首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A gene, blmA, from bleomycin (Bm)-producing Streptomyces verticillus, encodes a Bm-binding protein, designated BLMA. The expression of BLMA conferred resistance to Bm in the Escherichia coli host, whereas a mutant protein, designated Pro-9/Leu, with the N-terminal proline 9 residue in BLMA replaced by leucine, did not. We created a fusion protein between the maltose-binding protein (MBP) and a mutant protein Pro-9/Leu/Leu with Met-94 in Pro-9/Leu replaced by leucine. Pro-9/Leu/Leu from the fusion protein, obtained by digestion with CNBr digestion, did not inhibit DNA-cleaving and antibacterial activities of Bm. Native-polyacrylamide gel electrophoresis (PAGE) and gel filtration column chromatographic analysis showed that the molecular size of Pro-9/Leu/Leu is roughly half of that of BLMA, suggesting that the mutant protein cannot form dimeric structure. Furthermore, Far-UV circular dichroism (CD) spectrum of Pro-9/Leu/Leu was quite different from that of BLMA and similar to the spectra obtained from unordered proteins [Venyaminov, S.Y. and Vassilenko, K.S. (1994) Anal. Biochem. 222, 176–184], suggesting that the secondary structure of Pro-9/Leu/Leu is disrupted. These results indicate that the mutation abolishes not only dimer formation but also the secondary structure of BLMA, which results in the loss of its function as a Bm-resistance determinant.  相似文献   

2.
Bleomycin (Bm)-binding protein, designated BLMA, which is a Bm resistance determinant from Bm-producing Streptomyces verticillus, was crystallized in a form suitable for X-ray diffraction analysis. The diffraction intensity data were collected up to a resolution of 1.5 A with a merging R-value of 0.054 at a completeness of 94 %. The BLMA structure, determined by the single isomorphous replacement method including the anomalous scattering effect (SIR-AS) at a resolution of 2.0 A, was refined at 1.5 A resolution. The final R-factor was 19.0 % and R(free) was 22.1 % including 91 water molecules. The crystal packing showed a dimer form, which was generated by arm exchange. The 1.5 A high-resolution experiment allowed an analysis of the side-chain disorder of BLMA. The structural comparison of BLMA with a homologous protein from Streptoalloteichus hindustanus, designated Shble protein, showed that a Ser100-Gly103 loop was farther from the groove, which is a Bm-binding site, in BLMA than in the Shble protein. Furthermore the hydrophobicity of the groove in BLMA is much lower than that in the Shble protein. The structural differences between these proteins may be responsible for the observation that a half-saturating concentration (K(1/2)) of Bm is higher for BLMA than for the Shble protein.  相似文献   

3.
Antibiotic-producing microorganisms must be protected from the lethal effect of their own antibiotic. We have previously determined the X-ray crystal structure of the bleomycin (Bm)-binding protein, designated BLMA, as a self-resistance determinant from Bm-producing Streptomyces verticillus, which suggests that the binding of the first Bm to one of two pockets formed in the BLMA homodimer induces the cooperative binding of the second Bm to the other pocket. In the present study, we noticed that the X-ray crystallographic structure of a self-resistance determinant from a mitomycin C-producing microorganism, designated MRDP, reveals similarity to the folding pattern on the BLMA, although no sequence homology exists. To clarify the hypothesis that MRDP may function as a resistance determinant to Bm, we characterized and determined the crystal structure of MRDP complexed with the Cu(II)-bound form of BmA(2) grouped into the Bm family of antibiotics. The biochemical and structural studies for Bm binding provide evidence that the first Bm binds anti-cooperatively to a pocket of MRDP with binding affinity of the nanomolar order, whereas the second Bm binds to the other pocket, which has binding affinity of the micromolar order. The invisibility of the second Bm in the structure agrees with the observation that Escherichia coli-expressing MRDP displays lower resistance to Bm than that expressing BLMA. The structure of MRDP, which is complexed with the Cu(II)-bound BmA(2), revealed that the gamma-aminopropyldimethylsulphonium moiety of the antibiotic is sandwiched between the peripheral residues of the binding pocket and that its positively charged sulphonium head is accommodated completely in the negatively charged region of the MRDP pocket. Furthermore, the Cu(II)-bound BmA(2) has a very compact structure, in which the bithiazole ring of BmA(2) is folded back to the metal-binding domain.  相似文献   

