首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To compare the responses of asthmatic and normal subjects to high effective doses of ozone, nine asthmatic and nine normal subjects underwent two randomly assigned 2-h exposures to filtered, purified air and 0.4 ppm ozone with alternating 15-min periods of rest and exercise on a cycle ergometer (minute ventilation = 30 l.min-1.m-2). Before and after each exposure, pulmonary function and bronchial responsiveness to methacholine were measured and symptoms were recorded. Ozone exposure was associated with a statistically significant decrease in forced vital capacity (FVC), forced expired volume in 1 s (FEV1), percent FEV1 (FEV1%), and forced expired flow at 25-75% FVC (FEF25-75) in both normal and asthmatic subjects. However, comparing the response of asthmatic and normal subjects to ozone revealed a significantly greater percent decrease in FEV1, FEV1%, and FEF25-75 in the asthmatic subjects. The effect of ozone on FVC and symptom scores did not differ between the two groups. In both normal and asthmatic subjects, exposure to ozone was accompanied by a significant increase in bronchial responsiveness. We conclude that exposure to a high effective ozone dose produces 1) increased bronchial responsiveness in both normal and asthmatic subjects, 2) greater airways obstruction in asthmatic than in normal subjects, and 3) similar symptoms and changes in lung volumes in the two groups.  相似文献   

2.
3.
The lumped six-element model of the respiratory system proposed by DuBois et al. (J. Appl. Physiol. 8: 587-594, 1956) has often been used to analyze respiratory system impedance (Zrs) data. This model predicts a resonance (relative minimum in Zrs) at fr between 6 and 10 Hz and an antiresonance (relative maximum in Zrs) at far at higher frequencies (greater than 64 Hz). The far is due to the lumped tissue inertance (Iti) and the alveolar gas compression compliance (Cg). An fr and far have been recently reported in humans, but the far was shown to be not related to Iti and Cg, but instead it is the first acoustic antiresonance of the airways due to their axial dimensions). Zrs data to frequencies high enough to include the far have not been reported in dogs. In this study, we measured Zrs in dogs for frequencies between 5 and 320 Hz and found an fr at 7.5 +/- 1.6 Hz and two far at 97 +/- 13 and 231 +/- 27 Hz (far,1 and far,2, respectively). When breathing 80% He-20% O2, the fr shifted to 14 +/- 2 Hz, far,1 did not change (98 +/- 9 Hz), and far,2 increased to greater than 320 Hz. The behavior of fr and far,1 is consistent with the structure-function implied by the six-element model. However, the presence of an far,2 is not consistent with this model, because it is the airway acoustic antiresonance not represented in the model. These results indicate that, for frequencies that include the fr and far,1, the six-element model can be used to analyze Zrs data and reliable estimates of the model's parameters can be extracted by fitting the model to the data. However, more complex models must be used to analyze Zrs data that include far,2.  相似文献   

4.
We hypothesized that short-term variation in airway caliber could be quantified by frequency distributions of respiratory impedance (Zrs) measured at high frequency. We measured Zrs at 6 Hz by forced oscillations during quiet breathing for 15 min in 10 seated asthmatic patients and 6 normal subjects in upright and supine positions before and after methacholine (MCh). We plotted frequency distributions of Zrs and calculated means, skewness, kurtosis, and significance of differences between normal and log-normal frequency distributions. The data were close to, but usually significantly different from, a log-normal frequency distribution. Mean lnZrs in upright and supine positions was significantly less in normal subjects than in asthmatic patients, but not after MCh and MCh in the supine position. The lnZrs SD (a measure of variation), in the upright position and after MCh was significantly less in normal subjects than in asthmatic patients, but not in normal subjects in the supine position and after MCh in the supine position. We conclude that 1) the configuration of the normal tracheobronchial tree is continuously changing and that this change is exaggerated in asthma, 2) in normal lungs, control of airway caliber is homeokinetic, maintaining variation within acceptable limits, 3) normal airway smooth muscle (ASM) when activated and unloaded closely mimics asthmatic ASM, 4) in asthma, generalized airway narrowing results primarily from ASM activation, whereas ASM unloading by increasing shortening velocity allows faster caliber fluctuations, 5) activation moves ASM farther from thermodynamic equilibrium, and 6) asthma may be a low-entropy disease exhibiting not only generalized airway narrowing but also an increased appearance of statistically unlikely airway configurations.  相似文献   

