEN using a baculovirus-infected Spodoptera frugiperda (Sf9) cell expression system. The recombinant PTEN was purified to near homogeneity using four sequential column chromatographic steps. The specific enzymatic activity of the purified preparation in dephosphorylating PI(3,4,5,)P(3) and the artificial phosphotyrosine substrate poly(Glu/Tyr) are 6.7 nmol/min/microg and 0.006 pmol/min/microg, respectively. Intriguingly, similar to PTEN expressed in mammalian cells, the recombinant PTEN was phosphorylated in the infected insect cells at Ser-380, Thr-382, and Thr-383 at the C-terminal tail. Treatment with alkaline phosphatase fully dephosphorylated these sites. After the treatment, the unphosphorylated PTEN and alkaline phosphatase could be separated by ion exchange column chromatography. The availability of the phosphorylated and unphosphorylated forms of recombinant PTEN permits future investigations into the three-dimensional structures of the phosphorylated and unphosphorylated forms of PTEN, and the role of phosphorylation in regulating PTEN activity, phospholipid- and protein-binding affinities.  相似文献   

3.
The PTEN gene is a tumor suppressor localized in the frequently altered chromosomal region 10q23. The tumor suppressor function of the PTEN protein (PTEN) has been linked to its ability to dephosphorylate the lipid second-messenger phosphatidylinositol 3,4, 5-trisphosphate and phosphatidylinositol 3,4-bisphosphate and, by doing so, to antagonize the phosphoinositide 3-kinase pathway. The PTEN protein consists of an amino-terminal phosphatase domain, a lipid binding C2 domain, and a 50-amino-acid C-terminal domain (the "tail") of unknown function. A number of studies have shown that the tail is dispensable for both phosphatase activity and blocking cell growth. Here, we show that the PTEN tail is necessary for maintaining protein stability and that it also acts to inhibit PTEN function. Thus, removing the tail results in a loss of stability but does not result in a loss of function because the resultant protein is more active. Furthermore, tail-dependent regulation of stability and activity is linked to the phosphorylation of three residues (S380, T382, and T383) within the tail. Therefore, the tail is likely to mediate the regulation of PTEN function through phosphorylation.  相似文献   

4.
Programmed death 1 (PD-1) is a potent inhibitor of T cell responses. PD-1 abrogates activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, but the mechanism remains unclear. We determined that during T cell receptor (TCR)/CD3- and CD28-mediated stimulation, PTEN is phosphorylated by casein kinase 2 (CK2) in the Ser380-Thr382-Thr383 cluster within the C-terminal regulatory domain, which stabilizes PTEN, resulting in increased protein abundance but suppressed PTEN phosphatase activity. PD-1 inhibited the stabilizing phosphorylation of the Ser380-Thr382-Thr383 cluster within the C-terminal domain of PTEN, thereby resulting in ubiquitin-dependent degradation and diminished abundance of PTEN protein but increased PTEN phosphatase activity. These effects on PTEN were secondary to PD-1-mediated inhibition of CK2 and were recapitulated by pharmacologic inhibition of CK2 during TCR/CD3- and CD28-mediated stimulation without PD-1. Furthermore, PD-1-mediated diminished abundance of PTEN was reversed by inhibition of ubiquitin-dependent proteasomal degradation. Our results identify CK2 as a new target of PD-1 and reveal an unexpected mechanism by which PD-1 decreases PTEN protein expression while increasing PTEN activity, thereby inhibiting the PI3K/Akt signaling axis.  相似文献   

5.
The phosphatase and tensin homologue (PTEN) tumor suppressor is a phosphatidylinositol D3-phosphatase that counteracts the effects of phosphatidylinositol 3-kinase and negatively regulates cell growth and survival. PTEN is itself regulated by phosphorylation on multiple serine and threonine residues in its C terminus. Previous work has implicated casein kinase 2 (CK2) as the kinase responsible for this phosphorylation. Here we showed that CK2 does not phosphorylate all sites in PTEN and that glycogen synthase kinase 3beta (GSK3beta) also participates in PTEN phosphorylation. Although CK2 mainly phosphorylated PTEN at Ser-370 and Ser-385, GSK3beta phosphorylated Ser-362 and Thr-366. More importantly, prior phosphorylation of PTEN at Ser-370 by CK2 strongly increased its phosphorylation at Thr-366 by GSK3beta, suggesting that the two may synergize. Using RNA interference, we showed that GSK3 phosphorylates PTEN in intact cells. Finally, PTEN phosphorylation was affected by insulin-like growth factor in intact cells. We concluded that multiple kinases, including CK2 and GSK3beta, participate in PTEN phosphorylation and that GSK3beta may provide feedback regulation of PTEN.  相似文献   

