首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The distributions of side-chain conformations in 258 crystal structures of oligopeptides have been analyzed. The sample contains 321 residues having side chains that extend beyond the C beta atom. Statistically observed preferences of side-chain dihedral angles are summarized and correlated with stereochemical and energetic constraints. The distributions are compared with observed distributions in proteins of known X-ray structures and with computed minimum-energy conformations of amino acid derivatives. The distributions are similar in all three sets of data, and they appear to be governed primarily by intraresidue interactions. In side chains with no beta-branching, the most important interactions that determine chi 1 are those between the C gamma H2 group and atoms of the neighboring peptide groups. As a result, the g- conformation (chi 1 congruent to -60 degrees) occurs most frequently for rotation around the C alpha-C beta bond in oligopeptides, followed by the t conformation (chi 1 congruent to 180 degrees), while the g+ conformation (chi 1 congruent to 60 degrees) is least favored. In residues with beta-branching, steric repulsions between the C gamma H2 or C gamma H3 groups and backbone atoms govern the distribution of chi 1. The extended (t) conformation is highly favored for rotation around the C beta-C gamma and C gamma-C delta bonds in unbranched side chains, because the t conformer has a lower energy than the g+ and g- conformers in hydrocarbon chains. This study of the observed side-chain conformations has led to a refinement of one of the energy parameters used in empirical conformational energy computations.  相似文献   

2.
Vila JA  Scheraga HA 《Proteins》2008,71(2):641-654
Interest centers here on the analysis of two different, but related, phenomena that affect side-chain conformations and consequently 13C(alpha) chemical shifts and their applications to determine, refine, and validate protein structures. The first is whether 13C(alpha) chemical shifts, computed at the DFT level of approximation with charged residues is a better approximation of observed 13C(alpha) chemical shifts than those computed with neutral residues for proteins in solution. Accurate computation of 13C(alpha) chemical shifts requires a proper representation of the charges, which might not take on integral values. For this analysis, the charges for 139 conformations of the protein ubiquitin were determined by explicit consideration of protein binding equilibria, at a given pH, that is, by exploring the 2(xi) possible ionization states of the whole molecule, with xi being the number of ionizable groups. The results of this analysis, as revealed by the shielding/deshielding of the 13C(alpha) nucleus, indicated that: (i) there is a significant difference in the computed 13C(alpha) chemical shifts, between basic and acidic groups, as a function of the degree of charge of the side chain; (ii) this difference is attributed to the distance between the ionizable groups and the 13C(alpha) nucleus, which is shorter for the acidic Asp and Glu groups as compared with that for the basic Lys and Arg groups; and (iii) the use of neutral, rather than charged, basic and acidic groups is a better approximation of the observed 13C(alpha) chemical shifts of a protein in solution. The second is how side-chain flexibility influences computed 13C(alpha) chemical shifts in an additional set of ubiquitin conformations, in which the side chains are generated from an NMR-derived structure with the backbone conformation assumed to be fixed. The 13C(alpha) chemical shift of a given amino acid residue in a protein is determined, mainly, by its own backbone and side-chain torsional angles, independent of the neighboring residues; the conformation of a given residue itself, however, depends on the environment of this residue and, hence, on the whole protein structure. As a consequence, this analysis reveals the role and impact of an accurate side-chain computation in the determination and refinement of protein conformation. The results of this analysis are: (i) a lower error between computed and observed 13C(alpha) chemical shifts (by up to 3.7 ppm), was found for approximately 68% and approximately 63% of all ionizable residues and all non-Ala/Pro/Gly residues, respectively, in the additional set of conformations, compared with results for the model from which the set was derived; and (ii) all the additional conformations exhibit a lower root-mean-square-deviation (1.97 ppm < or = rmsd < or = 2.13 ppm), between computed and observed 13C(alpha) chemical shifts, than the rmsd (2.32 ppm) computed for the starting conformation from which this additional set was derived. As a validation test, an analysis of the additional set of ubiquitin conformations, comparing computed and observed values of both 13C(alpha) chemical shifts and chi(1) torsional angles (given by the vicinal coupling constants, 3J(N-Cgamma) and 3J(C'-Cgamma), is discussed.  相似文献   

