首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variant of ornithine aminotransferase (OAT, EC 2.6.1.13) has been detected in an offspring of a male mouse treated with ethylnitrosourea. The evidence presented to support the identification of the protein variant (ENU 2) as altered OAT includes (a) a corresponding 50% decrease in the abundance of a protein, located one charge unit basic to the variant, which comigrates on two-dimensional gel patterns with purified mouse liver OAT; (b) the binding of anti-rat-OAT antibody to the variant; (c) the increased abundance of the variant protein in the livers of mice fed a high protein diet (85% casein); and (d) purification of the variant through an OAT purification protocol.  相似文献   

2.
Ornithine aminotransferase (OAT) from rat liver mitochondria was purified to homogeneity. A monospecific antiserum against the enzyme protein was prepared in rabbits. Immunotitrations were performed on OAT present in crude mitochondrial extracts obtained from the livers and kidneys of rats in several hormonal and dietary states. No evidence was found for the existence of an immunologically reactive but enzymatically inactive form of OAT. The relative rate of enzyme synthesis in vivo was studied by pulselabeling rats with [4, 5-3H]leucine, isolating the enzyme protein by immunoprecipitation, and dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels. Nine hours after a single subcutaneous injection of a glucagon oil emulsion, a 3-fold increase in OAT activity and a 12-fold increase in the synthetic rate of the enzyme were observed. Serine dehydratase activity increased on a time-course very similar to that of OAT following glucagon injection. These increases occurred only on low (0–12.5%) protein diets. At higher levels of dietary protein (30% and up), no further stimulation of OAT synthesis by glucagon was observed. Administration of actinomycin D within the first 2 h after glucagon injection resulted in an inhibition of OAT induction. When the administration of the antibiotic was delayed until 4 h after glucagon, no inhibition of OAT induction was observed. Glucose repression of the glucagon induction of the enzyme in hepatic mitochondria was demonstrated to be the result of a rapid inhibition of OAT synthesis.  相似文献   

3.
Regulation of ornithine aminotransferase in retinoblastomas   总被引:1,自引:0,他引:1  
  相似文献   

4.
A cell-free system devoid of polysomes, which translates natural mRNA, has been prepared from rat liver. It contains ribosomal subunits, ribosomes, aminoacyl-tRNA synthetases, tRNAs, and protein factors necessary for translation. Protein synthesis required an energy-generating system, mRNA, and 3 mM Mg2+ concentration, and it was inhibited by 7-methylguanylic acid. The total extent and the rate of protein synthesis were approximately 30% greater when the translating system was prepared from livers of 3-month-old rats, as compared to 30-month-old rats. A ribosome-free fraction containing the protein factors required for translation was also prepared from 3-month-old and 30-month-old rat livers and brains, by extraction with 0.5 M KCl. The high-salt extracts were analyzed for elongation factors EF-1 and EF-2 in a poly(U) translating system. Although the activity of EF-2 was similar in preparations from young and old rats, the EF-1 activity in the 3-month-old rat livers and brains was 30 to 40% greater than in 30-month-old animals. The protein synthesizing activity of high salt-washed ribosomes stripped of endogenous peptidyl-tRNA and mRNA, from livers and brains of young and old animals, was the same.  相似文献   

5.
The relative rates of ornithine aminotransferase (OAT) synthesis in vivo were studied by pulse-labeling rats with [4,5-3H]leucine, isolating the mitochondrial enzyme protein by immunoprecipitation with a monospecific antibody, dissociating the immunoprecipitates on sodium dodecyl sulfate-acrylamide gels, and determining the radioactivity in OAT. After 4 days of treatment with triiodothyronine (T3), both the enzyme activity level and the relative synthetic rate of OAT in rat kidney were elevated over twofold. The level of hepatic OAT activity was unaffected by this treatment. Thyroidectomy caused a 50% drop in the basal level of OAT activity and synthesis in kidney but not in liver. Although the basal levels of activity and synthesis of both renal and hepatic OAT were unaffected by adrenalectomy, the glucagon induction of the enzyme in liver was enhanced by about one-third and the T3 induction in kidney was suppressed 50% by this operation. After 4 days of treatment with estrogen, both the enzyme activity level and the relative synthetic rate of OAT in male rat kidney were elevated nearly 10-fold. Hepatic OAT activity and synthesis were unaffected by this regimen. Thyroidectomy almost completely abolished the estrogen induction of OAT in kidney. OAT induction by estrogen could be restored by treating thyroidectomized rats with T3. Simultaneous administration of T3 plus estrogen to intact rats produced a multiple effect, resulting in a striking 20-fold induction of renal OAT. Although administration of either T3 or estrogen causes an increase in the synthesis of immunoprecipitable OAT protein in rat kidney, each of these hormones may induce OAT by a different mechanism.  相似文献   