4.
Bleomycin (Bm) in the culture broth of Streptomyces verticillus is complexed with Cu(2+) (Cu(II)). In the present study, we determined the x-ray crystal structures of the Cu(II)-bound and the metal-free types of Bm at a high resolution of 1.6 and 1.8 A, respectively, which are complexed with a Bm resistance determinant from Bm-producing S. verticillus, designated BLMA. In the current model of Cu(II).Bm complexed with BLMA, two Cu(II).Bm molecules bind to the BLMA dimer. The electron density map shows that the copper ion is clearly defined in the metal-binding domain of the Bm molecule. The metal ion is penta-coordinated by a tetragonal monopyramidal cage of nitrogens and binds to the primary amine of the beta-aminoalanine moiety of Bm. The binding experiment between Bm and BLMA showed that each of the two Bm-binding pockets has a different dissociation constant (K(d)(1) and K(d)(2)). The K(d)(1) value of 630 nm for the first Bm binding is larger than the K(d)(2) value of 120 nm, indicating that the first Bm binding gives rise to a cooperative binding of the second Bm to the other pocket.  相似文献   

5.
Long G  Pan X  Vlak JM 《Journal of virology》2008,82(5):2437-2447
The heptad repeat (HR), a conserved structural motif of class I viral fusion proteins, is responsible for the formation of a six-helix bundle structure during the envelope fusion process. The insect baculovirus F protein is a newly found budded virus envelope fusion protein which possesses common features to class I fusion proteins, such as proteolytic cleavage and the presence of an N-terminal open fusion peptide and multiple HR domains on the transmembrane subunit F(1). Similar to many vertebrate viral fusion proteins, a conserved leucine zipper motif is predicted in this HR region proximal to the fusion peptide in baculovirus F proteins. To facilitate our understanding of the functional role of this leucine zipper-like HR1 domain in baculovirus F protein synthesis, processing, and viral infectivity, key leucine residues (Leu209, Leu216, and Leu223) were replaced by alanine (A) or arginine (R), respectively. By using Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) as a pseudotype expression system, we demonstrated that all mutant F proteins incorporated into budded virus, indicating that leucine substitutions did not affect intercellular trafficking of F. Furin-like protease cleavage was not affected by any of the leucine substitutions; however, the disulfide bridging and N-linked glycosylation patterns were partly altered. Single substitutions in HR1 showed that the three leucine residues were critical for F fusogenicity and the rescue of AcMNPV infectivity. Our results support the view that the leucine zipper-like HR1 domain is important to safeguard the proper folding, glycosylation, and fusogenicity of baculovirus F proteins.  相似文献   

6.
Shu W  Liu J  Ji H  Radigen L  Jiang S  Lu M 《Biochemistry》2000,39(7):1634-1642
The HIV-1 gp41 envelope protein mediates membrane fusion that leads to virus entry into the cell. The core structure of fusion-active gp41 is a six-helix bundle in which an N-terminal three-stranded coiled coil is surrounded by a sheath of antiparallel C-terminal helices. A conserved glutamine (Gln 652) buried in this helical interface replaced by leucine increases HIV-1 infectivity. To define the basis for this enhanced membrane fusion activity, we investigate the role of the Gln 652 to Leu substitution on the conformation, stability, and biological activity of the N34(L6)C28 model of the gp41 ectodomain core. The 2.0 A resolution crystal structure of the mutant molecule shows that the Leu 652 side chains make prominent contacts with hydrophobic grooves on the surface of the central coiled coil. The Gln 652 to Leu mutation leads to a marginal stabilization of the six-helix bundle by -0.8 kcal/mol, evaluated from thermal unfolding experiments. Strikingly, the mutant N34(L6)C28 peptide is a potent inhibitor of HIV-1 infection, with 10-fold greater activity than the wild-type molecule. This inhibitory potency can be traced to the corresponding C-terminal mutant peptide that likely has greater potential to interact with the coiled-coil trimer. These results provide strong evidence that conserved interhelical packing interactions in the gp41 core are important determinants of HIV-1 entry and its inhibition. These interactions also offer a test-bed for the development of more potent analogues of gp41 peptide inhibitors.  相似文献   