5.
Exhaled nitric oxide (NO) is altered in asthmatic subjects with exercise-induced bronchoconstriction (EIB). However, the physiological interpretation of exhaled NO is limited because of its dependence on exhalation flow and the inability to distinguish completely proximal (large airway) from peripheral (small airway and alveolar) contributions. We estimated flow-independent NO exchange parameters that partition exhaled NO into proximal and peripheral contributions at baseline, postexercise challenge, and postbronchodilator administration in steroid-naive mild-intermittent asthmatic subjects with EIB (24-43 yr old, n = 9) and healthy controls (20-31 yr old, n = 9). The mean +/- SD maximum airway wall flux and airway diffusing capacity were elevated and forced expiratory flow, midexpiratory phase (FEF(25-75)), forced expiratory volume in 1 s (FEV(1)), and FEV(1)/forced vital capacity (FVC) were reduced at baseline in subjects with EIB compared with healthy controls, whereas the steady-state alveolar concentration of NO and FVC were not different. Compared with the response of healthy controls, exercise challenge significantly reduced FEV(1) (-23 +/- 15%), FEF(25-75) (-37 +/- 18%), FVC (-12 +/- 12%), FEV(1)/FVC (-13 +/- 8%), and maximum airway wall flux (-35 +/- 11%) relative to baseline in subjects with EIB, whereas bronchodilator administration only increased FEV(1) (+20 +/- 21%), FEF(25-75) (+56 +/- 41%), and FEV(1)/FVC (+13 +/- 9%). We conclude that mild-intermittent steroid-naive asthmatic subjects with EIB have altered airway NO exchange dynamics at baseline and after exercise challenge but that these changes occur by distinct mechanisms and are not correlated with alterations in spirometry.  相似文献   

6.
To evaluate methods used to document changes in airway function during and after exercise, we studied nine subjects with exercise-induced asthma and five subjects without asthma. Airway function was assessed from measurements of pulmonary resistance (RL) and forced expiratory vital capacity maneuvers. In the asthmatic subjects, forced expiratory volume in 1 s (FEV1) fell 24 +/- 14% and RL increased 176 +/- 153% after exercise, whereas normal subjects experienced no change in airway function (RL -3 +/- 8% and FEV1 -4 +/- 5%). During exercise, there was a tendency for FEV1 to increase in the asthmatic subjects but not in the normal subjects. RL, however, showed a slight increase during exercise in both groups. Changes in lung volumes encountered during exercise were small and had no consistent effect on RL. The small increases in RL during exercise could be explained by the nonlinearity of the pressure-flow relationship and the increased tidal breathing flows associated with exercise. In the asthmatic subjects, a deep inspiration (DI) caused a small, significant, transient decrease in RL 15 min after exercise. There was no change in RL in response to DI during exercise in either asthmatic or nonasthmatic subjects. When percent changes in RL and FEV1 during and after exercise were compared, there was close agreement between the two measurements of change in airway function. In the groups of normal and mildly asthmatic subjects, we conclude that changes in lung volume and DIs had no influence on RL during exercise. Increases in tidal breathing flows had only minor influence on measurements of RL during exercise. Furthermore, changes in RL and in FEV1 produce equivalent indexes of the variations in airway function during and after exercise.  相似文献   