3.
4.
Song J  Xu P  Koutychenko A  Ni F 《Biopolymers》2002,65(6):373-386
The relationship between the free and bound conformations of bioactive peptides is explored using the epidermal growth factor (EGF)-like thrombomodulin fragment hTM409-426 as a model system. The hTM409-426 peptide has a sequence of C(409)PEGYILDDGFIC(421)TDIDE (with a disulfide bond between Cys409 and Cys421) and is a selective inhibitor of thrombin. Upon binding to thrombin, hTM409-426 adopts a well-defined conformation-namely, a beta-turn followed by an antiparallel beta-sheet, similar to those found in all other EGF-like protein repeats (Hrabal et al., Protein Science, 1996, Vol. 5, 195-203). Here we demonstrate that, at pH 6.8 and at 25 degrees C, the hTM409-426 peptide in the free state is very flexible, but still populates a type II beta-turn over residues Pro410-Glu411-Gly412-Tyr413 and the clustering of some hydrophobic side chains, both of which are present in the thrombin-bound conformation. At a lower temperature of 5 degrees C, significant conformational shifts of the C alpha H proton resonances and extensive medium- and long-range NOEs are observed, indicating the presence of folded conformations with unique backbone-backbone and side-chain interactions. A comparison of the NOE patterns in the free state with transferred NOEs shows that the free-state folded and the thrombin-bound conformations of the hTM409-426 peptide are very similar, particularly over residues Pro410-Ile424. The folded conformation of hTM409-426 appears to be stabilized by two hydrophobic clusters, one formed by the side chains of residues Pro410, Tyr413, Leu415, and Phe419 and the Cys409-Cys421 disulfide bond, the second involving residues Ile414 and Ile424. These results indicate that the overall topology of the thrombin-bound conformation of the hTM409-426 peptide is prefolded in the free state and the primary sequence (including the disulfide bond) may be selective for an ensemble of conformations similar to that recognized by thrombin.  相似文献   

5.
By using 13C enrichment in [Leu5]-enkephalin, it has been possible to improve the assignment of carbonyl resonances in the nuclear resonance spectrum and to remove some of the ambiguities in the derived phi and chi dihedral angles, thereby providing information about the conformation of this molecule in solution. The combined use of 13C and 1H nuclear magnetic resonance experiments leads to the conclusion that [Leu5]0enkephalin contains a type I beta bend at residues Gly3-Phe4 in dimethyl-d6 sulfoxide (Me2SO0d6) solution. Furthermore, the side chains of Tyr1, Phe4, and Leu5 exist predominantly in one conformation (tg-) in this solvent. A comparison is made between the conformation found in Me2SO-d6 and those determined by X-ray diffraction and conformational energy calculations.  相似文献   

6.
Acetylxylan esterase (AXEII; 207 amino acids) from Penicillium purpurogenum has substrate specificities toward acetate esters of d-xylopyranose residues in xylan and belongs to a new class of alpha/beta hydrolases. The crystal structure of AXEII has been determined by single isomorphous replacement and anomalous scattering, and refined at 0.90- and 1.10-A resolutions with data collected at 85 K and 295 K, respectively. The tertiary structure consists of a doubly wound alpha/beta sandwich, having a central six-stranded parallel beta-sheet flanked by two parallel alpha-helices on each side. The catalytic residues Ser(90), His(187), and Asp(175) are located at the C-terminal end of the sheet, an exposed region of the molecule. The serine and histidine side chains in the 295 K structure show the frequently observed conformations in which Ser(90) is trans and the hydroxyl group is in the plane of the imidazole ring of His(187). However, the structure at 85 K displays an additional conformation in which Ser(90) side-chain hydroxyl is away from the plane of the imidazole ring of His(187). The His(187) side chain forms a hydrogen bond with a sulfate ion and adopts an altered conformation. The only other known hydrolase that has a similar tertiary structure is Fusarium solani cutinase. The exposed nature of the catalytic triad suggests that AXEII is a pure esterase, i.e. an alpha/beta hydrolase with specificity for nonlipidic polar substrates.  相似文献   