6.
Cyclooxygenase catalysis by prostaglandin H synthase-1 and -2 (PGHS-1 and -2) requires activation of the normally latent enzyme by peroxide-dependent generation of a free radical at Tyr-385 (PGHS-1 numbering) in the cyclooxygenase active site; the Tyr-385 radical has also been linked to self-inactivation processes that impose an ultimate limit on cyclooxygenase catalysis. Cyclooxygenase activation is more resistant to suppression by cytosolic glutathione peroxidase in PGHS-2 than in PGHS-1. This differential response to peroxide scavenging enzymes provides a basis for the differential catalytic regulation of the two PGHS isoforms observed in vivo. We sought to identify structural differences between the isoforms, which could account for the differential cyclooxygenase activation, and used site-directed mutagenesis of recombinant human PGHS-2 to focus on one heme-vicinity residue that diverges between the two isoforms, Thr-383, and an adjacent residue that is conserved between the isoforms, Asn-382. Substitutions of Thr-383 (histidine in most PGHS-1) with histidine or aspartate decreased cyclooxygenase activation efficiency by about 40%, with little effect on cyclooxygenase specific activity or self-inactivation. Substitutions of Asn-382 with alanine, aspartate, or leucine had little effect on the cyclooxygenase specific activity or activation efficiency but almost doubled the cyclooxygenase catalytic output before self-inactivation. Asn-382 and Thr-383 mutations did not appreciably alter the Km value for arachidonate, the cyclooxygenase product profile, or the Tyr-385 radical spectroscopic characteristics, confirming the structural integrity of the cyclooxygenase site. The side chain structures of Asn-382 and Thr-383 in PGHS-2 thus selectively influence two important aspects of cyclooxygenase catalytic regulation: activation by peroxide and self-inactivation.  相似文献   

7.
Sustained activation of protein kinase C (PKC) isoenzymes alpha and betaII leads to their translocation to a perinuclear region and to the formation of the pericentrion, a PKC-dependent subset of recycling endosomes. In MCF-7 human breast cancer cells, the action of the PKC activator 4beta-phorbol-12-myristate-13-acetate (PMA) evokes ceramide formation, which in turn prevents PKCalpha/betaII translocation to the pericentrion. In this study we investigated the mechanisms by which ceramide negatively regulates this translocation of PKCalpha/betaII. Upon PMA treatment, HEK-293 cells displayed dual phosphorylation of PKCalpha/betaII at carboxyl-terminal sites (Thr-638/641 and Ser-657/660), whereas in MCF-7 cells PKCalpha/betaII were phosphorylated at Ser-657/660 but not Thr-638/641. Inhibition of ceramide synthesis by fumonisin B1 overcame the defect in PKC phosphorylation and restored translocation of PKCalpha/betaII to the pericentrion. To determine the involvement of ceramide-activated protein phosphatases in PKC regulation, we employed small interference RNA to silence individual Ser/Thr protein phosphatases. Knockdown of isoforms alpha or beta of the catalytic subunits of protein phosphatase 1 not only increased phosphorylation of PKCalpha/betaII at Thr-638/641 but also restored PKCbetaII translocation to the pericentrion. Mutagenesis approaches in HEK-293 cells revealed that mutation of either Thr-641 or Ser-660 to Ala in PKCbetaII abolished sequestration of PKC, implying the indispensable roles of phosphorylation of PKCalpha/betaII at those sites for their translocation to the pericentrion. Reciprocally, a point mutation of Thr-641 to Glu, which mimics phosphorylation, in PKCbetaII overcame the inhibitory effects of ceramide on PKC translocation in PMA-stimulated MCF-7 cells. Therefore, the results demonstrate a novel role for carboxyl-terminal phosphorylation of PKCalpha/betaII in the translocation of PKC to the pericentrion, and they disclose specific regulation of PKC autophosphorylation by ceramide through the activation of specific isoforms of protein phosphatase 1.  相似文献   