7.
A new method for measuring total respiratory input impedance (Zrs), which ensures minimal motion of extrathoracic airway walls, was tested over frequencies of 4-30 Hz in 14 normal subjects and 10 patients with airway obstruction. It consists of applying pressure variations around the head, rather than at the mouth, so that transmural pressure across upper airway walls is equal to the small pressure drop across the pneumotachograph. Compared with reference Zrs values obtained by directly measuring airway wall motion with a head plethysmograph and correcting the data for it, the investigated method provided similar values for respiratory resistance at all frequencies (30 Hz, 3.67 +/- 2.24 cmH2O X 1(-1) X s compared with 3.55 +/- 2.00) but slightly overestimated respiratory reactance at the largest frequencies (30 Hz, 2.82 +/- 1.28 cmH2O X 1(-1) X s compared with 2.52 +/- 1.22, P less than 0.01). In contrast, when the data were not corrected for airway wall motion, resistance was largely underestimated, especially in patients (-48% at 30 Hz, P less than 0.001), and the reactance-frequency curve was shifted to the right. The investigated method is almost as accurate as the reference method, provides equally reproducible data, and is much simpler.  相似文献   

8.
Because reactive nitrogen species (RNS) have potent inflammatory activity, they may be involved in the inflammatory process in pulmonary diseases. We recently reported increased numbers of 3-nitrotyrosine immunopositive cells, which are evidences of RNS production, in the sputum of patients with chronic obstructive pulmonary disease (COPD) and patients with asthma compared with healthy subjects. In the present study, we attempted to quantify this protein nitration in the airways by means of high-performance liquid chromatography (HPLC) used together with an electrochemical detection system that we developed. Sputum samples were obtained from 15 stable COPD patients, 9 asthmatic patients and 7 healthy subjects by using hypertonic saline inhalation. The values for the molar ratio of protein-bound 3-nitrotyrosine/tyrosine in patients with asthma (4.31 +/- 1.13 x 10(-6), p < 0.05) and patients with COPD (3.04 +/- 0.36 x 10(-6), p < 0.01) were significantly higher than those in healthy subjects (1.37 +/- 0.19 x 10(-6)). The levels of protein-bound 3-nitrotyrosine in the airways were not significantly different in asthmatic patients and COPD patients. A significant negative correlation was found between values for protein-bound 3-nitrotyrosine/tyrosine and % FEV1 values in patients with COPD (r = -0.53, p < 0.05) but not in patients with asthma. These results suggest that our HPLC-electrochemical method is useful for quantifying RNS production in human airways. More importantly, they show that increased RNS production in the airways seems to contribute in a critical way to the pathogenesis of COPD, and that the effects of RNS in airways may differ in asthma and COPD.  相似文献   

9.
Respiratory impedance (Zrs) was measured between 0.25 and 32 Hz in seven anesthetized and paralyzed patients by applying forced oscillation of low amplitude at the inlet of the endotracheal tube. Effective respiratory resistance (Rrs; in cmH2O.l-1.s) fell sharply from 6.2 +/- 2.1 (SD) at 0.25 Hz to 2.3 +/- 0.6 at 2 Hz. From then on, Rrs decreased slightly with frequency down to 1.5 +/- 0.5 at 32 Hz. Respiratory reactance (Xrs; in cmH2O.l-1.s) was -22.2 +/- 5.9 at 0.25 Hz and reached zero at approximately 14 Hz and 2.3 +/- 0.8 at 32 Hz. Effective respiratory elastance (Ers = -2pi x frequency x Xrs; in cmH2O/1) was 34.8 +/- 9.2 at 0.25 Hz and increased markedly with frequency up to 44.2 +/- 8.6 at 2 Hz. We interpreted Zrs data in terms of a T network mechanical model. We represented the proximal branch by central airway resistance and inertance. The shunt pathway accounted for bronchial distensibility and alveolar gas compressibility. The distal branch included a Newtonian resistance component for tissues and peripheral airways and a viscoelastic component for tissues. When the viscoelastic component was represented by a Kelvin body as in the model of Bates et al. (J. Appl. Physiol. 61: 873-880, 1986), a good fit was obtained over the entire frequency range, and reasonable values of parameters were estimated. The strong frequency dependence of Rrs and Ers observed below 2 Hz in our anesthetized paralyzed patients could be mainly interpreted in terms of tissue viscoelasticity. Nevertheless, the high Ers we found with low volume excursions suggests that tissues also exhibit plasticlike properties.  相似文献   