7.
The envelope glycoprotein G of vesicular stomatitis virus induces membrane fusion at low pH. Site-directed mutagenesis of specific amino acids within a segment spanning amino acids 123 to 137 of G protein, which is highly conserved in vesiculoviruses and was previously shown by us to be involved in fusogenic activity (Y. Li, C. Drone, E. Sat, and H. P. Ghosh, J. Virol. 67:4070-4077, 1993), was used to determine the role of this region in low-pH-induced membrane fusion. The mutant glycoproteins expressed in COS cells were assayed for acid-pH-induced cell-cell fusion. Substitution of the variant Pro-123 with Leu had no effect on the fusogenic activity, while substitution of conserved Phe-125 and Asp-137 with Tyr and Asn, respectively, shifted the pH optimum of membrane fusion to a more acidic pH value and decreased the fusion efficiency. The deletion of amino acid residues 124 to 127, 131 to 137, or 124 to 137 produced mutants defective in transport. Mutation of the conserved residues Gly-124 and Pro-127 to Ala and to Gly or Leu, respectively, inhibited cell-cell fusion activity by about 90% without affecting transport of the mutant proteins to the cell surface, suggesting that these two residues may be present within the fusion peptide and thus may be directly involved in fusion. This highly conserved domain containing neutral amino acids of G protein may therefore represent the putative fusion domain of vesicular stomatitis virus G protein.  相似文献   

8.
Leucine aminopeptidases (LAPs) are exopeptidases that remove the N-terminal L-leucine from peptide substrates. Oxidative stability assay showed that the recombinant Bacillus stearothermophilus LAP II (rLAPII) was sensitive to oxidative damage by hydrogen peroxide at the elevated temperature. The H2O2-treated enzyme experienced obvious changes in the secondary structure when the oxidant concentration increased to 300 mM. To investigate the role of methionine residues on the oxidative inactivation, each of the five methionine residues in the rLAPII was replaced with leucine by site-directed mutagenesis. The mutant enzymes with an apparent Mr of approximately 44.5 kDa were overexpressed in Escherichia coli and were purified to homogeneity by nickel-chelate chromatography. The specific activities for Met82Leu, Met88Leu, Met254Leu, and Met382Leu were similar to that of the wild-type enzyme, whereas a reduced activity was observed in Met136Leu. The 50% decrease in the catalytic efficiency (kcat/Km) for Met136Leu was caused by 47% decrease in kcat value. As compared with the wild-type enzyme, all mutant proteins were more sensitive to the oxidant, implying that the methionine residues of B. stearothermophilus LAP II are important for the protection of the enzyme from oxidative inactivation.  相似文献   

9.
The murine coronavirus spike (S) protein contains a leucine zipper domain which is highly conserved among coronaviruses. To assess the role of this leucine zipper domain in S-induced cell-to-cell fusion, the six heptadic leucine and isoleucine residues were replaced with alanine by site-directed mutagenesis. The mutant S proteins were analyzed for cell-to-cell membrane fusion activity as well as for progress through the glycoprotein maturation process, including intracellular glycosylation, oligomerization, and cell surface expression. Single-alanine-substitution mutations had minimal, if any, effects on S-induced cell-to-cell fusion. Significant reduction in fusion activity was observed, however, when two of the four middle heptadic leucine or isoleucine residues were replaced with alanine. Double alanine substitutions that involved either of the two end heptadic leucine residues did not significantly affect fusion. All double-substitution mutant S proteins displayed levels of endoglycosidase H resistance and cell surface expression similar to those of the wild-type S. However, fusion-defective double-alanine-substitution mutants exhibited defects in S oligomerization. These results indicate that the leucine zipper domain plays a role in S-induced cell-to-cell fusion and that the ability of S to induce fusion may be dependent on the oligomeric structure of S.  相似文献   

10.
The bluetongue virus (BTV) minor protein VP4, with molecular mass of 76 kDa, is one of the seven structural proteins and is located within the inner capsid of the virion. The protein has a putative leucine zipper near the carboxy terminus of the protein. In this study, we have investigated the functional activity of this putative leucine zipper by a number of approaches. The putative leucine zipper region (amino acids [aa] 523 to 551) was expressed initially as a fusion protein by using the pMAL vector of Escherichia coli, which expresses a maltose binding monomeric protein. The expressed fusion protein was purified by affinity chromatography, and its size was determined by gel filtration chromatography. Proteins of two sizes, 51 and 110 kDa, were recovered, one equivalent to the monomeric form and the other equivalent to the dimeric form of the fusion protein. To prove that the VP4-derived sequence was responsible for dimerization of this protein, a mutated fusion protein was created in which a VP4 leucine residue (at aa 537) within the zipper was replaced by a proline residue. Analyses of the mutated protein demonstrated that the single mutation indeed prevented dimerisation of the protein. The dimeric nature of VP4 was further confirmed by using purified full-length BTV-10 VP4 recovered from recombinant baculovirus-expressing BTV-10 VP4-infected insect cells. Using chemical cross-linking and gel filtration chromatography, we documented that the native VP4 indeed exists as a dimer in solution. Subsequently, Leu537 was replaced by either a proline or an alanine residue and the full-length mutated VP4 was expressed in the baculovirus system. By sucrose density gradient centrifugation and gel filtration chromatography, these mutant forms of VP4 were shown to lack the ability to form dimers. The biological significance of the dimeric forms of VP4 was examined by using a functional assay system, in which the encapsidation activity of VP4 into core-like particles (CLPs) was studied (H. LeBlois, T. French, P. P. C. Mertens, J. N. Burroughs, and P. Roy, Virology 189:757–761, 1992). We demonstrated conclusively that dimerization of VP4 was essential for encapsidation by CLPs.  相似文献   

