首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hemoglobin complexed to the plasma protein haptoglobin can be used by Neisseria meningitidis as a source of iron to support growth in vitro. An N meningitidis mutant, DNM2E4, was generated by insertion of the mini-Tn3erm transposon into the gene coding for an 85-kDa iron-regulated outer membrane protein. Membrane proteins prepared from DNM2E4 were identical to those of the wild-type strain except that the 85-kDa protein was not produced. This mutant was unable to use hemoglobin-haptoglobin complexes as an iron source to support growth and was also impaired in the utilization of free hemoglobin. The mutant failed to bind free hemoglobin, hemoglobin-haptoglobin complexes, or apo-haptoglobin in a solid-phase dot blot assay. The 85-kDa protein was affinity purified when hemoglobin-haptoglobin complexes were used as a ligand but was not purified when free hemoglobin was used. We hypothesize that the 85-kDa iron-regulated protein is the hemoglobin-haptoglobin receptor and designate this protein Hpu (for hemoglobin-haptoglobin utilization).  相似文献   

2.
FrpB (for Fe-regulated protein B) is a 76-kDa outer membrane protein that is part of the iron regulon of Neisseria gonorrhoeae and Neisseria meningitidis. The frpB gene from gonococcal strain FA19 was cloned and sequenced. FrpB was homologous to several TonB-dependent outer membrane receptors of Escherichia coli as well as HemR of Yersinia enterocolitica and CopB of Moraxella catarrhalis. An omga insertion into the frpB coding sequence caused a 60% reduction in 55Fe uptake from heme, but careful analysis suggested that this effect was nonspecific. While FrpB was related to the family of TonB-dependent proteins, a function in iron uptake could not be documented.  相似文献   

3.
4.
The periplasmic chaperones Skp, SurA, and DegP are implicated in the biogenesis of outer membrane proteins (OMPs) in Escherichia coli. Here, we investigated whether these chaperones exert similar functions in Neisseria meningitidis. Although N. meningitidis does not contain a homolog of the protease/chaperone DegP, it does possess a homolog of another E. coli protein, DegQ, which can functionally replace DegP when overproduced. Hence, we examined whether in N. meningitidis, DegQ acts as a functional homolog of DegP. Single skp, surA, and degQ mutants were easily obtained, showing that none of these chaperones is essential in N. meningitidis. Furthermore, all combinations of double mutants were generated and no synthetic lethality was observed. The absence of SurA or DegQ did not affect OMP biogenesis. In contrast, the absence of Skp resulted in severely lower levels of the porins PorA and PorB but not of other OMPs. These decreased levels were not due to proteolytic activity of DegQ, since porin levels remained low in a skp degQ double mutant, indicating that neisserial DegQ is not a functional homolog of E. coli DegP. The absence of Skp resulted in lower expression of the porB gene, as shown by using a P(porB)-lacZ fusion. We found no cross-species complementation when Skp of E. coli or N. meningitidis was heterologously expressed in skp mutants, indicating that Skp functions in a species-specific manner. Our results demonstrate an important role for Skp but not for SurA or DegQ in OMP biogenesis in N. meningitidis.  相似文献   

5.
6.
A mutant, T7, highly sensitive to oxidative stress as caused by diamide was isolated from a Mycobacterium smegmatis mc(2)155 transposon mutant library. While wild-type M. smegmatis is able to grow well on solid media supplemented with 10 mM diamide, T7 is only able to grow on solid media containing up to 1 mM diamide. This mutant is also sensitive to other thiol modifying agents such as iodoacetamide and chlorodinitrobenzene. By sequencing the genomic DNA flanking the transposon, T7 was found to be mutated in the region upstream of the homolog of M. tuberculosis Rv0274 open reading frame. Sequence analysis revealed that Rv0274 is a member of a superfamily of metalloenzymes comprising enzymes such as extradiol dioxygenases, glyoxalases, and fosfomycin resistant glutathione transferases. Cloning and epichromosomal expression of M. tuberculosis Rv0274 in the mutant resulted in complementation of the sensitivity to diamide.  相似文献   