10.
Past studies in humans and other species have revealed the presence of resonances and antiresonances, i.e., minima and maxima in respiratory system impedance (Zrs), at frequencies much higher than those commonly employed in clinical applications of the forced oscillation technique (FOT). To help understand the mechanisms behind the first occurrence of antiresonance in the Zrs spectrum, the frequency response of the rat was studied by using FOT at both low and high frequencies. We measured Zrs in both Wistar and PVG/c rats using the wave tube technique, with a FOT signal ranging from 2 to 900 Hz. We then compared the high-frequency parameters, i.e., the first antiresonant frequency (far,1) and the resistive part of Zrs at that frequency [Rrs(far,1)], with parameters obtained by fitting a modified constant-phase model to low-frequency Zrs spectra. The far,1 was 570 +/- 43 (SD) Hz and 456 +/- 16 Hz in Wistar and PVG/c rats, respectively, and it did not shift with respiratory gases of different densities (air, heliox, and a mixture of SF(6)). The far,1 and Rrs(far,1) were relatively independent of methacholine-induced bronchoconstriction but changed significantly with increasing transrespiratory pressures up to 20 cmH(2)O, in the same way as airway resistance but independently of changes to tissue parameters. These results suggest that, unlike the human situation, the first antiresonance in the rat is not primarily dependent on the acoustic dimensions of the respiratory system and can be explained by interactions between compliances and inertances localized to the airways, but this most likely does not include airway wall compliance.  相似文献   

11.
Inhibition of nitric oxide synthesis attenuates thermally induced asthma.   总被引:1,自引:0,他引:1  
To determine whether the inhibition of nitric oxide (NO) synthesis attenuates thermally induced obstruction, we had 10 asthmatic volunteers perform isocapnic hyperventilation with frigid air after inhaling 1 mg of N(G)-monomethyl-L-arginine (L-NMMA) or isotonic saline in a blinded fashion. The challenges were identical in all respects, and there were no differences in baseline lung function [1-s forced expiratory volume (FEV(1)); saline 2.8 +/- 0.3 liters, L-NMMA 2.9 +/- 0.3 liters; P = 0.41] or prechallenge fractional concentration of nitric oxide in the exhaled air (FENO) [saline 23 +/- 6 parts/billion (ppb), L-NMMA 18 +/- 4 ppb; P = 0.51]. Neither treatment had any impact on the FEV(1), pulse, or blood pressure. After L-NMMA, FENO fell significantly (P < 0.0001), the stimulus-response curves shifted to the right, and the minute ventilation required to reduce the FEV(1) 20% rose 53.5% over control (P = 0.02). The results of this study demonstrate that NO generated from the airways of asthmatic individuals may play an important role in the pathogenesis of thermally induced asthma.  相似文献   

12.
Two groups of subjects were studied: one with (group 1: 5 healthy and 4 mildly asthmatic subjects) and another without (group 2:9 moderately and severely asthmatic subjects) a plateau of response to methacholine (MCh). We determined the effect of deep inhalation by comparing expiratory flows at 40% of forced vital capacity from maximal and partial flow-volume curves (MEF40M/P) and the quasi-static transpulmonary pressure-volume (Ptp-V) area. In group 1, MEF40M/P increased from 1.58 +/- 0.23 (SE) at baseline up to a maximum of 3.91 +/- 0.69 after MCh when forced expiratory volume in 1 s (FEV1) was decreased on plateau by 24 +/- 2%. The plateau of FEV1 was always paralleled by a plateau of MEF40M/P. In group 2, MEF40 M/P increased from 1.58 +/- 0.10 at baseline up to a maximum of 3.48 +/- 0.26 after MCh when FEV1 was decreased by 31 +/- 3% and then decreased to 2.42 +/- 0.24 when FEV1 was decreased by 46 +/- 2%. Ptp-V area was similar in the two groups at baseline yet was increased by 122 +/- 9% in group 2 and unchanged in group 1 at MCh end point. These findings suggest that the increased maximal response to MCh in asthmatic subjects is associated with an involvement of the lung periphery.  相似文献   

13.