8.
9.
Protein kinase C is processed by three phosphorylation events before it is competent to respond to second messengers. Specifically, the enzyme is first phosphorylated at the activation loop by another kinase, followed by two ordered autophosphorylations at the carboxyl terminus (Keranen, L. M., Dutil, E. M., and Newton, A. C. (1995) Curr. Biol. 5, 1394-1403). This study examines the role of negative charge at the first conserved carboxyl-terminal phosphorylation position, Thr-641, in regulating the function and subcellular localization of protein kinase C betaII. Mutation of this residue to Ala results in compensating phosphorylations at adjacent sites, so that a triple Ala mutant was required to address the function of phosphate at Thr-641. Biochemical and immunolocalization analyses of phosphorylation site mutants reveal that negative charge at this position is required for the following: 1) to process catalytically competent protein kinase C; 2) to allow autophosphorylation of Ser-660; 3) for cytosolic localization of protein kinase C; and 4) to permit phorbol ester-dependent membrane translocation. Thus, phosphorylation of Thr-641 in protein kinase C betaII is essential for both the catalytic function and correct subcellular localization of protein kinase C. The conservation of this residue in every protein kinase C isozyme, as well as other members of the kinase superfamily such as protein kinase A, suggests that carboxyl-terminal phosphorylation serves as a key molecular switch for defining kinase function.  相似文献   

10.
Matsuzaki H  Yamamoto T  Kikkawa U 《Biochemistry》2004,43(14):4284-4293
Protein kinase B (PKB) alpha, having the pleckstrin homology (PH) and catalytic domains in its amino- and carboxyl-terminal regions, respectively, is activated in the signaling pathway of growth factors as a downstream target of phosphatidylinositol 3-kinase and becomes an active form in heat-shocked cells in a manner independent of the lipid kinase. Therefore, the activation mechanisms of PKBalpha were compared in platelet-derived growth factor (PDGF)-stimulated and heat-shocked cells by monitoring the protein kinase activity and phosphorylation of the mutant molecules expressed in COS-7 cells. In heat-shocked cells, PKBalpha was activated to a certain level without phosphorylation on Thr-308 in the activation loop and on Thr-450 and Ser-473 in the carboxyl-terminal end region, which is critical for growth-factor-induced activation of PKBalpha. Metabolic labeling with (32)P-orthophosphate in the transfected cells revealed that there is no major phosphorylation site other than the three residues in PKBalpha. PKBalpha activated by heat shock was more stable than the enzyme stimulated by PDGF in the cells, and PKBalpha recovered from heat-shocked cells was resistant to the protein phosphatase treatment, whereas the enzyme obtained from the growth-factor-stimulated cells was inactivated by dephosphorylation. Heat shock also enhanced the association of the PH-domain fragment to the full-length PKBalpha in the transfected cells. On the other hand, the PH-domain fragment of PKBalpha, which moves from the cytosol to the plasma membrane upon PDGF stimulation by the interaction with the phosphatidylinositol 3-kinase products, did not translocate but stayed in the cytosol in heat-shocked NIH 3T3 cells. Furthermore, PKBalpha was associated with the nuclear region in heat-shocked cells, which is not observed in growth-factor-stimulated cells. These results indicate that heat shock induces the conformational change of PKBalpha that accompanies the protein complex formation and perinuculear/nuclear localization of the enzyme, to generate an active form by a mechanism distinct from that in the growth-factor-signaling pathway.  相似文献   