7.
Lysophosphatidic acid (LPA) and phosphatidic acid (PA) are critical phospholipid intermediates in the biosynthesis of cell membranes. In Escherichia coli, LPA acyltransferase (1-acyl-sn-glycerol-3-phosphate acyltransferase; EC 2.3.1.51) catalyses the transfer of an acyl chain from either acyl-coenzyme A or acyl-acyl carrier protein onto LPA to produce PA. While E. coli possesses one essential LPA acyltransferase (PlsC), Neisseria meningitidis possesses at least two LPA acyltransferases. This study describes the identification and characterization of nlaB (neisserial LPA acyltransferase B), the second LPA acyltransferase identified in N. meningitidis. The gene was located downstream of the Tn916 insertion in N. meningitidis mutant 469 and differed in nucleotide and predicted amino acid sequence from the previously characterized neisserial LPA acyltransferase homologue nlaA. NlaB has specific LPA acyltransferase activity, as demonstrated by complementation of an E. coli plsC(Ts) mutant in trans, by decreased levels of LPA acyltransferase activity in nlaB mutants and by lack of complementation of E. coli plsB26,X50, a mutant defective in the first acyltransferase step in phospholipid biosynthesis. Meningococcal nlaA mutants accumulated LPA and demonstrated alterations in membrane phospholipid composition, yet retained LPA acyltransferase activity. In contrast, meningococcal nlaB mutants exhibited decreased LPA acyltransferase activity, but did not accumulate LPA or display any other observable membrane changes. We propose that N. meningitidis possesses at least two LPA acyltransferases to provide for the production of a greater diversity of membrane phospholipids.  相似文献   

8.
Type 4 pili produced by the pathogenic Neisseria species constitute primary determinants for the adherence to host tissues. In addition to the major pilin subunit (PilE), neisserial pili contain the variable PilC proteins represented by two variant gene copies in most pathogenic Neisseria isolates. Based upon structural differences in the conserved regions of PilE, two pilus classes can be distinguished in Neisseria meningitidis . For class I pili found in both Neisseria gonorrhoeae and N. meningitidis , PilC proteins have been implicated in pilus assembly, natural transformation competence and adherence to epithelial cells. In this study, we used primers specific for the pilC2 gene of N. gonorrhoeae strain MS11 to amplify, by the polymerase chain reaction, and clone a homologous pilC gene from N. meningitidis strain A1493 which produces class II pili. This gene was sequenced and the deduced amino acid sequence showed 75.4% and 73.8% identity with the gonococcal PilC1 and PilC2, respectively. These values match the identity value of 74.1% calculated for the two N. gonorrhoeae MS11 PilC proteins, indicating a horizontal relationship between the N. gonorrhoeae and N. meningitidis pilC genes. We provide evidence that PilC functions in meningococcal class II pilus assembly and adherence. Furthermore, expression of the cloned N. meningitidis pilC gene in a gonococcal pilC1,2 mutant restores pilus assembly, adherence to ME-180 epithelial cells, and transformation competence to the wild-type level. Thus, PilC proteins exhibit indistinguishable functions in the context of class I and class II pili.  相似文献   

9.
The insertion element IS1301 has been shown to mediate capsule phase variation in Neisseria meningitidis found in N. serogroup B by reversible insertional inactivation of the siaA gene. We have determined the target site specificity of this element by cloning and sequencing the insertion sites of 12 identical IS1301 copies found in N. meningitidis B1940. A target consensus core of 5'-AYTAG-3' was identified, with the central TA being duplicated following insertion. Additional features around the target sites, including extended palindromic symmetry, stem-loop formation, and the high incidence of AT tracts, indicate that other factors, such as DNA secondary structure, are involved in target recognition. The left inverted repeat of an IS1016-like element acts as a hot spot for insertion, with one insertion element combination located upstream of their gene. According to further sequence analysis, we were able to place IS1301 in the IS5 subgroup within the IS4 family of elements. A survey of 135 Neisseria strains indicated the presence of IS1301 in 27.9 to 33.3% of N. meningitides serogroup B, C, and W135 strains and in 86.7% of serogroup Y strains. IS1301 did not occur in serogroup A strains, in Neisseria gonorrhoeae, or in apathogenic Neisseria spp.  相似文献   

