首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reiter TA  Reiter NJ  Rusnak F 《Biochemistry》2002,41(51):15404-15409
Bacteriophage lambda protein phosphatase (lambdaPP) is a member of a large family of metal-containing phosphoesterases, including purple acid phosphatase, protein serine/threonine phosphatases, 5'-nucleotidase, and DNA repair enzymes such as Mre11. lambdaPP can be activated several-fold by various divalent metal ions, with Mn(2+) and Ni(2+) providing the most significant activation. Despite the extensive characterization of purified lambdaPP in vitro, little is known about the identity and stoichiometry of metal ions used by lambdaPP in vivo. In this report, we describe the use of metal analysis, activity measurements, and whole cell EPR spectroscopy to investigate in vivo metal binding and activation of lambdaPP. Escherichia coli cells overexpressing lambdaPP show a 22.5-fold increase in intracellular Mn concentration and less dramatic changes in the intracellular concentration of other biologically relevant metal ions compared to control cells that do not express lambdaPP. Phosphatase activity assessed using para-nitrophenylphosphate as substrate is increased 850-fold in cells overexpressing lambdaPP, indicating the presence of metal-activated enzyme in cell lysate. EPR spectra of intact cells overexpressing lambdaPP exhibit resonances previously attributed to mononuclear Mn(2+) and dinuclear [(Mn(2+))(2)] species bound to lambdaPP. Spin quantitation of EPR spectra of intact E. coli cells overexpressing lambdaPP indicates the presence of approximately 40 microM mononuclear Mn(2+)-lambdaPP and 60 microM [(Mn(2+))(2)]-lambdaPP. The data suggest that overexpression of lambdaPP results in a mixture of apo-, mononuclear-Mn(2+), and dinuclear-[(Mn(2+))(2)] metalloisoforms and that Mn(2+) is a physiologically relevant activating metal ion in E. coli.  相似文献   

2.
White DJ  Reiter NJ  Sikkink RA  Yu L  Rusnak F 《Biochemistry》2001,40(30):8918-8929
Bacteriophage lambda phosphoprotein phosphatase (lambdaPP) has structural similarity to the mammalian Ser/Thr phosphoprotein phosphatases (PPPs) including the immunosuppressant drug target calcineurin. PPPs possess a conserved active site containing a dinuclear metal cluster, with metal ligands provided by a phosphoesterase motif plus two additional histidine residues at the C-terminus. Multiple sequence alignment of lambdaPP with 28 eubacterial and archeal phosphoesterases identified active site residues from the phosphoesterase motif and in many cases 2 additional C-terminal His metal ligands. Most highly similar to lambdaPP are E. coli PrpA and PrpB. Using the crystal structure of lambdaPP [Voegtli, W. C., et al. (2000) Biochemistry 39, 15365-15374] as a structural and active site model for PPPs and related bacterial phosphoesterases, we have studied mutant forms of lambdaPP reconstituted with Mn(2+) by electron paramagnetic resonance (EPR) spectroscopy, Mn(2+) binding analysis, and phosphatase kinetics. Analysis of Mn(2+)-bound active site mutant lambdaPP proteins shows that H22N, N75H, and H186N mutations decrease phosphatase activity but still allow mononuclear Mn(2+) and [(Mn(2+))(2)] binding. The high affinity Mn(2+) binding site is shown to consist of M2 site ligands H186 and Asn75, but not H22 from the M1 site which is ascribed as the lower affinity site.  相似文献   