11.
By chemoenzymatic synthesis the gene for a (Leu27) analogue of human growth hormone releasing hormone-Gly45 [(Leu27)GHRH-Gly45] was constructed, cloned and expressed in Escherichia coli as a fusion protein with beta-galactosidase under the control of the lac promoter and operator. Upon induction with isopropyl-D-thio-beta-galactopyranoside the fusion protein accumulated to a yield of 15-20% of the total cellular protein. After cyanogen bromide cleavage of the fusion protein the precursor peptide (Leu27)hGHRH-Gly45 was separated by extraction and purified by ion exchange and h.p.l.c.-RP18 chromatography. The purified peptide was analysed by sequencing, isoelectric focusing, amino acid analysis and amino acid analysis after V8 protease digestion. The carboxy-terminal glycine was subsequently amidated by PAM (peptidylglycine-alpha-amidating-monooxygenase), an enzyme which was isolated and characterized from fresh bovine pituitaries. Correct amidation of the penultimate amino acid, leucine, was verified by peptide sequencing with an authentic leucine amide reference.  相似文献   

12.
T Imanaka  M Nakae  T Ohta    M Takagi 《Journal of bacteriology》1992,174(4):1423-1425
Pro residues in predicted beta-turn structures were substituted with other amino acids to obtain temperature-sensitive penicillinase repressors (PenI). A mutant repressor (P70L; Pro-70 is substituted with Leu) was inactive at 48 degrees C and penP gene expression was derepressed (1,200 U/OD660 [optical density at 660 nm] ), although the mutant was still active at 30 degrees C (27 U). The heat induction ratio (penicillinase activity at 48 degrees C compared with that at 30 degrees C) of the mutant was 98 times higher than that of the wild type (i.e., 44 versus 0.45). This result indicated that the side chain of the Leu residue in P70L destroyed the proper folding of the repressor protein at the elevated temperature, whereas the Pro residue of the wild-type repressor stabilized this predicted beta-turn structure even at 48 degrees C. When the Pro residue was replaced by amino acid residues with smaller side chains (i.e., Gly and Ala), these mutant repressors were less temperature sensitive than P70L. These data suggest that the presence of the Pro residue in the beta-turn structure could be one of the key factors in stabilizing protein structure at elevated temperatures.  相似文献   

13.
G S Yi  B S Choi    H Kim 《Biophysical journal》1994,66(5):1604-1611
The structure of a chemically synthesized 25-residue-long functional signal peptide of Escherichia coli ribose binding protein was compared with that of a nonfunctional mutant-signal peptide using circular dichroism and two-dimensional 1H NMR in solvents mimicking the amphiphilic environments. The functional peptide forms an 18-residue-long alpha-helix starting from the NH2-terminal region and reaching to the hydrophobic stretch in a solvent consisting of 10% dimethylsulfoxide, 40% water, and 50% trifluoroethanol (v/v). The nonfunctional mutant peptide, which contains a Pro at position 9 instead of a Leu in the wild-type peptide, does not have any secondary structure in that solvent but forms a 12-residue-long alpha-helix within the hydrophobic stretch in water/trifluoroethanol (50:50, v/v) solvent. It seems that the Pro-9 residue in the nonfunctional peptide disturbs the helix propagation from the hydrophobic stretch to the NH2-terminal region. Because both of these peptides have stable helices within the hydrophobic stretch, it may be concluded that the additional 2 turns of the alpha-helix in the NH2-terminal region of the wild-type signal peptide is important for its function.  相似文献   