11.
Ribosomal S6 kinase 1 (S6K1), as a key regulator of mRNA translation, plays an important role in cell cycle progression through the G(1) phase of proliferating cells and in the synaptic plasticity of terminally differentiated neurons. Activation of S6K1 involves the phosphorylation of its multiple Ser/Thr residues, including the proline-directed sites (Ser-411, Ser-418, Thr-421, and Ser-424) in the autoinhibitory domain near the C terminus. Phosphorylation at Thr-389 is also a crucial event in S6K1 activation. Here, we report that S6K1 phosphorylation at Ser-411 is required for the rapamycin-sensitive phosphorylation of Thr-389 and the subsequent activation of S6K1. Mutation of Ser-411 to Ala ablated insulin-induced Thr-389 phosphorylation and S6K1 activation, whereas mutation mimicking Ser-411 phosphorylation did not show any effect. Furthermore, phosphomimetic mutation of Thr-389 overcame the inhibitory effect of the mutation S411A. Thus, Ser-411 phosphorylation regulates S6K1 activation via the control of Thr-389 phosphorylation. In nervous system neurons, Cdk5-p35 kinase associates with S6K1 via the direct interaction between p35 and S6K1 and catalyzes S6K1 phosphorylation specifically at Ser-411. Inhibition of the Cdk5 activity or suppression of Cdk5 expression blocked S6K1 phosphorylation at Ser-411 and Thr-389, resulting in S6K1 inactivation. Similar results were obtained by treating asynchronous populations of proliferating cells with the CDK inhibitor compound roscovitine. Altogether, our findings suggest a novel mechanism by which the CDK-mediated phosphorylation regulates the activation of S6K1.  相似文献   

12.
The dephosphorylation of the myosin light chain kinase and protein kinase C sites on the 20 kDa myosin light chain by myosin phosphatase was investigated. The myosin phosphatase holoenzyme and catalytic subunit, dephosphorylated Ser-19, Thr-18 and Thr-9, but not Ser-1/Ser-2. The role of noncatalytic subunits in myosin phosphatase was to activate the phosphatase activity. For Ser-19 and Thr-18, this was due to a decrease in Km and an increase in k(cat) and for Thr-9 to a decrease in Km. Thus, the distinction between the various sites is a property of the catalytic subunit.  相似文献   

13.
p90 ribosomal S6 kinases (RSKs), containing two distinct kinase catalytic domains, are phosphorylated and activated by extracellular signal-regulated kinase (ERK). The amino-terminal kinase domain (NTD) of RSK phosphorylates exogenous substrates, whereas the carboxyl-terminal kinase domain (CTD) autophosphorylates Ser-386. A conserved putative autoinhibitory alpha helix is present in the carboxyl-terminal tail of the RSK isozymes ((697)HLVKGAMAATYSALNR(712) of RSK2). Here, we demonstrate that truncation (Delta alpha) or mutation (Y707A) of this helix in RSK2 resulted in constitutive activation of the CTD. In vivo, both mutants enhanced basal Ser-386 autophosphorylation by the CTD above that of wild type (WT). The enhanced Ser-386 autophosphorylation was attributed to disinhibition of the CTD because a CTD dead mutation (K451A) eliminated Ser-386 autophosphorylation even in conjunction with Delta alpha and Y707A. Constitutive activity of the CTD appears to enhance NTD activity even in the absence of ERK phosphorylation because basal phosphorylation of S6 peptide by Delta alpha and Y707A was approximately 4-fold above that of WT. A RSK phosphorylation motif antibody detected a 140-kDa protein (pp140) that was phosphorylated upon epidermal growth factor or insulin treatment. Ectopic expression of Delta alpha or Y707A resulted in increased basal phosphorylation of pp140 compared with that of WT, presenting the possibility that pp140 is a novel RSK substrate. Thus, it is clear that the CTD regulates NTD activity in vivo as well as in vitro.  相似文献   

