首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fluorescence behavior of two tryptophans (Trp-134, Trp-213) in bovine serum albumin (BSA) and a single tryptophan (Trp-214) in human serum albumin (HSA) was examined. The maximum emission wavelength (max) was 340.0 nm for both proteins. In a solution of sodium dodecyl sulfate (SDS), the max of BSA abruptly shifted to 332 nm at 1 mM SDS and then reversed to 334 nm at 3 mM SDS. The max of HSA gradually shifted to 330 nm below 3 mM SDS, although it returned to 338 nm at 10 mM SDS. In contrast to this, in a solution of dodecyltrimethylammonium bromide, the max positions of BSA and HSA gradually shifted to 334.0 and 331.5 nm, respectively. Differences in the fluorescence behavior of the proteins are attributed to the fact that Trp-134 exists only in BSA, with the assumption that Trp-213 of BSA behaves the same as Trp-214 of HSA. The Trp-134 behavior appears to relate to the disruption of the helical structure in the SDS solution.  相似文献   

2.
Summary Increment threshold measurements in wild rabbits give rise to spectral sensitivity curves that are unimodal or bimodal in nature, depending on the background luminance. We propose a model that explains the shape of these curves on the basis of synergistic and antagonistic interaction of blue cones (max = 425 nm), green cones (max = 523 nm) and rods (max = 498 nm).  相似文献   

3.
The endophytic cyanobacterium, Anabaena azollae, isolated from laboratory cultures of Azolla caroliniana Willd., contains three spectroscopically distinct biliproteins. About 70% of the biliprotein is c-phycocyanin (max 610 nm) and 13% is allophycocyanin (max 647 nm, shoulder 620 nm). A third pigment corresponds to phycoerythrocyanin (max 570 nm, shoulder 590 nm). In very dilute solutions of allophycocyanin, at constant pH and buffer strength, the 647 nm maximum disappears and a single max occurs at 615–620 nm. The 647 nm absorption maximum reappears upon concentrating the dilute solution. Very dilute solutions of phycoerythrocyanin exhibit a broad peak between 570 and 590 nm. Absorption spectra of c-phycocyanin are not significantly altered upon dilution. Fluorescence emission maxima of phycoerythrocyanin, c-phycocyanin, and allophycocyanin occur at 630 nm, 643 nm and 660 nm respectively, using 540 nm excitation. Two subunits, of molecular weight 16,500 () and 20,600 (), are seen in c-phycocyanin upon dissociation with SDS. Dissociation of allophycocyanin and phycoerythrocyanin with SDS yields one sizeclass of subunits, with a molecular weight of about 17,500 for allophycocyanin and 18,000 for phycoerythrocyanin.Contribution No. 684 Offprint requests to: G. A. Peters  相似文献   

4.
Electroretinogram (ERG) flicker photometry was used to study the spectral mechanisms in the retinas of white-tailed deer (Odocoileus virginianus) and fallow deer (Dama dama). In addition to having a rod pigment with maximum sensitivity (max) of about 497 nm, both species appear to have two classes of photopic receptors. They share in common a short-wavelength-sensitive cone mechanism having max in the region of 450–460 nm. Each also has a cone having peak sensitivity in the middle wavelengths, but these differ slightly for the two species. In white-tailed deer the max of this cone is about 537 nm; for the fallow deer the average max value for this mechanism was 542 nm. Deer resemble other ungulates and many other types of mammal in having two classes of cone pigment and, thus, the requisite retinal basis for dichromatic color vision.Abbreviations ERG electroretinogram - LWS long wavelength sensitive - MWS middle wavelength sensitive - SWS short wavelength sensitive  相似文献   