6.
Renal proximal tubules secrete diverse organic anions (OA) including widely prescribed anionic drugs. Here, we review the molecular properties of cloned transporters involved in uptake of OA from blood into proximal tubule cells and provide extensive lists of substrates handled by these transport systems. Where tested, transporters have been immunolocalized to the basolateral cell membrane. The sulfate anion transporter 1 (sat-1) cloned from human, rat and mouse, transported oxalate and sulfate. Drugs found earlier to interact with sulfate transport in vivo have not yet been tested with sat-1. The Na+-dicarboxylate cotransporter 3 (NaDC-3) was cloned from human, rat, mouse and flounder, and transported three Na+ with one divalent di- or tricarboxylate, such as citric acid cycle intermediates and the heavy metal chelator 2,3-dimercaptosuccinate (succimer). The organic anion transporter 1 (OAT1) cloned from several species was shown to exchange extracellular OA against intracellular α-ketoglutarate. OAT1 translocated, e.g., anti-inflammatory drugs, antiviral drugs, β-lactam antibiotics, loop diuretics, ochratoxin A, and p-aminohippurate. Several OA, including probenecid, inhibited OAT1. Human, rat and mouse OAT2 transported selected anti-inflammatory and antiviral drugs, methotrexate, ochratoxin A, and, with high affinities, prostaglandins E2 and F. OAT3 cloned from human, rat and mouse showed a substrate specificity overlapping with that of OAT1. In addition, OAT3 interacted with sulfated steroid hormones such as estrone-3-sulfate. The driving forces for OAT2 and OAT3, the relative contributions of all OA transporters to, and the impact of transporter regulation by protein kinases on renal drug excretion in vivo must be determined in future experiments. Electronic Publication  相似文献   

7.
8.
9.
The flounder renal organic anion transporter (fOat) has substantial sequence homology to mammalian basolateral organic anion transporter orthologs (OAT1/Oat1 and OAT3/Oat3), suggesting that fOat may have functional properties of both mammalian forms. We therefore compared uptake of various substrates by rat Oat1 and Oat3 and human OAT1 and OAT3 with the fOat clone expressed in Xenopus oocytes. These data confirm that estrone sulfate is an excellent substrate for mammalian OAT3/Oat3 transporters but not for OAT1/Oat1 transporters. In contrast, 2,4-dichlorophenoxyacetic acid and adefovir are better transported by mammalian OAT1/Oat1 than by the OAT3/Oat3 clones. All three substrates were well transported by fOat-expressing Xenopus oocytes. fOat K(m) values were comparable to those obtained for mammalian OAT/Oat1/3 clones. We also characterized the ability of these substrates to inhibit uptake of the fluorescent substrate fluorescein in intact teleost proximal tubules isolated from the winter flounder (Pseudopleuronectes americanus) and killifish (Fundulus heteroclitus). The rank order of the IC(50) values for inhibition of cellular fluorescein accumulation was similar to that for the K(m) values obtained in fOat-expressing oocytes, suggesting that fOat may be the primary teleost renal basolateral Oat. Assessment of the zebrafish (Danio rerio) genome indicated the presence of a single Oat (zfOat) with similarity to both mammalian OAT1/Oat1 and OAT3/Oat3. The puffer fish (Takifugu rubripes) also has an Oat (pfOat) similar to mammalian OAT1/Oat1 and OAT3/Oat3 members. Furthermore, phylogenetic analyses argue that the teleost Oat1/3-like genes diverged from a common ancestral gene in advance of the divergence of the mammalian OAT1/Oat1, OAT3/Oat3, and, possibly, Oat6 genes.  相似文献   