3.
MnCl2 was partially effective as a substitute for MgCl2 in activating the K+- dependent phosphatase reaction catalyzed by a purified (Na+ + K+)-ATPase enzyme preparation from canine kidney medulla, the maximal velocity attainable being one-fourth that with MgCl2. Estimates of the concentration of free Mn2+ available when the reaction was half-maximally stimulated lie in the range of the single high-affinity divalent cation site previously identified (Grisham, C.M. and Mildvan, A.S. (1974) J. Biol. Chem. 249, 3187--3197). MnCl2 competed with MgCl2 as activator of the phosphatase reaction, again consistent with action through a single site. However, with MnCl2 appreciable ouabain-inhibitable phosphatase activity occurred in the absence of added KCl, and the apparent affinities for K+ as activator of the reaction and for Na+ as inhibitor were both decreased. For the (Na+ + K+)-ATPase reaction substituting MnCl2 for MgCl2 was also partially effective, but no stimulation in the absence of added KCl, in either the absence or presence of NaCl, was detectable. Moreover, the apparent affinity for K+ was increased by the substitution, although that for Na+ was decreased as in the phosphatase reaction. Substituting MnCl2 also altered the sensitivity to inhibitors. For both reactions the inhibition by ouabain and by vanadate was increased, as was binding of [48V] -vanadate to the enzyme; furthermore, binding in the presence of MnCl2 was, unlike that with MgCl2, insensitive to KCl and NaCl. Inhibition of the phosphatase reaction by ATP was decreased with 1 mM but not 10 mM KCl. Finally, inhibition of the (Na+ + K+)-ATPase reaction by Triton X-100 was increased, but that by dimethylsulfoxide decreased after such substitution. These findings are considered in terms of Mn2+ at the divalent cation site being a better selector than Mg2+ of the E2 conformational states of the enzyme, states also selected by K+ and by dimethylsulfoxide and reactive with ouabain and vanadate; the E1 conformational states, by contrast, are those selected by Na+ and ATP, and also by Triton X-100.  相似文献   

4.
Calcineurin, a calmodulin-regulated phosphatase, is composed of two distinct subunits (A and B) and requires certain metal ions for activity. The binding of the two most potent activators, Ni2+ and Mn2+, to calcineurin and its subunits has been studied. Incubation of the protein with 63Ni2+ (or 54Mn2+) followed by gel filtration to separate free and protein-bound ions indicated that calcineurin could maximally bind 2 mol/mol of Ni2+ or Mn2+. While isolated A subunit also bound 2 mol/mol of Ni2+, no Mn2+ binding was demonstrated for either isolated A or B subunit. When bindings were monitored by nitrocellulose filter assay, only 1 mol/mol bound Ni2+ or Mn2+ was detected, suggesting that the two Ni2+ (or Mn2+) binding sites had different relative affinities and that only metal ions bound at the higher affinity sites were detected by the filter assay. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the filter assay-measured Ni2+ (or Mn2+) binding by only 30%. Preincubation of the protein with Zn2+ decreased the filter assay-measured Ni2+ or Mn2+ binding by 90 or 17%, respectively. The results suggest that the higher affinity sites are a Ni2+-specific site and a distinct Mn2+-specific site. Preincubation of calcineurin with Mn2+ (or Ni2+) decreased the gel filtration-determined Ni2+ (or Mn2+) binding from 2 to 1 mol/mol suggesting that calcineurin also contains a site which binds either metal ion. The time course of Ni2+ (or Mn2+) binding was correlated with that of the enzyme activation, and the extent of deactivation of the Ni2+-activated calcineurin by EDTA or by incubation with Ca2+ and calmodulin (Pallen, C. J., and Wang, J. H. (1984) J. Biol. Chem. 259, 6134-6141) was correlated with the release of the bound ions, thus suggesting that the bound ion is directly responsible for enzyme activation.  相似文献   