14.
Y. H. Chiu  N. R. Morris 《Genetics》1997,145(3):707-714
NudC encodes a protein of unknown biochemical function that is required for nuclear migration. In an attempt to define its function by identifying interacting proteins, a screen for extragenic suppressors of the temperature-sensitive nudC3 mutation was undertaken that identified nine snc genes. Here we demonstrate that nudC3 has a missense mutation at amino acid 146 that causes leucine to be replaced by proline and that sncB69 encodes a mutant tRNA(Leu) that corrects the mutation. The sncB69 mutation deletes a single nucleotide in the anticodon of a tRNA(Leu) that changes its normal (5')CAG(3') leucine anticodon to the proline anticodon (5')CGG(3'), which presumably allows incorporation of leucine at the mutant nudC3 proline codon 146 and thereby causes suppression of the nudC3 mutant phenotype.  相似文献   

15.
Amino acid-deprived rplK (previously known as relC) mutants of Escherichia coli cannot activate (p)ppGpp synthetase I (RelA) and consequently exhibit relaxed phenotypes. The rplK gene encodes ribosomal protein L11, suggesting that L11 is involved in regulating the activity of RelA. To investigate the role of L11 in the stringent response, a derivative of rplK encoding L11 lacking the N-terminal 36 amino acids (designated 'L11) was constructed. Bacteria overexpressing 'L11 exhibited a relaxed phenotype, and this was associated with an inhibition of RelA-dependent (p)ppGpp synthesis during amino acid deprivation. In contrast, bacteria overexpressing normal L11 exhibited a typical stringent response. The overexpressed 'L11 was incorporated into ribosomes and had no effect on the ribosome-binding activity of RelA. By several methods (yeast two-hybrid, affinity blotting, and copurification), no direct interaction was observed between the C-terminal ribosome-binding domain of RelA and L11. To determine whether the proline-rich helix of L11 was involved in RelA regulation, the Pro-22 residue was replaced with Leu by site-directed mutagenesis. The overexpression of the Leu-22 mutant derivative of L11 resulted in a relaxed phenotype. These results indicate that the proline-rich helix in the N terminus of L11 is involved in regulating the activity of RelA.  相似文献   

16.
A dysfunctional antithrombin III (ATIII) gene encoding a qualitatively and quantitatively abnormal anticoagulant molecule is responsible for hereditary thrombosis in a Utah kindred [Bock et al. (1985) Am. J. Hum. Genet. 37, 32-41]. Nucleotide sequencing of the entire protein-encoding portion of the cloned ATIII-Utah gene revealed a C to T transitional mutation which converts proline-407 to leucine. Proline-407 is located 14 amino acids C-terminal to the reactive site arginine of ATIII in a core region of the molecule that has been highly conserved during evolution of the serine protease inhibitor (serpin) gene family. The location of this proline in the crystal structure of the homologous serpin alpha 1-antitrypsin suggests that the leucine substitution in ATIII-Utah may interfere with correct folding of the mutant gene product, leading to its rapid turnover and the low antithrombin levels observed in patient plasmas. The Pro-407 to Leu mutation does not interfere with binding of antithrombin III to heparin. Patient antithrombin III, isolated by affinity chromatography on heparin-Sepharose, was reacted with purified thrombin. ATIII encoded by the patient's normal gene formed protease-inhibitor complexes with thrombin, whereas the product of the ATIII-Utah gene did not. The Pro-407 to Leu mutation destroys a restriction site for the enzyme StuI, permitting rapid diagnosis of affected members of the Utah kindred by Southern blotting of genomic DNA.  相似文献   

17.
Many retroviruses, including the human and simian immunodeficiency viruses, contain a leucine zipper-like repeat in a highly conserved region of the external domain of the transmembrane (TM) glycoprotein. This region has been postulated to play a role in stabilizing the oligomeric form of these molecules. To determine what role this region might play in envelope structure and function, several mutations were engineered into the middle isoleucine of the leucine zipper-like repeat of the human immunodeficiency virus type 1 (HIV-1) TM protein. A phenotypic analysis of these mutants demonstrated that conservative mutations (Ile to Val or Leu) did not block the ability of the viral glycoprotein to mediate cell-cell fusion or affect virus infectivity. In contrast, each of the other mutations, except for the Ile-to-Ala change, completely inhibited the ability of the glycoprotein to fuse HeLa-T4 cells and of mutant virions to infect H9 cells. The alanine mutation produced an intermediate phenotype in which both cell fusion and infectivity were significantly reduced. Thus, the biological activity of the glycoprotein titrates with the hydrophobicity of the residue in this position. None of the mutations affected the synthesis, oligomer formation, transport, or processing of the HIV glycoprotein complex. Although these results do not rule out a role for the leucine zipper region in glycoprotein oligomerization, they clearly point to a critical role for it in a post-CD4 binding step in HIV membrane fusion and virus entry.  相似文献   