5.
Summary Intracellular potentials from the isolated dark-adapted pineal organ ofPhoxinus phoxinus were recorded by using glass microelectrodes. The majority of cells had resting potentials of 20 to 35 mV and responded to light with intensitygraded hyperpolarizations. Voltage intensity curves of responses to brief flashes followed the hyperbolic tangent functionV/V max=In/(I n + n ).The latency of onset for responses to light stimuli near threshold was 400 ms and decreased with saturating flashes to about 50 ms. The membrane resistance decreased during the hyperpolarization. Spectral sensitivity measurements for these cells exhibited curves with max=530 nm. Intracellular dye injection unequivocally identified this cell type as a photoreceptor cell.A second cell type with resting potentials between 30 to 40 mV exhibited a biphasic response pattern to light stimulation. The cell depolarized with dim light flashes and hyperpolarized with bright flashes. The amplitude of the hyperpolarizing component showed no saturation over an intensity range of 5 log units. Latencies and rise times were comparable to those of photoreceptor potentials. Spectral sensitivity curves peaked at longer wavelengths ( max=550 nm) than the action spectra of photoreceptors ( max=530 nm). It is assumed that this rare cell type represents a small class of pineal interneurons.  相似文献   

6.
To examine the influence of the spectral characteristics of underwater light on spectral sensitivity of the ON and OFF visual pathways, compound action potential recordings were made from retinal ganglion cells of threespine stickleback from different photic regimes. In fish from a red-shifted photic regime (P50 680 nm for downwelling light at 1m), peak sensitivity of both the ON and OFF pathways was limited to long wavelength light (max 600–620). In contrast, the ON pathway of fish from a comparatively blue-shifted (P50 566 nm) photic regime exhibited sensitivity to medium (max 540–560) and long (max 600 nm) wavelengths, while the OFF pathway exhibited peak sensitivity to only medium (max 540 nm) wavelength light. In a third population, where the the ambient light is moderately red-shifted (P50 629 nm), the ON pathway once again exhibited only a long wavelength sensitivity peak at 620 nm, while the OFF pathway exhibited sensitivity to both medium (max 560 nm) and long (max 600–620 nm) wavelength light. These findings suggest that the photic environment plays an integral role in shaping spectral sensitivity of the ON and OFF pathways.  相似文献   

7.
Summary This work deals with the ability of phage 80 to provide defective mutants of with their missing functions. Functions Involved in Recombination. As shown by others, the Int mechanism of 80 cannot excise prophage . However, 80 efficiently excises recombinants from tandem dilysogens, using its Ter mechanism. Likewise, the nonspecific mechanism Red is interchangeable between 80 and . Maturation of DNA by 80. The Ter recombinants excised by 80 from tandem dilysogens are packaged into a 80 protein coat. This contrasts with the fact, already mentionned by Dove, that 80 is extremely inefficient for packaging phage superinfecting a -lysogen. The latter result is also found when the helper phage is a hybrid with the left arm of (80hy4 or 80hy41 — see Fig. 1). However, the maturation of the superinfecting is much more efficient if the 80hy used as a helper has the att-N region of (like 80hy1). Conversely a with the att-N region of 80 (hy6 — see Fig. 1) is packaged more efficiently by 80 or 80hy4 than by 80hy1. It is suggested that the maturation of chromosome superinfecting an immune cell requires a recombination with the helper phage. Vegetative Functions. Among the replicative functoons O and P, the latter only can be supplied by 80. That N mutants are efficiently helped by 80 does not tell that 80 provides the defective with an active N product; the chromosomes are simply packaged into a 80 coat. This shows that 80 is unable to switch on the late genes of . That neither 80 nor any of the 80hy tested can provide an active N product is shown in a more direct way by their complete failure to help N -r14; this phage carries a polar mutation which makes the expression of genes O and P entirely N-dependant. The maturation of a N - by 80 contrasts with the fact that mutants affected in late genes (A, F or H) are not efficiently helped by 80. This suggests that the products coded by these genes are not interchangeable between 80 and , and that packaging of DNA into 80 coats is possible but inhibited when late proteins are present in the cell. Activation of the Late Genes. Among the im 80 h + hybrids tested, only 80hy41 is able to switch on the late genes of a N defective mutant. This hybrid differs from the other hybrids studied here, by the fact that it has the Q-S-R region of (see Fig. 1). The results are consistant with the view that the product of Q gene is sufficient for activating the late genes of a DNA. N would thus control the expression of late genes only indirectly by controlling the expression of gene Q (Couturier & Dambly have independantly reached the same conclusion, 1970). Furthermore the failure of 80 and of the 80hy1 and 80hy4 to activate the late genes of would imply that these phages are unable to provide an Q product active on the chromosome Reciprocally, switches on the late genes of prophage 80hy41, but not of prophages 80hy1 and 80hy4. This suggests that the initiation of late genes expression takes place at a main specific site located in the Q-S-R region of the chromosome. The expression of the late genes would thus be sequential, and proceed through the left arm only when steaky ends cohere. Similar conclusions were reached independantly by Toussaint (1969) and by Herskowitz and Signer (1970).