Background

The assessment of bronchodilator-induced change in forced vital capacity (FVC) is dependent on forced expiratory time (FET) in subjects with airflow limitation. Limited information is available on the concurrent responses of FVC, forced expiratory volume in six seconds (FEV6), and FET in the bronchodilation test among patients with obstructive airways disease or in the general population. The aim of this study was to assess the changes in FEV6, FVC, and FET, and their relationships in a standardized bronchodilation test in the general population.

Methods

We studied bronchodilation response in a general adult population sample of 628 individuals (260 men, 368 women) with flow-volume spirometry. The largest FVC, the corresponding FET and the largest FEV6 both at the baseline and after 0.4 mg of inhaled salbutamol were selected for analysis.

Results

After administration of salbutamol FEV6 decreased on average -13.4 (95% CI -22.3 to -4.5) ml or -0.2% (-0.4% to 0.0%) from the baseline. The 95th percentile of change in FEV6 was 169.1 ml and 5.0%. FVC decreased on average -42.8 (-52.4 to -33.3) ml or -1.0% (-1.2% to -0.7%). Concurrently FET changed on average -0.2 (-0.4 to 0.0) seconds or 0.4% (-1.4% to 2.3%). There were four subjects with an increase of FVC over 12% and only one of these was associated with prolonged FET after salbutamol. Changes in FEV6 and FVC were more frequently positive in subjects with reduced FEV1/FVC in baseline spirometry.

Conclusion

In general adult population, both FEV6 and FVC tended to decrease, but FET remained almost unchanged, in the bronchodilation test. However, those subjects with signs of airflow limitation at the baseline showed frequently some increase of FEV6 and FVC in the bronchodilation test without change in FET. We suggest that FEV6 could be used in assessment of bronchodilation response in lieu of FVC removing the need for regulation of FET during bronchodilation testing.  相似文献   

14.
Muscarinic receptors of the M2 subtype, which inhibit acetylcholine release from cholinergic nerves (autoreceptors), have been described in animal and human bronchi in vitro. We investigated whether these receptors may be involved in feedback inhibition of cholinergic reflex bronchoconstriction induced by sulfur dioxide (SO2) in seven nonasthmatic atopic subjects and in six mild asthmatic subjects. In a control experiment, total respiratory resistance (Rrs) was increased by 30 +/- 5% in nonasthmatic and by 60 +/- 18% in asthmatic subjects. In nonasthmatic subjects, pilocarpine, an agonist of muscarinic M2-autoreceptors, increased Rrs by 15 +/- 5% and addition of SO2 increased Rrs to 21 +/- 5% above base line, which was not significantly greater than after pilocarpine alone. Histamine gave a comparable bronchoconstriction (25 +/- 3% increase in Rrs) and SO2 further increased Rrs to 39 +/- 6% above base line (P less than 0.05). Thus pilocarpine appears to inhibit SO2-induced bronchoconstriction in nonasthmatic subjects, and this effect is not explained by an increase in airway tone. In asthmatic subjects, pretreatment with pilocarpine increased Rrs by 31 +/- 8% and SO2 further increased Rrs to 88 +/- 17% above base line. SO2 alone gave a 60 +/- 18% increase in Rrs. Our results suggest that feedback inhibitory muscarinic receptors may be present on cholinergic nerves in normal airways and that there may be a dysfunction of this feedback mechanism in asthmatic airways. This might be contributory to exaggerated cholinergic reflex bronchoconstriction in asthma.  相似文献   