10.
A genetic screen designed to identify proteins that utilize the signal recognition particle (SRP) for targeting in Escherichia coli was used to screen a Neisseria gonorrhoeae plasmid library. Six plasmids were identified in this screen, and each is predicted to encode one or more putative cytoplasmic membrane (CM) proteins. One of these, pSLO7, has three open reading frames (ORFs), two of which have no similarity to known proteins in GenBank other than sequences from the closely related N. meningitidis. Further analyses showed that one of these, SLO7ORF3, encodes a protein that is dependent on the SRP for localization. This gene also appears to be essential in N. gonorrhoeae since it was not possible to generate null mutations in the gene. Although appearing unique to Neisseria at the DNA sequence level, SLO7ORF3 was found to share some features with the cell division gene zipA of E. coli. These features included similar chromosomal locations (with respect to linked genes) as well as similarities in the predicted protein domain structures. Here, we show that SLO7ORF3 can complement an E. coli conditional zipA mutant and therefore encodes a functional ZipA homolog in N. gonorrhoeae. This observation is significant in that it is the first ZipA homolog identified in a non-rod-shaped organism. Also interesting is that this is the fourth cell division protein (the others are FtsE, FtsX, and FtsQ) shown to utilize the SRP for localization, which may in part explain why the genes encoding the three SRP components are essential in bacteria.  相似文献   

11.
I Stojiljkovic  J Larson  V Hwa  S Anic    M So 《Journal of bacteriology》1996,178(15):4670-4678
We have recently cloned and characterized the hemoglobin receptor gene from Neisseria meningitidis serogroup C. N. meningitidis cells expressing HmbR protein were able to bind biotinylated hemoglobin, and the binding was specifically inhibited by unlabeled hemoglobin and not heme. The HmbR-mediated hemoglobin binding activity of N. meningitidis cells was shown to be iron regulated. The presence of hemoglobin but not heme in the growth medium stimulated HmbR-mediated hemoglobin binding activity. The efficiency of utilization of different hemoglobins by the HmbR-expressing N. meningitidis cells was shown to be species specific; human hemoglobin was the best source of iron, followed by horse, rat, turkey, dog, mouse, and sheep hemoglobins, The phenotypic characterization of HmbR mutants of some clinical strains of N. meningitidis suggested the existence of two unrelated hemoglobin receptors. The HmbR-unrelated hemoglobin receptor was shown to be identical to Hpu, the hemoglobin-haptoglobin receptor of N. meningitidis. The Hpu-dependent hemoglobin utilization system was not able to distinguish between different sources of hemoglobin; all animal hemoglobins were utilized equally well. HmbR-like genes are also present in N. meningitidis serogroups A and B, Neisseria gonorrhoeae MS11 and FA19, Neisseria perflava, and Neisseria polysaccharea. The hemoglobin receptor genes from N. meningitidis serogroups A and B and N. gonorrhoeae MS11 were cloned, and their nucleotide sequences were determined. The nucleotide sequence identity ranged between 86.5% (for N. meningitidis serogroup B hmbR and MS11 hmbR) and 93.4% (for N. meningitidis serogroup B hmbR and N. meningitidis serogroup C hmbR). The deduced amino acid sequences of these neisserial hemoglobin receptors were also highly related, with overall 84.7% conserved amino acid residues. A stop codon was found in the hmbR gene of N. gonorrhoeae MS11. This strain was still able to use hemoglobin and hemoglobin-haptoglobin complexes as iron sources, indicating that some gonococci may express only the HmbR-independent hemoglobin utilization system.  相似文献   

12.
We have recently cloned and characterized the hemoglobin (Hb) receptor gene, hmbR, from Neisseria meningitidis. To identify additional proteins that are involved in Hb utilization, the N. meningitidis Hb utilization system was reconstituted in Escherichia coli. Five cosmids from N. meningitidis DNA library enabled a heme-requiring (hemA), HmbR-expressing mutant of E. coli to use Hb as both porphyrin and iron source. Nucleotide sequence analysis of DNA fragments subcloned from the Hb-complementing cosmids identified four open reading frames, three of them homologous to Pseudomonas putida, E. coli, and Haemophilus influenzae exbB, exbD, and tonB genes. The N. meningitidis TonB protein is 28.8 to 33.6% identical to other gram-negative TonB proteins, while the N. meningitidis ExbD protein shares between 23.3 and 34.3% identical amino acids with other ExbD and TolR proteins. The N. meningitidis ExbB protein was 24.7 to 36.1% homologous with other gram-negative ExbB and TolQ proteins. Complementation studies indicated that the neisserial Ton system cannot interact with the E. coli FhuA TonB-dependent outer membrane receptor. The N. meningitidis tonB mutant was unable to use Hb, Hb-haptoglobin complexes, transferrin, and lactoferrin as iron sources. Insertion of an antibiotic cassette in the 3' end of the exbD gene produced a leaky phenotype. Efficient usage of heme by N. meningitidis tonB and exbD mutants suggests the existence of a Ton-independent heme utilization mechanism. E. coli complementation studies and the analysis of N. meningitidis hmbR and hpu mutants suggested the existence of another Hb utilization mechanism in this organism.  相似文献   