Ce travail a été réalisé dans le cadre du contrat d'association Euratom-U. L. B. 007-61-10 ABIB et avec l'aide du Fonds de la Recherche Fondamentale Collective.  相似文献   

8.
Responses of single visual cells of the anterior part of the compound eye of the oriental cockroachBlatta orientalis were recorded intracellularly. Two spectral types of cells were discovered: ultraviolet receptors with max 361 nm and green-sensitive receptors with max 503 nm. The spectral curve of the whole eye, measured by the electroretinogram, included two peaks (=350–370 and 500 nm) and a minimum between 400 and 430 nm. This last fact is interpreted as additional evidence of the dichromatic vision of the cockroach.M. V. Lomonosov Moscow State University. Translated from Neirofiziologiya, Vol. 17, No. 1, pp. 57–61, January–February, 1985.  相似文献   

9.
Reef-building corals from shallow waters are known to contain a suite of water soluble compounds (collectively named S-320) which strongly absorb near-UV light. Compounds of this type have now been isolated from the Pacific staghor coral Acropora formosa and identified as a series of mycosporine-like amino acids including mycosporine-Gly (max=310nm), palythine (max=320nm) and palythinol (max=332nm). These compounds were separated and quantified by high-performance liquid chromatography. Serial extraction efficiencies were calculated using a simple formula which is derived herein. For 12-cm long coral branches collected from a depth of 3 m at Rib Reef, Great Barrier Reef, Australia (146° 53E, 18° 29S) the average concentrations of mycosporine-Gly, palythine, and palythinol were 37.8, 56.4 and 0.895 nmol per mg coral protein, respectively. The coral samples can be stored at-20°C for at least 144 days without degradation of the mycosporinelike amino acids.Contribution number 334 from the Australian Institute of Marine Science  相似文献   

10.
Summary Scotopic visual pigments measured in the creek chub and the white sucker are porphyropsins with mean max values located at 538.3 and 536.5 nm, respectively. There is a shift of the max towards shorter wavelengths during the winter in both of these species coinciding with similar changes in the quality of downwelling light. max is significantly correlated to the P50 and spectrum width of the downwelling light and dissolved oxygen. An analysis of variance shows that there are significant differences between the max values of: fish in the two lakes, fish at different times, the two species at different times and fish in different lakes at different seasons. The offset visual pigments of both species appear to be well adapted to their photic environment in terms of the contrast hypothesis. This improvement of contrast detection is discussed in relation to their feeding habits.Abbreviations max wavelength at which absorbance is maximum - P50 wavelength which halves the total number of photons between 400 and 700 nm, a measure of spectral quality - PAR photosynthetically active radiation - MSP microspectrophotometric - SE standard error  相似文献   