15.
Exhaled nitric oxide (NO) concentration is a noninvasive index for monitoring lung inflammation in diseases such as asthma. The plateau concentration at constant flow is highly dependent on the exhalation flow rate and the use of corticosteroids and cannot distinguish airway and alveolar sources. In subjects with steroid-naive asthma (n = 8) or steroid-treated asthma (n = 12) and in healthy controls (n = 24), we measured flow-independent NO exchange parameters that partition exhaled NO into airway and alveolar regions and correlated these with symptoms and lung function. The mean (+/-SD) maximum airway flux (pl/s) and airway tissue concentration [parts/billion (ppb)] of NO were lower in steroid-treated asthmatic subjects compared with steroid-naive asthmatic subjects (1,195 +/- 836 pl/s and 143 +/- 66 ppb compared with 2,693 +/- 1,687 pl/s and 438 +/- 312 ppb, respectively). In contrast, the airway diffusing capacity for NO (pl.s-1.ppb-1) was elevated in both asthmatic groups compared with healthy controls, independent of steroid therapy (11.8 +/- 11.7, 8.71 +/- 5.74, and 3.13 +/- 1.57 pl.s-1.ppb-1 for steroid treated, steroid naive, and healthy controls, respectively). In addition, the airway diffusing capacity was inversely correlated with both forced expired volume in 1 s and forced vital capacity (%predicted), whereas the airway tissue concentration was positively correlated with forced vital capacity. Consistent with previously reported results from Silkoff et al. (Silkoff PE, Sylvester JT, Zamel N, and Permutt S, Am J Respir Crit Med 161: 1218-1228, 2000) that used an alternate technique, we conclude that the airway diffusing capacity for NO is elevated in asthma independent of steroid therapy and may reflect clinically relevant changes in airways.  相似文献   

16.
Nonreversible conductive airway ventilation heterogeneity in mild asthma.   总被引:1,自引:0,他引:1  
A multiple-breath washout technique was used to assess residual ventilation heterogeneity in the conductive and acinar lung zones of asthmatic patients after maximal beta(2)-agonist reversibility. Reversibility was assessed in 13 patients on two separate visits corresponding to a different baseline condition in terms of forced expiratory volume in 1 s [FEV(1); average FEV(1) over 2 visits: 92 +/- 21% of predicted (SE)]. On the visit corresponding to each patient's best baseline, 400 micro g salbutamol led to normal acinar ventilation heterogeneity, normal FEV(1), and normal peak expiratory flow; i.e., none was significantly different from that obtained in 13 matched controls. By contrast, conductive ventilation heterogeneity and forced expiratory flow after exhalation of 75% forced vital capacity remained significantly different from controls (P < or = 0.005 on both indexes). In addition, the degree of postdilation conductive ventilation heterogeneity was similar to what was previously obtained in asthmatic individuals with a 19% lower baseline FEV(1) and twofold larger acinar ventilation heterogeneity (Verbanck S, Schuermans D, Noppen M, Van Muylem A, Paiva M, and Vincken W. Am J Respir Crit Care Med 159: 1545-1550, 1999). We conclude that, even in the mildest forms of asthma, the most consistent pattern of non-beta(2)-agonist-reversible ventilatory heterogeneity is in the conductive lung zone, most probably in the small conductive airways.  相似文献   

17.
In healthy individuals, deep inspirations (DIs) have a potent bronchodilatory ability against methacholine (MCh)-induced bronchoconstriction. This is variably attenuated in asthma. We hypothesized that inability to bronchodilate with DIs is related to reduced airway distensibility. We examined the relationship between DI-induced bronchodilation and airway distensibility in 15 asthmatic individuals with a wide range of baseline lung function [forced expired volume in 1 s (FEV(1)) = 60-99% predicted]. After abstaining from DIs for 20 min, subjects received a single-dose MCh challenge and then asked to perform DIs. The effectiveness of DIs was assessed by the ability of the subjects to improve FEV(1). The same subjects were studied by two sets of high-resolution CT scans, one at functional residual capacity (FRC) and one at total lung capacity (TLC). In each subject, the areas of 21-41 airways (0.8-6.8 mm diameter at FRC) were matched and measured, and airway distensibility (increase in airway diameter from FRC to TLC) was calculated. The bronchodilatory ability of DIs was significantly lower in individuals with FEV(1) <75% predicted than in those with FEV(1) ≥75% predicted (15 ± 11% vs. 46 ± 9%, P = 0.04) and strongly correlated with airway distensibility (r = 0.57, P = 0.03), but also with residual volume (RV)/TLC (r = -0.63, P = 0.01). In multiple regression, only RV/TLC was a significant determinant of DI-induced bronchodilation. These relationships were lost when the airways were examined after maximal bronchodilation with albuterol. Our data indicate that the loss of the bronchodilatory effect of DI in asthma is related to the ability to distend the airways with lung inflation, which is, in turn, related to the extent of air trapping and airway smooth muscle tone. These relationships only exist in the presence of airway tone, indicating that structural changes in the conducting airways visualized by high-resolution CT do not play a pivotal role.  相似文献   