7.
We examined the properties of tyrosine in four free tetrapeptides: Ala-Ala-Tyr-Ala (AATA), Ala-Pro-Tyr-Ala (APTA), Ala-Tyr-Ala-Ala (ATAA) and Ala-Tyr-Pro-Ala (ATPA) by CD, n.m.r. and energy calculations. Experimental data (the aromatic 1Lb signal, rotamer populations around the C alpha-C beta bond (chi 1), rotations around C beta-C gamma(chi 2), chemical shifts of ortho- and meta-protons in the phenolic ring (in aqueous and Me2SO solutions), NH proton temperature coefficients and vicinal coupling constants 3JNH-C alpha H in the backbone (Me2SO solution) were compared with calculated minimum energy conformations. We find qualitative agreement between the results of the different techniques with respect to global tendencies of conformational behaviour: we present experimental evidence showing that the presence of proline in the sequence has a more pronounced effect on the side chain organization of the residues preceding it than on one succeeding it. This steric influence of proline on its immediate neighbor is even stronger in the cis isomer than in the more common trans isomer. The strong preference for Rotamer II (chi 1 = 180 degrees) over Rotamer I (chi 1 = -60 degrees) in ATPA (cis-form) concomitant with a noticeable deviation of chi 2 is a striking example.  相似文献   

8.
The conformation of the GM3 ganglioside, Neu5Ac alpha 2-3Gal beta 1-4Glc beta 1-1 Cer, and its analogs containing the Neu5Gc or Neu4Ac5Gc residues (Gc = glycolyl, CH2OHCO) was investigated in Me2SO-d6 solution with the aid of a distance-mapping procedure based on rotating-frame NOE contacts, with hydroxyl protons being used as long-range sensors defining the distance constraints. A pronounced flexibility found for both the Neu-Gal and Gal-Glc linkages was confirmed by 1000-ps molecular dynamics simulations. Similar results, although based on a smaller number of NOE constraints, were obtained for GM3 gangliosides anchored in mixed D2O/dodecylphosphocholine-d38 micelles and for the Neu5Ac-, Neu5Gc-, and Neu5,9Ac2-sialyllactoses dissolved in D2O. No noteworthy differences in conformational behavior of the glycan chains of the three gangliosides or sialyllactoses were observed in either of the media.  相似文献   

9.
The complete assignments of all the proton magnetic resonance signals from each NH-CalphaH-CbetaH2 moiety in a complex peptide containing several residues of the same type has not yet been achieved without specific or stereospecific isotopic enrichment. We report the sequencing and proton magnetic resonance spectral assignments, including those of 4 aromatic residues, of tyrocidine A, an analog of the decapeptide gramicidin S. Two complementary methods, proton-proton nuclear Overhauser enhancements and scalar decoupling, evaluated by two distinct forms of difference double resonance, were used. All chemical shifts, scalar coupling constants, and [1H:1H] nuclear Overhauser enhancements for the backbone protons are reported. The [1H:1H] nuclear Overhauser enhancements are consistent with tyrocidine A possessing a beta-I turn/beta-II' turn/antiparallel beta-pleated sheet conformation. In addition to the previously proposed nuclear Overhauser enhancement criteria for beta turns and antiparallel beta sheets, another criterion for identifying the antiparallel beta sheet is demonstrated; namely, the nuclear Overhauser enhancement between 2 CalphaH protons of the central resisdues, in this case the Phe7CalphaH and Orn2CalphaH.  相似文献   