13.
A full-length heme oxygenase gene from the gram-negative pathogen Neisseria meningitidis was cloned and expressed in Escherichia coli. Expression of the enzyme yielded soluble catalytically active protein and caused accumulation of biliverdin within the E. coli cells. The purified HemO forms a 1:1 complex with heme and has a heme protein spectrum similar to that previously reported for the purified heme oxygenase (HmuO) from the gram-positive pathogen Corynebacterium diphtheriae and for eukaryotic heme oxygenases. The overall sequence identity between HemO and these heme oxygenases is, however, low. In the presence of ascorbate or the human NADPH cytochrome P450 reductase system, the heme-HemO complex is converted to ferric-biliverdin IXalpha and carbon monoxide as the final products. Homologs of the hemO gene were identified and characterized in six commensal Neisseria isolates, Neisseria lactamica, Neisseria subflava, Neisseria flava, Neisseria polysacchareae, Neisseria kochii, and Neisseria cinerea. All HemO orthologs shared between 95 and 98% identity in amino acid sequences with functionally important residues being completely conserved. This is the first heme oxygenase identified in a gram-negative pathogen. The identification of HemO as a heme oxygenase provides further evidence that oxidative cleavage of the heme is the mechanism by which some bacteria acquire iron for further use.  相似文献   

14.
15.
Three glutathione peroxidase homologs (YKL026C, YBR244W, and YIR037W/HYR1) were found in the Saccharomyces Genome Database. We named them GPX1, GPX2, and GPX3, respectively, and we investigated the function of each gene product. The gpx3Delta mutant was hypersensitive to peroxides, whereas null mutants of the GPX1 and GPX2 did not show any obvious phenotypes. Glutathione peroxidase activity decreased approximately 57 and 93% in the gpx3Delta and gpx1Delta/gpx2Delta/gpx3Delta mutants, respectively, compared with that of wild type. Expression of the GPX3 gene was not induced by any stresses tested, whereas that of the GPX1 gene was induced by glucose starvation. The GPX2 gene expression was induced by oxidative stress, which was dependent upon the Yap1p. The TSA1 (thiol-specific antioxidant) gene encodes thioredoxin peroxidase that can reduce peroxides by using thioredoxin as a reducing power. Disruption of the TSA1 gene enhanced the basal expression level of the Yap1p target genes such as GSH1, GLR1, and GPX2 and that resulted in increases of total glutathione level and activities of glutathione reductase and glutathione peroxidase. However, expression of the TSA1 gene did not increase in the gpx1Delta/gpx2Delta/gpx3Delta mutant. Therefore, de novo synthesis and recycling of glutathione were increased in the tsa1Delta mutant to maintain the catalytic cycle of glutathione peroxidase reaction efficiently as a backup system for thioredoxin peroxidase.  相似文献   

16.
The iroA gene product is an iron limitation-inducible outer membrane protein of Neisseria meningitidis. A spontaneous mutant lacking the gene was unable to bind lactoferrin. Furthermore, Escherichia coli strains expressing the IroA protein were capable of binding lactoferrin. Apparently, the IroA protein functions as a lactoferrin receptor.  相似文献   