14.
The FKBP12-rapamycin associated protein (FRAP, also RAFT, mTOR) belongs to a family of phosphatidylinositol kinase-related kinases. These kinases mediate cellular responses to stresses such as DNA damage and nutrient deprivation in a variety of eukaryotes from yeast to humans. FRAP regulates G(1) cell cycle progression and translation initiation in part by controlling the phosphorylation states of a number of translational and cell cycle regulators. Although FRAP is known to be phosphorylated in vivo and to phosphorylate several proteins (including itself) in vitro, FRAP's phosphorylation sites and substrate specificity are unknown. We report here the identification of a FRAP autophosphorylation site. This site, Ser-2481, is located in a hydrophobic region near the conserved carboxyl-terminal FRAP tail. We demonstrate that the COOH-terminal tail is required for FRAP kinase activity and for signaling to the translational regulator p70(s6k) (ribosomal subunit S6 kinase). Phosphorylation of wild-type but not kinase-inactive FRAP occurs at Ser-2481 in vivo, suggesting that Ser-2481 phosphorylation is a marker of FRAP autokinase activity in cells. FRAP autophosphorylation is blocked completely by wortmannin treatment but not by rapamycin treatment, amino acid deprivation, or serum withdrawal, treatments that lead to acute dephosphorylation of eIF4E-binding protein (4E-BP1) and p70(s6k). Ser-2481 phosphorylation increases slightly upon c-Akt/PKB activation and dramatically upon calyculin A treatment of T-cells. These results suggest that FRAP-responsive dephosphorylation of 4E-BP1 and p70(s6k) occurs through a mechanism other than inhibition of intrinsic FRAP kinase activity.  相似文献   

15.
Pleckstrin homology (PH) domain binding to D3-phosphorylated phosphatidylinositides (PI) provides a reversible means of recruiting proteins to the plasma membrane, with the resultant change in subcellular localization playing a key role in the activation of multiple intracellular signaling pathways. Previously we found that the T-cell-specific PH domain-containing kinase Itk is constitutively membrane associated in Jurkat T cells. This distribution was unexpected given that the closely related B-cell kinase, Btk, is almost exclusively cytosolic. In addition to constitutive membrane association of Itk, unstimulated JTAg T cells also exhibited constitutive phosphorylation of Akt on Ser-473, an indication of elevated basal levels of the phosphatidylinositol 3-kinase (PI3K) products PI-3,4-P(2) and PI-3,4,5-P(3) in the plasma membrane. Here we describe a defect in expression of the D3 phosphoinositide phosphatase, PTEN, in Jurkat and JTAg T cells that leads to unregulated PH domain interactions with the plasma membrane. Inhibition of D3 phosphorylation by PI3K inhibitors, or by expression of PTEN, blocked constitutive phosphorylation of Akt on Ser-473 and caused Itk to redistribute to the cytosol. The PTEN-deficient cells were also hyperresponsive to T-cell receptor (TCR) stimulation, as measured by Itk kinase activity, tyrosine phosphorylation of phospholipase C-gamma1, and activation of Erk compared to those in PTEN-replete cells. These data support the idea that PH domain-mediated association with the plasma membrane is required for Itk activation, provide evidence for a negative regulatory role of PTEN in TCR stimulation, and suggest that signaling models based on results from Jurkat T-cell lines may underestimate the role of PI3K in TCR signaling.  相似文献   

16.
CPI-17 is a protein phosphatase 1 (PP1) inhibitor that has been shown to act on the myosin light chain phosphatase. CPI-17 is phosphorylated on Thr-38 in vivo, thus enhancing its ability to inhibit PP1. Thr-38 has been shown to be the target of several protein kinases in vitro. Originally, the expression of CPI-17 was proposed to be smooth muscle specific. However, it has recently been found in platelets and we show in this report that it is endogenously phosphorylated in brain on Ser-128 in a domain unique to CPI-17. Ser-128 is within a consensus phosphorylation site for protein kinase A (PKA) and calcium calmodulin kinase II. However, these two kinases do not phosphorylate Ser-128 in vitro but phosphorylate Ser-130 and Thr-38, respectively. The kinase responsible for Ser-128 phosphorylation remains to be identified. CPI-17 has strong sequence similarity with PHI-1 (which is also a phosphatase inhibitor) and LimK-2 kinase. The novel in vivo and in vitro phosphorylation sites (serines 128 and 130) are in a region/domain unique to CPI-17, suggesting a specific interaction domain that is regulated by phosphorylation.  相似文献   