10.
The distribution of the chi(1), chi(2) dihedral angles in a dataset consisting of 12 unrelated 4-alpha-helical bundle proteins was determined and qualitatively compared with that observed in globular proteins. The analysis suggests that the 4-alpha-helical bundle motif could occasionally impose steric constraints on side chains: (i) the side-chain conformations are limited to only a subset of the conformations observed in globular proteins and for some amino acids they are sterically more constrained than those in helical regions of globular proteins; (ii) aspartic acid and asparagine occasionally adopt rotamers that have not been previously reported for globular or helical proteins; (iii) some rotamers of tyrosine and isoleucine are predominantly or exclusively associated with hydrophobic core positions (a, d); (iv) mutations in the hydrophobic core occur preferentially between residue types which among other physicochemical properties also share a predominant rotamer.  相似文献   

11.
Standard conformations of a polypeptide chain in irregular protein regions   总被引:1,自引:0,他引:1  
A detailed stereochemical analysis of known protein structures has been made which shows that: (1) irregular regions of proteins consist of a limited number of standard structures formed by three, four of more residues; (2) an amino acid residue of a protein can adopt one of the six sterically allowed conformations designated here as alpha, alpha L, beta, gamma, delta, and epsilon. It is shown that there are two allowed conformations of a polypeptide chain at the N-end of an alpha-helix, beta alpha n- and beta gamma alpha n-conformations, where n is a number of residues in the alpha-helix. At the C-end of the alpha-helix there are two conformations as well, alpha n gamma beta- and alpha n gamma alpha L beta-ones. Two beta-strands in a beta-hairpin can be joined, for example, by standard structures with beta beta alpha L beta-, beta alpha gamma alpha L beta-, beta alpha alpha gamma alpha L beta-conformations which are referred to as turns. In the regions where a polypeptide chain passes from one layer to another there are standard structures with beta gamma beta-, beta alpha beta beta-, beta alpha gamma beta-conformations etc., referred to as cross-overs. A structure of any protein irregular region can be represented as a combination of these and other standard turns and cross-overs considered in the paper. The major part of the turns and cross-overs has residues in alpha L- or epsilon-conformations which must be glycine or other residues with small or flexible side chains. Massive hydrophobic residues must not occupy the first beta-positions of the most standard structures. The results obtained can be successfully applied for prediction of the location of the turns and cross-overs in proteins from their amino acid sequences and for interpretation of electron density maps.  相似文献   