11.
The visual pigments and photoreceptor types in the retinas of three species of Pacific salmon (coho, chum, and chinook) were examined using microspectrophotometry and histological sections for light microscopy. All three species had four cone visual pigments with maximum absorbance in the UV (max: 357–382 nm), blue (max: 431–446 nm), green (max: 490–553 nm) and red (max: 548–607 nm) parts of the spectrum, and a rod visual pigment with max: 504–531 nm. The youngest fish (yolk-sac alevins) did not have blue visual pigment, but only UV pigment in the single cones. Older juveniles (smolts) had predominantly single cones with blue visual pigment. Coho and chinook smolts (>1 year old) switched from a vitamin A1- to a vitamin A2-dominated retina during the spring, while the retina of chum smolts and that of the younger alevin-to-parr coho did not. Adult spawners caught during the Fall had vitamin A2-dominated retinas. The central retina of all species had three types of double cones (large, medium and small). The small double cones were situated toward the ventral retina and had lower red visual pigment max than that of medium and large double cones, which were found more dorsally. Temperature affected visual pigment max during smoltification.  相似文献   

12.
M. G. Holmes  E. Schäfer 《Planta》1981,153(3):267-272
Detailed action spectra are presented for the inhibition of hypocotyl extension in dark-grown Sinapis alba L. seedlings by continuous (24 h) narrow waveband monochromatic light between 336 nm and 783 nm. The results show four distinct wavebands of major inhibitory action; these are centred in the ultra-violet (max=367 nm), blue (max=446 nm), red (max=653 nm) and far-red (max=712 nm) wavebands. Previous irradiation of the plants with red light (which also decreases Ptot) causes decreased inhibitory action by all wavelengths except those responsible for the red light inhibitory response. Pre-irradiation did not alter the wavelength of the action maxima. It is concluded that ultra-violet and blue light act mainly on a photoreceptor which is different from phytochrome.Abbreviations B blue - D dark - FR far-red - HIR high irradiance reaction - HW half power bandwith - Pr R absorbing form of phytochrome - Pfr FR absorbing form of phytochrome - Ptot total phytochrome=Pr+Pfr - R red - UV ultra violet  相似文献   

13.
The Photosystem I reaction centre protein CP1, isolated from barley using polyacrylamide gel electrophoresis showed an EPR (Electron Paramgnetic Resonance) spectrum with the polarisation pattern AEEAAE, typical of the primary donor triplet state 3P700, created via radical pair formation and recombination. 3P700 could also be detected by Fluorescence Detected Magnetic Resonance (FDMR) at f > 700 nm even in the presence of a large number of chlorophyll antennae. Its zero field splitting parameters, D=282.5×10-4 cm-1 and E=38.5×10-4 cm-1, were independent of the detection wavelength, and agreed with ADMR (Absorption Detected Magnetic Resonance) and EPR values. The signs of the 3P700 D+E and D-E transitions were positive (increase in fluorescence intensity on applying a resonance microwave field). In contrast, in the emission band 685 < f < 700 nm FDMR spectra with negative D+E and D-E transitions were detected, and the D value was wavelength-dependent. These FDMR results support an excitation energy transfer model for CP1, derived from time-resolved fluorescence studies, in which two chlorophyll antenna forms are distinguished, with fluorescence at 685 < f < 700 nm (inner core antennae, F690), and f > 700 nm (low energy antenna sites, F720), in addition to the P700. The FDMR spectrum in F690 emission can be interpreted as that of 3P700, observed via reverse singlet excitation energy transfer and added to the FDMR spectrum of the antenna triplet states generated via intramolecular intersystem crossing. This would indicate that reversible energy transfer between F690 and P700 occurs even at 4.2 K.Abbreviations Chl chlorophyll - CP1 core chlorophyll protein of Photosystem I - EPR electron paramagnetic resonance - F690, F720 chlorophyll forms having fluorescence maximum at 690–695 and 720 nm, respectively - F(A)(O)DMR fluorescence (absorption) (optical) detected magnetic resonance - FF fluorescence fading - ISC intramolecular intersystem crossing - f fluorescence emission wave-length - LHC I light harvesting chlorophyll a/b protein of Photosystem I - P700 primary donor of Photosystem I - PS I Photosystem I - RC reaction centre - RP radical pair - SDS sodium dodecyl sulphate - ZFS zero field splitting  相似文献   