5.
Bernat BA  Armstrong RN 《Biochemistry》2001,40(42):12712-12718
The fosfomycin resistance protein, FosA, catalyzes the Mn(2+)-dependent addition of glutathione to the antibiotic fosfomycin, (1R,2S)-epoxypropylphosphonic acid, rendering the antibiotic inactive. The enzyme is a homodimer of 16 kDa subunits, each of which contains a single mononuclear metal site. Stopped-flow absorbance/fluorescence spectrometry provides evidence suggesting a complex kinetic mechanism for the acquisition of Mn(2+) by apoFosA. The binding of Mn(H(2)O)(6)(2+) to apoFosA alters the UV absorption and intrinsic fluorescence characteristics of the protein sufficiently to provide sensitive spectroscopic probes of metal binding. The acquisition of metal is shown to be a multistep process involving rapid preequilibrium formation of an initial complex with release of approximately two protons (k(obsd) > or = 800 s(-1)). The initial complex either rapidly dissociates or forms an intermediate coordination complex (k > 300 s(-1)) with rapid isomerization (k > or = 20 s(-1)) to a set of tight protein-metal complexes. The observed bimolecular rate constant for formation of the intermediate coordination complex is 3 x 10(5) M(-1) s(-1). The release of Mn(2+) from the protein is slow (k approximately 10(-2) s(-1)). The kinetic results suggest a more complex chelate effect than is typically observed for metal binding to simple multidentate ligands. Although the addition of the substrate, fosfomycin, has no appreciable effect on the association kinetics of enzyme and metal, it significantly decreases the dissociation rate, suggesting that the substrate interacts directly with the metal center.  相似文献   

6.
Bacteriophage lambda protein phosphatase (lambdaPP) with Mn(2+) as the activating metal cofactor was studied using phosphatase inhibition kinetics and electron paramagnetic resonance (EPR) spectroscopy. Orthophosphate and the oxoanion analogues orthovanadate, tungstate, molybdate, arsenate, and sulfate were shown to inhibit the phosphomonoesterase activity of lambdaPP, albeit with inhibition constants (K(i)) that range over 5 orders of magnitude. In addition, small organic anions were tested as inhibitors. Phosphonoacetohydroxamic acid (PhAH) was found to be a strong competitive inhibitor (K(i) = 5.1 +/- 1.6 microM) whereas phosphonoacetic acid (K(i) = 380 +/- 45 microM) and acetohydroxamic acid (K(i) > 75 mM) modestly inhibited lambdaPP. Low-temperature EPR spectra of Mn(2+)-reconstituted lambdaPP in the presence of oxoanions and PhAH demonstrate that inhibitor binding decreases the spin-coupling constant, J, compared to the native enzyme. This suggests a change in the bridging interaction between Mn(2+) ions of the dimer due to protonation or replacement of a bridging ligand. Inhibitor binding also induces several spectral shifts. Hyperfine splitting characteristic of a spin-coupled (Mn(2+))(2) dimer is most prominent upon the addition of orthovanadate (K(i) = 0.70 +/- 0.20 microM) and PhAH, indicating that these inhibitors tightly interact with the (Mn(2+))(2) form of lambdaPP. These EPR and inhibition kinetic results are discussed in the context of establishing a common mechanism for the hydrolysis of phosphate esters by lambdaPP and other serine/threonine protein phosphatases.  相似文献   

7.
The activities of the eight mutant proteins of Escherichia coli RNase HI, in which the four carboxylic amino acids (Asp(10), Glu(48), Asp(70), and Asp(134)) involved in catalysis are changed to Asn (Gln) or Ala, were examined in the presence of Mn(2+). Of these proteins, the E48A, E48Q, D134A, and D134N proteins exhibited the activity, indicating that Glu(48) and Asp(134) are dispensable for Mn(2+)-dependent activity. The maximal activities of the E48A and D134A proteins were comparable to that of the wild-type protein. However, unlike the wild-type protein, these mutant proteins exhibited the maximal activities in the presence of >100 microM MnCl(2), and their activities were not inhibited at higher Mn(2+) concentrations (up to 10 mM). The wild-type protein contains two Mn(2+) binding sites and is activated upon binding of one Mn(2+) ion at site 1 at low ( approximately 1 microM) Mn(2+) concentrations. This activity is attenuated upon binding of a second Mn(2+) ion at site 2 at high (>10 microM) Mn(2+) concentrations. The cleavage specificities of the mutant proteins, which were examined using oligomeric substrates at high Mn(2+) concentrations, were identical to that of the wild-type protein at low Mn(2+) concentrations but were different from that of the wild-type protein at high Mn(2+) concentrations. These results suggest that one Mn(2+) ion binds to the E48A, E48Q, D134A, and D134N proteins at site 1 or a nearby site with weaker affinities. The binding analyses of the Mn(2+) ion to these proteins in the absence of the substrate support this hypothesis. When Mn(2+) ion is used as a metal cofactor, the Mn(2+) ion itself, instead of Glu(48) and Asp(134), probably holds water molecules required for activity.  相似文献   