12.
The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular mass 17.4 kDa, is presented by use of a number of novel three-dimensional (3D) heteronuclear NMR experiments which rely on large heteronuclear one-bond J couplings to transfer magnetization and establish through-bond connectivities. These 3D NMR experiments circumvent problems traditionally associated with the application of conventional 2D 1H-1H correlation experiments to proteins of this size, in particular the extensive chemical shift overlap which precludes the interpretation of the spectra and the reduced sensitivity arising from 1H line widths that are often significantly larger than the 1H-1H J couplings. The assignment proceeds in two stages. In the first step the 13C alpha chemical shifts are correlated with the NH and 15N chemical shifts by a 3D triple-resonance NH-15N-13C alpha (HNCA) correlation experiment which reveals both intraresidue NH(i)-15N(i)-13C alpha (i) and some weaker interresidue NH(i)-15N(i)-C alpha (i-1) correlations, the former via intraresidue one-bond 1JNC alpha and the latter via interresidue two-bond 2JNC alpha couplings. As the NH, 15N, and C alpha H chemical shifts had previously been sequentially assigned by 3D 1H Hartmann-Hahn 15N-1H multiple quantum coherence (3D HOHAHA-HMQC) and 3D heteronuclear 1H nuclear Overhauser 15N-1H multiple quantum coherence (3D NOESY-HMQC) spectroscopy [Driscoll, P.C., Clore, G.M., Marion, D., Wingfield, P.T., & Gronenborn, A.M. (1990) Biochemistry 29, 3542-3556], the 3D triple-resonance HNCA correlation experiment permits the sequence-specific assignments of 13C alpha chemical shifts in a straightforward manner. The second step involves the identification of side-chain spin systems by 3D 1H-13C-13C-1H correlated (HCCH-COSY) and 3D 1H-13C-13C-1H total correlated (HCCH-TOCSY) spectroscopy, the latter making use of isotropic mixing of 13C magnetization to obtain relayed connectivities along the side chains. Extensive cross-checks are provided in the assignment procedure by examination of the connectivities between 1H resonances at all the corresponding 13C shifts of the directly bonded 13C nuclei. In this manner, we were able to obtain complete 1H and 13C side-chain assignments for all residues, with the exception of 4 (out of a total of 15) lysine residues for which partial assignments were obtained. The 3D heteronuclear correlation experiments described are highly sensitive, and the required set of three 3D spectra was recorded in only 1 week of measurement time on a single uniformly 15N/13C-labeled 1.7 mM sample of interleukin-1 beta.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The 1H- and 13C-NMR spectra of the ethyl and benzyl esters and the tetrabutylammonium and tetraethylammonium salts of hyaluronic acid [[symbol: see text]2)-beta-D-GcpA+-1----3)-beta-D-GlcpNAc-(1[symbol: see text]n] in Me2SO-d6 have been assigned using 1D and 2D techniques. The chemical shifts of the resonance of GlcNAc C-3 suggest that the relative orientations of the monosaccharides at the (1----3) linkage in the esters and salts are different. Small differences in the chemical shifts of the resonance GlcA C-4 suggest only a slight conformational variation around the (1----4) linkage. The 13C-NMR data also suggest similarities in conformation between the esters in Me2SO-d6 and the salts in water. The chemical shifts of the 1H resonances for NH and OH groups and their temperature dependence for the esters and salts in Me2SO reveal markedly stronger inter-residue hydrogen bonds between the carboxyl and NH groups and between HO-4 of GlcA and O-5 of GlcNAc for the salts. The 3J2,NH values indicate a slightly different orientation for the acetamido group. For solutions in Me2SO, the higher segmental flexibility of the esters is supported by the line widths, whereas the reduced viscosity for the tetrabutylammonium salt showed a sigmoidal concentration dependence and suggests association of chains which could contribute to the segmental rigidity. The linear concentration dependence for the benzyl ester suggests a higher overall flexibility without chain association.  相似文献   

14.
A comparison of the statistical distributions of side-chain conformations of 17 amino acids (Gly, Ala, and Pro excluded), observed in 63 nonhomologous globular proteins (covering 10,832 residues), is made with similar distributions calculated from the low-energy conformational states for the same amino acids (blocked with acetyl and N-methylamide groups at the N- and C-termini, respectively) obtained by Vásquezet al. [(1983),Macromolecules 16, 1043–1049 using the ECEPP/2 force field. Those residues (i) with linear side chains (Arg, Lys, Met, Cys, Ser), or those that are unbranched through the-carbon atom (Glu, Gln) show good agreement, whereas (ii) those with side chains that are branched at C or C show poor agreement with ECEPP calculations. A possible explanation for this is shown to be the greater tendency for side-chain atoms in class (ii) to interact with the backbone and/or adjacent side chains. Accordingly, ECEPP/3 calculations, carried out after elongating the backbone chain of the model peptide unit (by adding three Ala residues on each side of the central residue, and then blocking the termini as before), result in distributions that are often closer to the observed side-chain distributions. The implications of these results for the relative importance of short-range versus long-range interactions in determining protein structure are discussed.  相似文献   