18.
It is now accepted that a host of cytokines, chemokines, growth factors, and other inflammatory mediators contributes to the development of nonspecific airway hyperresponsiveness in asthma. Yet, relatively little is known about how inflammatory mediators might promote airway structural remodeling or about the molecular mechanisms by which they might exaggerate smooth muscle shortening as observed in asthmatic airways. Taking a deep inspiration, which provides relief of bronchodilation in normal subjects, is less effective in asthmatic subjects, and some have speculated that this deficiency stems directly from an abnormality of airway smooth muscle and results in airway hyperresponsiveness to constrictor agonists. Here, we consider some of the mechanisms by which inflammatory mediators might acutely or chronically induce changes in the contractile apparatus that in turn might contribute to hyperresponsive airways in asthma.  相似文献   

19.
Anatomic dead space (VD) is known to increase with end-inspiratory lung volume (EILV), and the gradient of the relationship has been proposed as an index of airway distensibility (DeltaVD). The aims of this study were to apply a rapid method for measuring DeltaVD and to determine whether it was affected by lung volume history. VD of 16 healthy and 16 mildly asthmatic subjects was measured at a number of known EILVs by using a tidal breathing, CO(2)-washout method. The effect of lung volume history was assessed by using three tidal breathing regimens: 1) three discrete EILVs (low/medium/high; LMH); 2) progressively decreasing EILVs from total lung capacity (TLC; TLC-RV); and 3) progressively increasing EILVs from residual volume (RV; RV-TLC). DeltaVD was lower in the asthmatic group for the LMH (25.3 +/- 2.24 vs. 21.2 +/- 1.66 ml/l, means +/- SE) and TLC-RV (24. 3 +/- 1.69 vs. 18.7 +/- 1.16 ml/l) regimens. There was a trend for a lower DeltaVD in the asthmatic group for the RV-TLC regimen (23.3 +/- 2.19 vs. 18.8 +/- 1.68 ml/l). There was no difference in DeltaVD between groups. In conclusion, mild asthmatic subjects have stiffer airways than normal subjects, and this is not obviously affected by lung volume history.  相似文献   

20.
Low-frequency respiratory mechanical impedance in the rat   总被引:1,自引:0,他引:1  
A modified forced oscillatory technique was used to determine the respiratory mechanical impedances in anesthetized, paralyzed rats between 0.25 and 10 Hz. From the total respiratory (Zrs) and pulmonary impedance (ZL), measured with pseudorandom oscillations applied at the airway opening before and after thoracotomy, respectively, the chest wall impedance (ZW) was calculated as ZW = Zrs - ZL. The pulmonary (RL) and chest wall resistances were both markedly frequency dependent: between 0.25 and 2 Hz they contributed equally to the total resistance falling from 81.4 +/- 18.3 (SD) at 0.25 Hz to 27.1 +/- 1.7 kPa.l-1 X s at 2 Hz. The pulmonary compliance (CL) decreased mildly, from 2.78 +/- 0.44 at 0.25 Hz to 2.36 +/- 0.39 ml/kPa at 2 Hz, and then increased at higher frequencies, whereas the chest wall compliance declined monotonously from 4.19 +/- 0.88 at 0.25 Hz to 1.93 +/- 0.14 ml/kPa at 10 Hz. Although the frequency dependence of ZW can be interpreted on the basis of parallel inhomogeneities alone, the sharp fall in RL together with the relatively constant CL suggests that at low frequencies significant losses are imposed by the non-Newtonian resistive properties of the lung tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号