8.
T A Ono  H Mino 《Biochemistry》1999,38(27):8778-8785
Binding of Mn2+ to manganese-depleted photosystem II and electron donation from the bound Mn2+ to an oxidized YZ tyrosine were studied under the same equilibrium conditions. Mn2+ associated with the depleted membranes in a nonsaturating manner when added alone, but only one Mn2+ ion per photosystem II (PS II) was bound to the membranes in the presence of other divalent cations including Ca2+ and Mg2+. Mn2+-dependent electron donation to photosystem II studied by monitoring the decay kinetics of chlorophyll fluorescence and the electron paramagnetic resonance (EPR) signal of an oxidized YZ tyrosine (YZ+) after a single-turnover flash indicated that the binding of only one Mn2+ ion to the manganese-depleted PS II is sufficient for the complete reduction of YZ+ induced by flash excitation. The results indicate that the manganese-depleted membranes have only one unique binding site, which has higher affinity and higher specificity for Mn2+ compared with Mg2+ and Ca2+, and that Mn2+ bound to this unique site can deliver an electron to YZ+ with high efficiency. The dissociation constant for Mn2+ of this site largely depended on pH, suggesting that a single amino acid residue with a pKa value around neutral pH is implicated in the binding of Mn2+. The results are discussed in relation to the photoactivation mechanism that forms the active manganese cluster.  相似文献   

9.
Ribonucleotide reduction and not DNA replication is the site for the specific manganese requirement of DNA synthesis and cell growth in the coryneform bacterium Brevibacterium ammoniagenes. To characterize the metal effect we have isolated and purified ribonucleoside-diphosphate reductase from overproducing bacteria that were first deprived of and then reactivated by manganese ions. Purification on columns of Sephacryl S400, DEAE-cellulose and hydroxyapatite provided an apparently homogeneous enzyme consisting of two protein subunits. These were characterized by affinity chromatography on 2',5'-ADP-Sepharose as nucleotide-binding protein B1 (Mr = 80,000) and catalytic protein B2 (Mr = 100,000, composed of two Mr = 50,000 polypeptides), which were both necessary for activity. In vitro the purified enzyme does not require added metal ions except for an unspecific, twofold activity increase observed in the presence of Mg2+ and other divalent cations. Enzyme activity is inhibited by hydroxyurea (I50 = 2.5 mM). The electronic spectrum with maxima around 455 nm and 485 nm closely resembles that of manganese(III)-containing pseudocatalase and of oxo-bridged binuclear Mn(III) model complexes. Denaturation of the enzyme in trichloroacetic acid liberated an equimolar amount of Mn(II) which was detected by EPR spectroscopy. It was not possible to remove and reintroduce metal ions without loss of enzyme activity. Manganese-deficient cell cultures were also grown in the presence of 54MnCl2. Ribonucleotide reductase activity and radioactivity cochromatographed in several systems. Non-denaturing polyacrylamide gel electrophoresis showed that protein subunit B2 was specifically 54Mn-labeled. All these properties suggest that the ribonucleotide reductase of B. ammoniagenes is a manganese-containing analog of the non-heme-iron-containing reductases of Escherichia coli and eukaryotes.  相似文献   

10.
Calcineurin was dissociated into subunits A and B by 6 M urea in the presence (method A) and absence (method B) of MnCl2 and dissociated subunits were isolated by gel filtration in urea in the absence (method B) or presence (method A) of MnCl2. Phosphatase activity was associated with the A subunit isolated by either method. The phosphatase activity (nmol/mg) of subunit A isolated by method A was greater (2-5-fold) than by method B. Mn2+ increased subunit A phosphatase and calmodulin further increased the enzyme activity. Subunit B isolated by method A or B increased Mn2+ + calmodulin stimulated subunit A phosphatase prepared by method B but interestingly and unexpectedly inhibited such stimulated activity of the subunit A prepared by method A. These results imply the tightly bound cation (in our case, most likely Mn2+) with subunit A dramatically and differentially influences the effects of two Ca2+-binding proteins, calmodulin and subunit B, on the subunit A phosphatase.  相似文献   