15.
Xu XP  Case DA 《Biopolymers》2002,65(6):408-423
We have used density functional calculations on model peptides to study conformational effects on (15)N, (13)C alpha, (13)C beta, and (13)C' chemical shifts, associated with hydrogen bonding, backbone conformation, and side-chain orientation. The results show a significant dependence on the backbone torsion angles of the nearest three residues. Contributions to (15)N chemical shifts from hydrogen bonding (up to 8 ppm), backbone conformation (up to 13 ppm), side-chain orientation and neighborhood residue effects (up to 22 ppm) are significant, and a unified theory will be required to account for their behavior in proteins. In contrast to this, the dependence on sequence and hydrogen bonding is much less for (13)C alpha and (13)C beta chemical shifts (<0.5 ppm), and moderate for carbonyl carbon shifts (<2 ppm). The effects of side-chain orientation are mainly limited to the residue itself for both nitrogen and carbon, but the chi(1) effect is also significant for the nitrogen shift of the following residue and for the (13)C' shift of the preceding residue. The calculated results are used, in conjunction with an additive model of chemical shift contributions, to create an algorithm for prediction of (15)N and (13)C shifts in proteins from their structure; this includes a model to extrapolate results to regions of torsion angle space that have not been explicitly studied by density functional theory (DFT) calculations. Crystal structures of 20 proteins with measured shifts have been used to test the prediction scheme. Root mean square deviations between calculated and experimental shifts 2.71, 1.22, 1.31, and 1.28 ppm for N, C alpha, C beta, and C', respectively. This prediction algorithm should be helpful in NMR assignment, crystal and solution structure comparison, and structure refinement.  相似文献   

16.
Stereoselectively beta-deuterated species were synthesized of Ac-His-NHMe, Ac-His-OEt, Ac-His-OH and H-His-NHMe, which are useful as models of histidine residues in peptides. From the spectral comparison of 1H n.m.r., the beta-proton resonances of the normal species were unambiguously assigned. In (C2H3)2SO, C2(2)H5O2H, C2H3O2H, and C5(2)H5N solution and in aqueous solution, the lower-field and higher-field components of beta-proton resonances of the four histidine derivatives are assigned to the pro-R and pro-S protons, respectively. The alternative assignments apply for Ac-His-NHMe, Ac-His-OEt and Ac-His-OH in non-polar solvents such as C2HCl3. Vicinal coupling constants 3J alpha beta S and 3J alpha beta R were obtained for calculating the fractional populations of rotamers about the C alpha-C beta bond. The rotamer populations depend little on the ionization states of the alpha-amino and carboxyl groups or the imidazole ring. The rotamer populations depend significantly on the solvent polarity, similar to those of Phe, Tyr and Trp derivatives. For the two beta-proton resonances of His, Phe, Tyr, and Trp derivatives in a variety of solvents, linear relationships are found between the differences in chemical shifts and the differences in vicinal coupling constants.  相似文献   

17.
The following interproton distances are reported for the decapeptide tyrocidine A in solution: (a) r(phi) distances between NH(i) and H alpha (i), (b) r(psi) distances between NH (i + 1) and H alpha (i), (c) r(phi psi) distances between NH(i + 1) and NH(i), (d) NH in equilibrium NH transannular distances, (e) H alpha in equilibrium H alpha transannular distances, (f) r x 1 distances between H alpha and H beta protons, (g) NH(i) in equilibrium H beta (i) distances, (h) NH (i + 1) in equilibrium H beta (i) distances, (i) carboxamide-backbone protons and carboxamide-side chain proton distances, (j) side chain proton-side chain proton distances. The procedures for distance calculations were: NOE ratios and calibration distances, sigma ratios and calibration distances, and correlation times and sigma parameters. The cross-relaxation parameters were obtained from the product, say, of NOE 1 leads to 2 and the monoselective relaxation rate of proton 2; the NOEs were measured by NOE difference spectroscopy. The data are consistent with a type I beta-turn/ type II' beta-turn/ approximately antiparallel beta-pleated sheet conformation of tyrocidine A in solution and the NOEs, cross-relaxation parameters, and interproton distances serve as distinguishing criteria for beta-turn and beta-pleated sheet conformations. It should be borne in mind that measurement of only r phi and r psi distances for a decapeptide only defines the ( phi, psi)-space in terms of 4(10) possible conformations; the distances b-j served to reduce the degeneracy in possible (phi, psi)-space to one tyrocidine A conformation. The latter conformation is consistent with that derived from scalar coupling constants, hydrogen bonding studies, and proton-chromophore distance measurement, and closely resembles the conformation of gramicidin S.  相似文献   