10.
Abstract. Malignant hybrid cells (As3) derived from fusion of rat hepatoma cells (Fu5AH) with mouse teratocarcinoma cells (OTT6050) were injected into genetically marked mouse blastocysts which were subsequently transferred into pseudopregnant surrogate mothers. From a total of 61 fetuses developed, four normally differentiated fetuses at day 18 of gestation showed hybrid cell contributions in their livers and a few other organs of endo-mesodermal origin. The chimeric tissues were briefly cultured in vitro and then further investigated for their protein synthesis using two-dimensional gel electrophoresis. After comparison of the protein patterns obtained from the corresponding normal rat and mouse organs, several rat-specific polypeptides were detected in the cultured chimeric tissues illustrating functional xenogeneic gene expression during in situ differentiation. In addition, some other rat proteins characteristic of the parental hybrid cell line disappeared. The tumorigenicity of the chimeric tissues was tested by subcutaneous transplantation into immunodeficient nude mice. Tumors originating from two of the four chimeric organs differed histologically from those formed by cells of the hybrid As3 line since they also contained muscle-like structures resembling rhabdomyosarcomas. The tumors were analyzed for their protein synthesis and compared with the three malignant cell lines of parental origin. The morphologic differences between the tumors derived from the chimeric organs and those developed from the As3 cell line were also reflected in characteristic differences of their protein synthesis patterns. Our results demonstrate that interspecific rat × mouse hybrid cells, when implanted into early mouse embryos, participate in fetal tissue differentiation and selectively repress certain rat gene products typical of the malignant parental cells as well as functionally reactivate other rat genes presumably required for normal development.  相似文献   

11.
12.
The existence of a circadian rhythm in the rate of hepatic cholesterol synthesis in the rat has been demonstrated in vivo by measuring the conversion of both [1-(14)C]acetate and (3)H(2)O to cholesterol. By both methods there was observed a similar increase in the rate of hepatic cholesterol synthesis between the nadir at noon and the peak at midnight. Circadian changes in the rate of hepatic cholesterol synthesis measured in vivo with [1-(14)C]acetate were very similar to changes in the activity of hepatic microsomal HMG CoA reductase. Cholesterol synthesis in the jejunum and in the distal ileum was also shown to exhibit the same circadian rhythm in vivo but with smaller amplitude (1.6- and 1.3-fold, respectively). Rats trained to eat during a 4-hr period (9 am-1 pm) while housed under normal illumination showed changes in the timing of the circadian rhythm of cholesterol synthesis; in the liver the maximum rate of cholesterol synthesis occurred at 6 pm, 9 hr after the presentation of food, while the two sections of the intestine investigated exhibited a maximum synthetic response between noon and 6 pm. Results obtained in this study support the hypothesis that the major portion of the rise in HMG CoA reductase activity and the increase in overall rate of cholesterol synthesis in liver and intestine during the circadian rhythm are due to the ingestion of food. Under the limited feeding schedule (food access 9 am-1 pm), the rates of hepatic and intestinal synthesis of fatty acids from the injected acetate also showed a circadian rhythm with a peak at about 3 hr after presentation of food.  相似文献   

13.
14.
The activities and regulatory patterns of arginase and ornithine aminotransferase (OAT) of the liver (a mitotic tissue) and kidney cortex (a post-mitotic tissue) of immature, adult, and senescent male rats were studied. The activities of the liver enzymes were highest in the immature rat and decreased gradually with age. However, in the kidney cortex, the activity of arginase was highest and decreased significantly thereafter while that of OAT shows no significant change throughout the life span of the rat. Further, the activity of kidney cortex arginase was approximately 1/20th of that of the liver enzyme. Adrenalectomy and hydrocortisone treatments altered the activity of arginase in both tissues and that of OAT in the liver only. However, the kidney cortex OAT was not responsive towards these treatments. Actinomycin D inhibited the hydrocortisone-mediated induction of arginase of both the liver and kidney cortex and that of the liver OAT.  相似文献   

15.
Hepatic ornithine aminotransferase (EC 2.6.1.13) (OAT) is a mitochondrial matrix enzyme that plays a role in amino acid catabolism and in gluconeogenesis. In rats, the synthesis of hepatic OAT is regulated by glucagon, dietary protein, and glucose. Serum-free primary cultures of adult rat hepatocytes were used to demonstrate that glucagon, cyclic AMP, and glucose are able to alter OAT synthesis by a direct action on hepatocytes. The rates of OAT synthesis were measured by immunoprecipitation of pulse-labeled OAT with an affinity-purified monospecific antibody. Ten hours after cyclic AMP addition to the culture medium, the relative rate of OAT synthesis reached a peak value that was six- to eightfold above the control rate. OAT activity accumulated more slowly, reaching a level that was approximately threefold above the control by 24 h. The inclusion of glucose in the culture medium inhibited the increases in OAT synthesis and activity in a dose-dependent manner. Although synthesized as a precursor (pOAT), no pOAT was detected under control, induced, or carbohydrate-inhibited conditions; this suggests that pOAT processing may not be a regulatory site of OAT expression. By following the loss of labeled OAT, a half-life of 34 h in these cultures under all of the above conditions was observed. Regulation of OAT levels in cultured hepatocytes appears to be achieved primarily through changes in the rate of OAT synthesis.  相似文献   