11.
The Fe protein activating enzyme for Rhodospirillum rubrum nitrogenase was purified to approximately 90% homogeneity, using DE52-cellulose chromatography and sucrose density gradient centrifugation. Activating enzyme consists of a single polypeptide of molecular weight approximately 24,000. ATP was required for catalytic activity, but was relatively ineffective in the absence of Mg2+. When the concentration of MgATP2- was held in excess, there was an additional requirement for a free divalent metal ion (Mn2+) for enzyme activity. Kinetic experiments showed that the presence of Mg2+ influenced the apparent binding of Mn2+ by the enzyme, resulting in a lowering of the concentration of Mn2+ required to give half-maximum activity (K alpha) as the free Mg2+ concentration was increased. A low concentration of Mn2+ had a sparing effect on the requirement for free Mg2+. There is apparently a single metal-binding site on activating enzyme which preferentially binds Mn2+ as a positive effector, and free Mg2+ can compete for this site.  相似文献   

12.
13.
Co(II)-glyoxalase I has been prepared by reactivation of apoenzyme from human erythrocytes with Co2+. The visible absorption spectrum showed maxima at 493 and 515 nm and shoulders at 465 and 615 nm. The absorption coefficients at 493 and 515 nm were 35 and 33 M-1 cm-1/cobalt ion, respectively; i.e. 70 and 66 M-1 cm-1 for the dimeric metalloprotein. The product of the enzymatic reaction, S-D-lactoylglutathione, although binding to Co(II)-glyoxalase I, had no demonstrable effect on the visible absorption spectrum, indicating binding outside the first coordination sphere of the metal. The EPR spectrum at 3.9 K was characterized by g1 approximately 6.6, g2 approximately 3.0, and g3 approximately 2.5, and eight hyperfine lines with A1 = 0.025 cm-1. Binding of the strong competitive inhibitor S-p-bromobenzylglutathione to Co(II)-glyoxalase I gave three g values: 6.3, 3.4, and 2.5, indicating a conformational change affecting the environment of the metal ion. Both optical and EPR spectra strongly suggest a high spin Co2+ with octahedral coordination in the active site of the enzyme. The similarities in kinetic properties between native Zn(II)-glyoxalase I and enzyme substituted with Mg2+, Mn2+, or Co2+ is consistent with the view that these enzyme forms have the same metal coordination in the protein.  相似文献   

14.
The incorporation of dNMPs into DNA by polymerases involves a phosphoryl transfer reaction hypothesized to require two divalent metal ions. Here we investigate this hypothesis using as a model human DNA polymerase lambda (Pol lambda), an enzyme suggested to be activated in vivo by manganese. We report the crystal structures of four complexes of human Pol lambda. In a 1.9 A structure of Pol lambda containing a 3'-OH and the non-hydrolyzable analog dUpnpp, a non-catalytic Na+ ion occupies the site for metal A and the ribose of the primer-terminal nucleotide is found in a conformation that positions the acceptor 3'-OH out of line with the alpha-phosphate and the bridging oxygen of the pyrophosphate leaving group. Soaking this crystal in MnCl2 yielded a 2.0 A structure with Mn2+ occupying the site for metal A. In the presence of Mn2+, the conformation of the ribose is C3'-endo and the 3'-oxygen is in line with the leaving oxygen, at a distance from the phosphorus atom of the alpha-phosphate (3.69 A) consistent with and supporting a catalytic mechanism involving two divalent metal ions. Finally, soaking with MnCl2 converted a pre-catalytic Pol lambda/Na+ complex with unreacted dCTP in the active site into a product complex via catalysis in the crystal. These data provide pre- and post-transition state information and outline in a single crystal the pathway for the phosphoryl transfer reaction carried out by DNA polymerases.  相似文献   