17.
LKB1 is a serine-threonine protein kinase that, when inhibited, may result in unregulated cell growth and tumor formation. However, how LKB1 is regulated remains poorly understood. The aim of the present study was to define the upstream signaling events responsible for peroxynitrite (ONOO(-))-induced LKB1 activation. Exposure of cultured human umbilical vein endothelial cells to a low concentration of ONOO(-) (5 microM) significantly increased the phosphorylation of LKB1 at Ser(428) and protein kinase Czeta (PKCzeta) at Thr(410). These effects were accompanied by increased activity of the lipid phosphatase PTEN, decreased activity and phosphorylation (Ser(473)) of Akt, and induction of apoptosis. ONOO(-) enhanced Akt-Ser(473) phosphorylation in LKB1-deficient HeLa S3 cells or in HeLa S3 cells transfected with kinase-dead LKB1. Conversely, ONOO(-) inhibited Akt Ser(473) phosphorylation when wild type LKB1 were reintroduced in HeLa S3 cells. Further analysis revealed that PKCzeta directly phosphorylated LKB1 at Ser(428) in vitro and in intact cells, resulting in increased PTEN phosphorylation at Ser(380)/Thr(382/383). Finally, ONOO(-) enhanced PKCzeta nuclear import and LKB1 nuclear export. We conclude that PKCzeta mediates LKB1-dependent Akt inhibition in response to ONOO(-), resulting in endothelial apoptosis.  相似文献   

18.
Barrier-to-autointegration factor (BAF or BANF1) is highly conserved in multicellular eukaryotes and was first identified for its role in retroviral DNA integration. Homozygous BAF mutants are lethal and depletion of BAF results in defects in chromatin segregation during mitosis and subsequent nuclear envelope assembly. BAF exists both in phosphorylated and unphosphorylated forms with phosphorylation sites Thr-2, Thr-3, and Ser-4, near the N terminus. Vaccinia-related kinase 1 is the major kinase responsible for phosphorylation of BAF. We have identified the major phosphatase responsible for dephosphorylation of Ser-4 to be protein phosphatase 4 catalytic subunit. By examining the cellular distribution of phosphorylated BAF (pBAF) and total BAF (tBAF) through the cell cycle, we found that pBAF is associated with the core region of telophase chromosomes. Depletion of BAF or perturbing its phosphorylation state results not only in nuclear envelope defects, including mislocalization of LEM domain proteins and extensive invaginations into the nuclear interior, but also impaired cell cycle progression. This phenotype is strikingly similar to that seen in cells from patients with progeroid syndrome resulting from a point mutation in BAF.  相似文献   

19.
We have studied mechanisms of Akt-mediated phosphorylation and regulation of cellular localization of p27. Akt phosphorylates Thr-157 in p27 and retains it in the cytosol. In cells arrested in G(1) and then synchronized to enter into S phase, Akt-mediated phosphorylation of Thr-157 p27 occurred in the cytosol during G(1) phase of the cell cycle. Both T157A and S10A p27 mutants localized in the nucleus in all phases of the cell cycle regardless of the expression of active Akt. Thr-157 phosphorylation was undetectable in S10A-p27, suggesting that Ser-10 phosphorylation is required for p27 localization in the cytosol and subsequent phosphorylation at Thr-157. Phosphorylation at Thr-157 interrupted the association of p27 with importin alpha. A T157A-p27 mutant protein exhibited higher association with importin alpha than wild-type-p27. Treatment of transfected and endogenous p27 with alkaline phosphatase rescued its association with importin alpha. Leptomycin B inhibited cytosolic Thr-157 P-p27 staining, implying that CRM1-dependent nuclear export is required for Akt-mediated Thr-157 phosphorylation. Heterokaryon shuttling assays with NIH3T3 (mouse) cells transfected with FLAG-p27 and HeLa (human) cells revealed that both wild type and T157A-p27 shuttled from NIH3T3 to HeLa cell nuclei with similar frequencies. However, S10A-p27 was found only in the NIH3T3 nuclei of NIH3T3-HeLa cell fusions. These results suggest that 1) Ser-10 phosphorylation is required for nuclear export of p27, 2) subsequent Akt-mediated phosphorylation at Thr-157 during G(1) phase corrals p27 in the cytosol, and 3) Thr-157 phosphorylation inhibits the association of p27 with importin alpha thus preventing its re-entry into the nucleus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号