14.
The visual pigment of a stomatopod crustacean,Squilla empusa   总被引:2,自引:0,他引:2  
Summary Stomatopod crustaceans are visually active animals which have large, mobile compound eyes of unique design. Aspects of their ecology and behavior suggest they may be able to discriminate hues. Isolated rhabdoms of the squillid stomatopod,Squilla empusa, were investigated using microspectrophotometry and fluorometry. A single rhodopsin, of max507 nm, exists in the main rhabdom. Its stable metarhodopsin, with max503 nm, possesses typical arthropod fluorescence characteristics. No evidence was found for a visual pigment with peak absorption in the ultraviolet. Vision in this animal might therefore be monochromatic.Abbreviation ASW artificial sea water  相似文献   

15.
A cyanobacterium which produces high amounts of C-phycoerythrin was classified as a new Pseudanabaena strain. This strain (number W 1173 of our collection) has been cultivated for 6 years without changing its properties. It resembles Pseudanabaena catenata (strain B 1464-1) morphologically but differs in the pigmentation. Contrary to strain B 1464-1, no chromatic adaptation was observed with strain W 1173. It was found that phycoerythrins from both strains differ in the following properties: isoelectric points, number of bilin chromophores, and immunochemical properties. Besides native C-phycoerythrin (PEI, max = 558 nm), a degradation product (PEII, max = 544 nm and 562nm) has been found in crude extracts from strain W 1173. Criteria for integrity of C-phycoerythrin were discussed which are essential if this biliprotein is used as taxonomic character.Abbreviations PE C-Phycoerythrin - SDS sodiumdodecylsulfate Dedicated to Professor Dr. O. Kandler on the occasion of his 60th birthday  相似文献   

16.
We report on the lens pigmentation and visual pigments of 52 species of demersal deep-sea fishes caught at depths ranging from 480 m to 4110 m in the Porcupine Seabight and Goban Spur area of the North-eastern Atlantic. Only one species, caught between 480 and 840 m, had a lens with large amounts of pigment, consistent with the hypothesis that heavily pigmented lenses in deep-sea fish serve to enhance the contrast of bioluminescent signals by removing much of the background radiance, which is only visible to fish living shallower than 1000 m. Low concentrations of lens pigmentation were also observed in a further two species (Rouleina attrita and Micromesisteus poutassou). The retinae of all species except five, contained only a single visual pigment, as determined by microspectrophotometry of individual rods, and/or spectrophotometry of retinal wholemounts and retinal extracts. Those fishes caught between 500 m and 1100 m had wavelengths of peak sensitivity (max) ranging from 476 nm to 494 nm, while most fish living below 1100 m tended to be more conservative with (max) values ranging from 475 nm to 485 nm. The only exceptions to this were three deep-living species caught between 1600 m and 2000 m whose retinae contain abnormally short-wave sensitive visual pigments (Cataetyx laticepsmax 468 nm; Alepocephalus bairdiimax 467 nm; Narcetes stomias max 472 nm), suggesting adaptation for the detection of short-wave bioluminescence.  相似文献   

17.
Summary Spectral sensitivity functions S() of single photoreceptor cells in 43 different hymenopteran species were measured intracellularly with the fast spectral scan method. The distribution of maximal sensitivity values (max) shows 3 major peaks at 340 nm, 430 nm and 535 nm and a small peak at 600 nm. Predictions about the colour vision systems of the different hymenopteran species are derived from the spectral sensitivities by application of a receptor model of colour vision and a model of two colour opponent channels. Most of the species have a trichromatic colour vision system. Although the S() functions are quite similar, the predicted colour discriminability curves differ in their relative height of best discriminability in the UV-blue or bluegreen area of the spectrum, indicating that relatively small differences in the S() functions may have considerable effects on colour discriminability. Four of the hymenopteran insects tested contain an additional R-receptor with maximal sensitivity around 600 nm. The R-receptor of the solitary bee Callonychium petuniae is based on a pigment (P596) with a long max, whereas in the sawfly Tenthredo campestris the G-receptor appears to act as filter to a pigment (P570), shifting its max value to a longer wavelength and narrowing its bandwidth. Evolutionary and life history constraints (e.g. phylogenetic relatedness, social or solitary life, general or specialized feeding behaviour) appear to have no effect on the S() functions. The only effect is found in UV receptors, for which max values at longer wavelengths are found in bees flying predominantly within the forest.  相似文献   