15.
The regulatory mechanism of a phosphoprotein phosphatase (EC 3.1.3.16), which is considered to catalyze the dephosphorylation reaction of several phosphoproteins (glycogen synthetase-D (EC 2.4.1.11), phospho-form of phosphorylase b kinase (EC 2.7.1.38), phosphohistone and phosphorylase a (EC 2.4.1.1)), was studied with partially purified preparations from rabbit skeletal muscle. Time- and temperature-dependent inactivation and reactivation of phosphohistone phosphatase, as well as phosphorylase phosphatase (EC 3.1.3.17), were observed on pre0incubation of the enzyme(s) with ATP, and subsequent incubation with divalent metal ions (Mg2+, Mn2+, or Co2+) without any change of molecular size. Manganese, however, instantly restored the activity of the ATP-inactivated enzyme, and increased the maximal velocity of the enzyme while decreasing its affinity to phosphorylase a. However, the metal ion inhibited the reactivated enzyme competively with respect to phosphorylase a. It is suggested that phosphoprotein phosphatase(s) is a metalloenzyme, and that ATP results in a conformational change of the enzyme protein in such a way that a metal ion can be easily released due to the chelating effect of ATP, or incorporated (in the presence of excess metal ions) into the enzyme protein.  相似文献   

16.
17.
The interaction of divalent metal ions with a homogeneous 56,000-dalton phosphoprotein phosphatase isolated from rabbit reticulocytes was studied. The effects of the ions on enzymatic activity and on fluorescence from a 3-(4-maleimidylphenyl)-4-methyl-7-(diethylamino)coumarin derivative of the protein were compared. Enzymatic activity is dependent on Mn2+. The apparent association constant for Mn2+ is about 0.5 mM-1 as judged from enzymatic activity and from changes in fluorescence caused by binding of the metal ion; Ca2+ and Mg2+ do not affect enzymatic activity and appear not to bind tightly to the enzyme; however, Co2+, Fe2+, and Zn2+ bind to the protein and inhibit the Mn2+-activated enzyme. The 56,000-dalton phosphoprotein phosphatase was found to interact with regulin, a spectrin-associated protein also isolated from reticulocytes, and with skeletal muscle phosphatase inhibitor 2. The interaction was followed by changes in the enzymatic activity and by quenching of fluorescence from the coumarin derivative of the phosphatase. Homogeneous regulin (Mr approximately 230,000) increases the activity of the enzyme severalfold; this stimulation is Mn2+-dependent. Inhibitor 2 decreases enzyme activity but only if the two proteins are preincubated in the absence of Mn2+. Comparable differences in the effect of Mn2+ were also observed in parallel experiments in which changes in fluorescence from the coumarin-labeled 56,000-dalton phosphatase were measured. In these experiments, it was shown that Mn2+ enhances the interaction between regulin and the 56,000-dalton phosphatase, but inhibits the interaction between the phosphatase and inhibitor 2.  相似文献   

18.
The reaction catalyzed by E. coli Pfk-2 presents a dual-cation requirement. In addition to that chelated by the nucleotide substrate, an activating cation is required to obtain full activity of the enzyme. Only Mn(2+) and Mg(2+) can fulfill this role binding to the same activating site but the affinity for Mn(2+) is 13-fold higher compared to that of Mg(2+). The role of the E190 residue, present in the highly conserved motif NXXE involved in Mg(2+) binding, is also evaluated in this behavior. The E190Q mutation drastically diminishes the kinetic affinity of this site for both cations. However, binding studies of free Mn(2+) and metal-Mant-ATP complex through EPR and FRET experiments between the ATP analog and Trp88, demonstrated that Mn(2+) as well as the metal-nucleotide complex bind with the same affinity to the wild type and E190Q mutant Pfk-2. These results suggest that this residue exert its role mainly kinetically, probably stabilizing the transition state and that the geometry of metal binding to E190 residue may be crucial to determine the catalytic competence.  相似文献   