18.
The amides of Leu5-enkephalin, Met5-enkephalin, and three analogues, D-Ala2,Leu5-enkephalin, (AcO)Tyr1,Met5-enkephalin, and (AcO)Tyr1,D-Ala2,Met5-enkephalin, have been studied by means of 1H NMR spectroscopy in two different solvent systems: Me2SO-d6 and CDCl3. In the latter solvent the peptides were dissolved as complexes with 18-crown-6-ether, a coronand that binds strongly to the NH3+ groups. The crown ether complexation and the apolar solvent were used to simulate the anionic subsite of the receptor and the hydrophobic environment of the receptor cavity, respectively. The very unusual amide proton chemical shifts and their temperature coefficients suggest the presence of folded conformations in CDCl3 for all peptides, consistent with several models of opioid receptors and with the crystal structure of Leu5-enkephalin. The differences among the proposed cyclic conformations of the five peptides may be correlated, in part, with their different biological activity. All peptides in Me2SO-d6 are characterized by complex mixtures of extended fully solvated conformations.  相似文献   

19.
N Sreerama  R W Woody 《Proteins》1999,36(4):400-406
A significant fraction of the so-called "random coil" residues in globular proteins exists in the left-handed poly(Pro)II conformation. In order to compare the behavior of this secondary structure with that of the other regular secondary structures, molecular dynamics simulations, with the GROMOS suite of programs, of an alanine octapeptide in water, in alpha-helix, beta-strand, and left-handed poly(Pro)II conformations, have been performed. Our results indicate a limited flexibility for the alpha-helix conformation and a relatively larger flexibility for the beta-strand and poly(Pro)II conformations. The behavior of oligopeptides with a starting configuration of beta-strand and poly(Pro)II conformations, both lacking interchain hydrogen bonds, were similar. The (phi, psi) angles reflect a continuum of structures including both beta and P(II) conformations, but with a preference for local P(II) regions. Differences in the network of water molecules involved in hydrogen bonding with the backbone of the polypeptide were observed in local regions of beta and P(II) conformations. Such water bridges help stabilize the P(II) conformation relative to the beta conformation. Proteins 1999;36:400-406.  相似文献   

20.
Chemical shifts of nuclei in or attached to a protein backbone are exquisitely sensitive to their local environment. A computer program, SPARTA, is described that uses this correlation with local structure to predict protein backbone chemical shifts, given an input three-dimensional structure, by searching a newly generated database for triplets of adjacent residues that provide the best match in phi/psi/chi(1 )torsion angles and sequence similarity to the query triplet of interest. The database contains (15)N, (1)H(N), (1)H(alpha), (13)C(alpha), (13)C(beta) and (13)C' chemical shifts for 200 proteins for which a high resolution X-ray (< or =2.4 A) structure is available. The relative importance of the weighting factors for the phi/psi/chi(1) angles and sequence similarity was optimized empirically. The weighted, average secondary shifts of the central residues in the 20 best-matching triplets, after inclusion of nearest neighbor, ring current, and hydrogen bonding effects, are used to predict chemical shifts for the protein of known structure. Validation shows good agreement between the SPARTA-predicted and experimental shifts, with standard deviations of 2.52, 0.51, 0.27, 0.98, 1.07 and 1.08 ppm for (15)N, (1)H(N), (1)H(alpha), (13)C(alpha), (13)C(beta) and (13)C', respectively, including outliers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号