17.
【目的】广谱胁迫蛋白(USP)是一种古老的蛋白家族,在链霉菌属细菌中其功能研究尚未报道。以变铅青链霉菌USP蛋白为对象对其功能进行解析。【方法】使用序列比对的方法分析同源性及保守结构域。纯化USP蛋白,用圆二色谱分析蛋白与环腺苷酸(cAMP)的结合对usp(SLI_7517)进行基因中断。检测野生型和usp基因缺失株对偶氮二甲酰胺造成的氧化压力的耐受能力。使用qPCR荧光定量分析技术,检测野生型菌株与usp缺失株在氧化环境中谷胱甘肽过氧化物酶及巯基过氧化物酶基因转录量的差异。【结果】同源序列分析表明链霉菌属来源的USP蛋白序列相互之间相似性较高,USP-like结构域高度保守。USP蛋白在体外结合cAMP引起CD谱的变化。usp基因缺失株对偶氮二甲酰胺更耐受,同时菌株中谷胱甘肽过氧化物酶基因转录量上升。【结论】变铅青链霉菌中USP蛋白能够结合cAMP。usp参与菌体应对氧化环境的调控,对谷胱甘肽过氧化物酶基因的转录有阻遏作用。  相似文献   

18.
Lipopolysaccharide (LPS) is a major determinant of Neisseria meningitidis virulence. A key feature of meningococcal LPS is the phase-variable expression of terminal structures which are proposed to have disparate roles in pathogenesis. In order to identify the biosynthetic genes for terminal LPS structures and the control mechanisms for their phase-variable expression, the lic2A gene, which is involved in LPS biosynthesis in Haemophilus influenzae , was used as a hybridization probe to identify a homologous gene in N. meningitidis strain MC58. The homologous region of DNA was cloned and nucleotide sequence analysis revealed three open reading frames (ORFs), two of which were homologous to the H. influenzae lic2A gene. All three ORFs were mutagenized by the insertion of antibiotic-resistance cassettes and the LPS from these mutant strains was analysed to determine if the genes had a role in LPS biosynthesis. Immunological and tricine—SDS—PAGE analysis of LPS from the mutant strains indicated that all three genes were probably transferases in the biosynthesis of the terminal lacto- N -neotetraose structure of meningococcal LPS. The first ORF of the locus contains a homopolymeric tract of 14 guanosine residues within the 5'-end of the coding sequence. As the lacto- N -neotetraose structure in meningococcal LPS is subject to phase-variable expression, colonies that no longer expressed the terminal structure, as determined by monoclonal antibody binding, were isolated. Analysis of an 'off' phase variant revealed a change in the number of guanosine residues resulting in a frameshift mutation, indicating that a slipped-strand mispairing mechanism, operating in the first ORF, controls the phase-variable expression of lacto- N -neotetraose.  相似文献   

19.
Arginine decarboxylase (ADC) catalyzes the first step of polyamine (PA) biosynthesis to produce putrescine (Put) from arginine (Arg). One of the 2 Arabidopsis ADC genes, AtADC2, is induced in response to salt stress causing the accumulation of free Put. To analyze the roles of stress-inducible AtADC2 gene and endogenous Put in stress tolerance, we isolated a Ds insertion mutant of AtADC2 gene (adc2-1) and characterized its phenotypes under salt stress. In the adc2-1 mutant, free Put content was reduced to about 25% of that in the control plants and did not increase under salt stress. Furthermore, the adc2-1 mutant was more sensitive to salt stress than the control plants. The stress sensitivity of adc2-1 was recovered by the addition of exogenous Put. These results indicate that endogenous Put plays an important role in salt tolerance in Arabidopsis. AtADC2 is a key gene for the production of Put under not only salinity conditions, but also normal conditions.  相似文献   

20.
The lpxA gene is known to be involved in the biosynthesis of lipid A in Gram-negative bacteria and thought to be an essential gene. However, viable meningococcal lpxA mutants devoid of detectable endotoxin (lipooligosaccharide) have been reported. We characterised such mutants in strains of Neisseria meningitidis belonging to serogroups B and C using molecular and biochemical analysis. While lpxA mutants with no detectable or a low level of lipooligosaccharide could be obtained in N. meningitidis, the simple insertional inactivation of lpxA was not possible. In all mutants, we obtained lpxA/lpxA::aph-3' heterodiploids harbouring one copy of the wild-type lpxA gene and one copy of the inactivated lpxA gene by insertion of the kanamycin resistance cassette, aph-3'. The absence of lipooligosaccharide in these mutants may result from a negative transdominance effect of a truncated LpxA protein on the wild-type LpxA protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号