19.
The separate interaction of the substrate fructose 1,6-bisphosphate and a metal ion cofactor Mn2+ with neutral hexosebisphosphatase has been studied under equilibrium conditions at pH 7.5 with gel filtration and electron paramagnetic resonance measurements, respectively. Binding data for both ligands to the enzyme yielded nonlinear Scatchard plots that analyze in terms of four negatively cooperative binding sites per enzyme tetramer. Graphical estimates of the binding constants were refined by a computer searching procedure and nonlinear least squares analysis. These results are qualitatively similar to those obtained from binding studies involving teh alkaline enzyme, a modified form of hexosebisphosphatase whose pH optimum is in the alkaline pH region. Both forms of the enzyme enhance the proton relaxation rate of water protons by a factor of approximately 7 to 8 at 24 MHz, demonstrating similar metal ion environments. Teh activator Co(III)-EDTA did not affect Mn2+ binding to the neutral enzyme. In the presence of (alpha + beta)methyl-D-fructofuranoside 1,6-bisphosphate, however, two sets--each containing four Mn2+ binding sites--were observed per enzyme tetramer with loss of the negatively cooperative interaction. These results are viewed in terms of four noncatalytic and four catalytic Mn2+ binding sites. Parallel kinetic investigations were conducted on the neutral enzyme to determine specific activity as a function of Mn2+ and fructose 1,6-bisphosphate concentration. A pro-equilibrium sequential pathway model involving Mn2+-enzyme and the Mn2+-fructose 1,6-bisphosphate complex both as substrate and as an allosteric inhibitor satisfactorily fit the kinetic observations. All possible enzyme species were computed from the determined binding constants and grouped according to the number of moles of Mn2+-fructose 1,6-bisphosphate complex bound to the Mn2+-enzyme, and individual rate constants were calculated. The testing of other models and their failure to describe the kinetic observations are discussed.  相似文献   

20.
Perturbation of the catalytic inorganic core (Mn4Ca1OxCly) of the photosystem II-water-oxidizing complex (PSII-WOC) isolated from spinach is examined by substitution of Ca2+ with cadmium(II) during core assembly. Cd2+ inhibits the yield of reconstitution of O2-evolution activity, called photoactivation, starting from the free inorganic cofactors and the cofactor-depleted apo-WOC-PSII complex. Ca2+ affinity increases following photooxidation of the first Mn2+ to Mn3+ bound to the 'high-affinity' site. Ca2+ binding occurs in the dark and is the slowest overall step of photoactivation (IM1-->IM1* step). Cd2+ competitively blocks the binding of Ca2+ to its functional site with 10- to 30-fold higher affinity, but does not influence the binding of Mn2+ to its high-affinity site. By contrast, even 10-fold higher concentrations of Cd2+ have no effect on O2-evolution activity in intact PSII-WOC. Paradoxically, Cd2+ both inhibits photoactivation yield, while accelerating the rate of photoassembly of active centres 10-fold relative to Ca2+. Cd2+ increases the kinetic stability of the photooxidized Mn3+ assembly intermediate(s) by twofold (mean lifetime for dark decay). The rate data provide evidence that Cd2+ binding following photooxidation of the first Mn3+, IM1-->IM1*, causes three outcomes: (i) a longer intermediate lifetime that slows IM1 decay to IM0 by charge recombination, (ii) 10-fold higher probability of attaining the degrees of freedom (either or both cofactor and protein d.f.) needed to bind and photooxidize the remaining 3 Mn2+ that form the functional cluster, and (iii) increased lability of Cd2+ following Mn4 cluster assembly results in (re)exchange of Cd2+ by Ca2+ which restores active O2-evolving centres. Prior EPR spectroscopic data provide evidence for an oxo-bridged assembly intermediate, Mn3+(mu-O2(-))Ca2+, for IM1*. We postulate an analogous inhibited intermediate with Cd2+ replacing Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号