18.
Joshi AD  Pajor AM 《Biochemistry》2006,45(13):4231-4239
The Na+/dicarboxylate cotransporter 1 (NaDC1) is a low-affinity transporter for citric acid cycle intermediates such as succinate and citrate. The sequence of NaDC1 contains a number of conserved proline residues in predicted transmembrane helices (TMs) 7 and 10. These transmembrane domains are of particular importance because they may be involved in determining the substrate or cation-binding affinity in NaDC1. Four conserved proline residues in TMs 7 and 10 of rabbit NaDC1 were replaced with alanine to promote ideal alpha helix or glycine to promote free conformation, and the mutant transporters were expressed in the HRPE cell line. Mutations of prolines in TM 10 produced decreased protein expression and activity, whereas mutations of prolines in TM 7 completely abolished protein expression and activity. The chemical chaperone glycerol was found to improve the expression of the Pro-351 mutants in TM 7, suggesting that these mutants had defects in trafficking. The inactive mutant transporters at position 351 could also be rescued by the addition of a proline at a second site. For example, the P351A-F347P mutant had restored activity, although its substrate specificity was altered. We conclude that, in TM 7, Pro-327 may be of particular importance in the function of the transporter, whereas Pro-351 may affect protein targeting. The prolines in TM 10, at positions 523 and 524, may not be directly involved in the transporter function but may be necessary for maintaining structure.  相似文献   

19.
To study their role in the structure and function of bacteriorhodopsin, three prolines, presumed to be in the membrane-embedded alpha-helices, have been individually replaced as follows: Pro-50 and Pro-91 each by Gly and Ala and Pro-186 by Ala, Gly, and Val. The mutants of Pro-50 and Pro-91 all showed normal chromophore and proton pumping. However, the rates of regeneration of the chromophore in Pro-50----Ala, Pro-91----Ala and ----Gly with all-trans-retinal were about 30-fold slower than that in the wild-type, whereas the chromophore regeneration rate in Pro-50----Gly was 10-fold faster than in the wild-type. While, Pro-186----Ala regenerated the wild-type chromophore, the mutants Pro-186----Val and Pro-186----Gly showed large blue shifts (about 80 nm) in the chromophore regenerated with all-trans-retinal and showed no apparent dark-light adaptation. Pro-186----Gly first regenerated the wild-type chromophore with 13-cis-retinal which was thermally unstable and rapidly converted to the blue-shifted chromophore obtained with all-trans-retinal. High salt concentration restored the wild-type purple chromophore in the Pro-186----Gly mutant. Thus, in this mutant, the protein interconverts between two conformational states. Pro-186----Ala and Pro-186----Gly showed about 65%, whereas Pro-186----Val showed 10-20% of the normal proton pumping.  相似文献   

20.
Villin headpiece (HP67) is a small, autonomously-folding domain that has become a model system for understanding the fundamental tenets governing protein folding. In this communication, we explore the role that Leu61 plays in the structure and stability of the construct. Deletion of Leu61 results in a completely unfolded protein that cannot be expressed in Escherichia coli. Omission of only the aliphatic leucine side chain (HP67 L61G) perturbed neither the backbone conformation nor the orientation of local hydrophobic side chains. As a result, a large, solvent-exposed hydrophobic pocket, a negative replica of the leucine side-chain, was created on the surface. The loss of the hydrophobic interface between leucine 61 and the hydrophobic pocket destabilized the construct by ~3.3 kcal/mol. Insertion of a single glycine residue immediately before Leu61 (HP67 L61[GL]) was also highly destabilizing and had the effect of altering the backbone conformation (α-helix to π-helix) in order to precisely preserve the wild-type position and conformation of all hydrophobic residues, including Leu61. In addition to demonstrating that the hydrophobic side-chain of Leu61 is critically important for the stability of villin headpiece, our results are consistent with the notion that the precise interactions present within the hydrophobic core, rather than the hydrogen bonds that define the secondary structure, specify a protein's fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号