18.
Evidence for the genomic organization of human lambda light chain joining (J) region gene segments is presented. A mouse J probe was used in Southern hybridizations to localize joining region sequences in a cosmid clone containing the genomic cluster of six human lambda constant (C) region gene segments. The results of these hybridizations suggest the presence of at least one J gene segment upstream from each constant region gene segment. The DNA sequences indicate that the human JI, J2, and J3 gene segments have consensus nonamer and heptamer sequences, proposed to be involved in V-J joining, are capable of encoding the known amino acid sequences for the respective J peptides, and have a sequence which could give functional RNA splice site at the end of their coding regions. Our data show that a single functional J is located 1.3 or 1.6 kb upstream of each of the C gene segments known to encode the Mcg, Kern Oz, and KernOz+ isotypes. Therefore, the gene organization of this region of the human lambda locus is J1 CI -J2C2-J3C3. The DNA sequences ofJ 1,J 2, andJ 3 presented in this paper establish that a singleJ gene segment precedes each expressed C gene segment, and support a model for the evolution of the human JC clusters where JICI andJ2C2-J3C3. arose from different ancestral JC units.  相似文献   

19.
A steady-state fluorescence study of cutinase was performed to evaluate the structure of cutinase in reversed micelles of AOT with the optimised conditions assigned by factorial design. The results obtained by two independent methods are compared. At a W0 (water to surfactant ratio) value of 2.7, and in the presence of 500 mM hexanol, the fluorescence intensity maximum (max) remained almost constant for a period of time longer than 30.5 h and a slight red-shift from 305 to 310 nm was verified changing the W0 value to 6. Decreasing the amount of hexanol to 100 mM, the changes in max were more significant, especially for W0=6 indicating a noticeable unfolding process. Structural evidence is given reinforcing the role of hexanol as a stabiliser of microencapsulated cutinase and the effect of a drastic reduction in water content.  相似文献   

20.
Summary With the aid of a microspectrophotometer the visual pigments and oil globules in the retina of the emu (Dromiceius novae-hollandiae), the brushland tinamou (Nothoprocta c. cinerascens) and the Chilean tinamou (Nothoprocta perdicaria sanborni) were characterized. All three of these palaeognathous birds contain in their rods a typical rhodopsin with max near 500 nm. Each of these birds has cones containing iodopsin-like visual pigments with max in the 560–570 nm spectral region. No unequivocal evidence was obtained for the presence of cone pigments other than this iodopsin-like pigment, although one cell thought to be a cone, and containing a visual pigment with max near 498 nm, was observed in the retina of the brushland tinamou. The oil globule systems of the three palaeognathous species are identical to each other and are much simpler than is typical for neognathous birds in that only two different types of globule are present, one with T50 at 508 nm and another with T50 at 568 nm. Comparison of the data with observations made on neognathous species indicates (1) that palaeognathous birds probably have poorer color discrimination capabilities than neognathous birds and (2) that the tinamou is more closely related to the ratites than to the galliform species.This study was supported, in part, by NIH Grant No. EY01839 (A.J. Sillman), NIH Grant No. EY00323 (W.N. McFarland) and NSF Grant No. 78-07657 (E.R. Loew). The authors thank E. Clinite, R. Dunford, C. Murphy, R. Riis and D. Weathers for their valuable assistance. Thanks also go to R.E. Burger for his gift of the emus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号