16.
To assess whether the synthesis of haem can be studied in small amounts of human liver, we measured kinetics of the conversion of 5-aminolaevulinate into haem and haem precursors in homogenates of human livers. We used methods previously developed in our laboratory for studies of rat and chick-embryo livers [Healey, Bonkowsky, Sinclair & Sinclair (1981) Biochem. J. 198, 595-604]. The maximal rate at which homogenates of human livers converted 5-aminolaevulinate into protoporphyrin was only 26% of that for rat, and 58% of that for chick embryo. In the absence of added Fe2+, homogenates of fresh human liver resembled those of chick embryos in that protoporphyrin and haem accumulated in similar amounts, whereas fresh rat liver homogenate accumulated about twice as much haem as protoporphyrin. However, when Fe2+ (0.25 mM) was added to human liver homogenates, mainly haem accumulated, indicating that the supply of reduced iron limited the activity of haem synthase, the final enzyme in the haem-biosynthesis pathway. Addition of the potent iron chelator desferrioxamine after 30 min of incubation with 5-amino[14C]laevulinate stopped further haem synthesis without affecting synthesis of protoporphyrin. Thus the prelabelled haem was stable after addition of desferrioxamine. Since the conversion of 5-amino[14C]laevulinate into haem and protoporphyrin was carried out at pH 7.4, whereas the pH optimum for rat or bovine hepatic 5-aminolaevulinate dehydratase is about 6.3, we determined kinetic parameters of the human hepatic dehydrase at both pH values. The Vmax was the same at both pH values, whereas the Km was slightly higher at the lower pH. Our results indicate that the synthesis of porphyrins and haem from 5-aminolaevulinate can be studied with the small amounts of human liver obtainable by percutaneous needle biopsy. We discuss the implications of our results in relation to use of rat or chick-embryo livers as experimental models for the biochemical features of human acute porphyria.  相似文献   

17.
18.
1. The specific activities of ornithine aminotransferase (OAT) in the pigment epithelia, retinas, and livers from several classes of vertebrates were assayed. 2. The specific activities of OAT were much higher in the pigment epithelia from mammals and birds than in their respective retinas or livers. 3. Pigment epithelium from porcine eyes had the highest specific activity measured. The specific activity of OAT in the pigment epithelium from the pig was five times higher than the OAT activity in its retina and 13 times higher than the OAT activity in its liver.  相似文献   

19.
Perfused rat livers and isolated rat hepatocytes exhibited a 50% decrease in the secretion of both albumin and total secretory proteins after thyroidectomy. In contrast, synthesis of non-secretory proteins was decreased by only 20% from the rates observed in liver preparations from euthyroid rats. These observations suggested a disproportionate effect of thyroidectomy on the synthesis of secretory proteins compared with non-secretory proteins. Disproportionate decreases in the synthesis of albumin in other endocrine-deficient states such as hypophysectomy and diabetes had previously been shown to be associated with decreases of similar magnitude in the relative abundance of albumin-mRNA sequences. In contrast, thyroidectomy did not affect the activity or amount of albumin mRNA in total liver poly(A)-containing RNA when assayed by cell-free translation and by hybridization with complementary DNA, respectively. Furthermore, labelling experiments in vivo demonstrated that albumin synthesis represented 12.9 +/- 0.5% and 12.4 +/- 0.4% of total protein synthesis in livers of thyroidectomized and euthyroid rats respectively. Therefore the fall in secretion of albumin and total secretory protein after thyroidectomy did not appear to be a reflection of disproportionate decreases in the synthesis of these proteins. Instead, defects in steps involved in the post-synthetic processing and secretion of albumin are suggested. A number of comparisons, including ribosome half-transit times, the size distributions of total and albumin-synthesizing polyribosomes, and the fraction of RNA present as inactive ribosomes, provided evidence that the overall decrease in protein synthesis after thyroidectomy was not due to generalized alterations in translational processes. Instead, the decrease in total protein synthesis appeared to reflect the RNA content of the liver, which fell in proportion to th decrease in protein synthesis.  相似文献   

20.
A radiochemical assay for glucokinase activity was developed for use in high-speed supernatants of liver. The maximum activities of glucokinase ranged from 0.4 to 3.8 mumol/min per g fresh wt. at 30 degrees C in some avian and mammalian livers, including pigeon, guinea pig and man, in which previous reports indicated zero activities. The reported maximum rates of hepatic glycogen synthesis in livers of rat and man in vivo are similar to the calculated glucokinase activities at 10mM-glucose; therefore glucokinase activity should not limit glycogen synthesis from glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号