首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Covalent binding of thrombin to specific sites on corneal endothelial cells   总被引:3,自引:0,他引:3  
Binding of 125I-labeled human alpha-thrombin to endothelial cells derived from bovine corneas was studied in tissue culture. Specific and saturable binding to the cell surface occurred at 37 degrees C but to a much smaller extent at 4 degrees C. Binding of [125I]thrombin to a specific site on these cells with formation of a 77000-dalton complex was demonstrated by NaDodSO4 (sodium dodecyl sulfate)-polyacrylamide gel electrophoresis. Binding of [125I]thrombin was blocked by a 100-fold excess of unlabeled alpha-thrombin and by the thrombin inhibitor, hirudin. There are approximately 100000 of these thrombin binding sites on the cell surface. Formation of the complex could be detected as early as 15 s, increased rapidly over the next 20-30 min, and then continued at a slower rate for the next 2.5 h. The catalytically active site of the enzyme was required for formation of the NaDodSO4-stable complex as shown by the inability of diisopropyl phosphorofluoride inactivated thrombin to form stable complexes with these cells. The complex was dissociated in NaDodSO4 with 1.0 M hydroxylamine, suggesting an acyl linkage of the enzyme to the cellular binding site. The thrombin-endothelial cell complex was distinct from the thrombin-antithrombin III complex (Mr approximately 90000) on gel electrophoresis, and its formation was not enhanced by heparin. Additional thrombin-cell complexes (Mr less than 77000) were also identified; however, they represent a small fraction of the total thrombin bound to the cells. These observations demonstrate that alpha-thrombin is capable of reacting specifically with corneal endothelial cells to form a NaDod-SO4-stable complex which requires the catalytically active enzyme.  相似文献   

2.
Lipoprotein binding and metabolism in actively dividing (sparse) and quiescent (confluent) bovine aortic endothelial cells (EC) were compared quantitatively using 125I-labelled lipoproteins. The amounts of receptor-bound low density lipoproteins (LDL) decreased five- to ten-fold as the cultures progressed from sparse to confluent morphology. High affinity receptor-bound LDL levels were extremely low in confluent EC and accounted for the inability of confluent EC to internalize and degrade significant amounts of LDL. Conversely, the amounts of acetylated LDL (acLDL) bound and degraded via distinct sites increased at least five-fold during EC growth to confluence. LDL binding and metabolism in individual cells was assessed by fluorescence microscopy using 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-labelled lipoproteins or fluorescein-conjugated antibodies. LDL and acLDL bound to the surfaces of sparse EC, at either 4 degrees or 37 degrees C, in a random distribution of fine punctate foci, contrary to a previous report. EC therefore appear to resemble fibroblasts in their distribution of surface LDL receptors. No binding or uptake of LDL was seen in confluent EC. Patterns of acLDL binding and uptake in confluent EC resembled those of LDL in sparse EC. Intracellular LDL and acLDL occurred as perinuclear accumulations of large fluorescent foci in sparse EC. Regeneration experiments were carried out in artificially wounded confluent cultures and renewed LDL receptor activity was shown in actively-dividing cells which had migrated into the "wounded" areas. We conclude that quiescent endothelial cells metabolize little LDL via the LDL-receptor pathway due to a drastically reduced number of receptors in confluent cells. This contrasts with the ability of confluent cells to metabolize relatively large amounts of acLDL via a receptor-mediated mechanism.  相似文献   

3.
Cultured bovine aortic endothelial cells incubated with Factor Xa activate prothrombin. Factor V, synthesized by the endothelial cells, or plasma Factor V and calcium are required for the reaction. In the present study, it has been demonstrated that 125I-Factor Xa binds specifically to endothelial cells. In addition, the activation of prothrombin by Factor Xa and aortic endothelial cells has been further characterized. The binding of 125I-Factor Xa to endothelial cells was saturable and reversible. The equilibrium dissociation constant (Kd) for 125I-Factor Xa binding was 3.6 X 10(-9) M, with 39000 molecules bound per cell. 125I-Factor Xa, inactivated by diisopropylfluorophosphate did not bind specifically to endothelial cells, indicating that the active site of Factor Xa was required for binding. Factor Xa, but not activated protein C, competed with 125I-Factor Xa for binding. Autoradiograms of sodium dodecyl sulfate-polyacrylamide gels of cell lysates indicated that the radiolabeled material that bound to the cells had electrophoretic mobility identical to Factors Xa alpha and Xa beta. Although Factor X partially inhibited the binding of 125I-Factor Xa, Factor Xa did not inhibit the binding of 125I-Factor X, indicating that the zymogen and enzyme bound to different receptors. The relationship of the 125I-Factor Xa binding which was measured in these studies to aortic endothelial cell prothrombin activation is unclear since an anti-Factor V IgG blocked prothrombin activation but not Factor Xa binding. Additionally, 125I-Factor Xa binds to nonvascular cells; these cells do not activate prothrombin in the presence of Factor Xa. Moreover, the calcium requirements for each reaction and the saturation curves of 125I-Factor Xa binding and prothrombin activation differ. Although these data do not exclude a relationship between Factor Xa binding and prothrombin activation, the binding of 125I-Factor Xa to aortic endothelium measured in these studies may be related to a separate cellular function. To further characterize prothrombin activation by Factor Xa and endothelial cells, the rates of thrombin generation by intact bovine aorta or endothelial cells derived from this tissue were compared and were found to be equivalent. These data indicate that vascular endothelium may serve as a physiologic surface for hemostasis.  相似文献   

4.
Endothelial cells and platelets are reported to have receptors for alpha-thrombin. To visualize the binding of alpha-thrombin to these cells, we developed a method to label thrombin with colloidal gold. Formed by electrostatic adsorption of thrombin to the negatively charged gold, the resulting probe is stable for weeks and consists of approximately 30 thrombin molecules adsorbed to each 16.5 nm gold particle. The probe retained about 10% of the enzymatic activity (fibrinogen clotting) of the unlabeled native thrombin and 20% of the ability of the native thrombin to aggregate platelets in platelet-rich plasma (PRP). In PRP, approximately 90% of the observed probes were bound to fibrin strands, with the remaining probes (650 per cell) attached to activated platelets. In contrast, washed, paraformaldehyde-fixed human platelets exhibited a marked increase in probe density (4900 per cell). Time-dependent ultrastructural studies (2-240 min) of binding of the thrombin-gold probe to confluent cultures of porcine aortic endothelial cells revealed that the initial binding (7300 probes per cell) occurred randomly at the cell surface. A limited number (25%) of the probes clustered at coated-pit regions and were internalized (60-240 min). The probe induced a limited amount of cellular retraction similar to that achieved with unlabeled thrombin. These results suggest that the thrombin-gold probe is suitable for investigations of the localization of thrombin receptors on cell surfaces and the interaction of thrombin with these receptors during thrombotic events.  相似文献   

5.
Binding of biologically active [125I]thrombin to several normal and transformed human and chicken cell lines was found to depend on cell density; more [125I]thrombin per cell was bound to sparse than to dense cultures. When normal and transformed cells were compared at equal densities the previously reported difference in [125I]thrombin binding was not evident.  相似文献   

6.
Interaction of 125I-labeled human antithrombin III (125I-AT III) X protease complexes with bovine corneal endothelial cells has been studied in tissue culture. 125I-AT III does not bind to endothelial cells, but its complexes with either thrombin or trypsin bind specifically to the cultures. The binding of 125I-AT III X protease complexes is not via the moiety of the free antithrombin III (AT III) or the free protease, since neither AT III nor thrombin compete on the binding of 125I-AT III X thrombin complexes. Only unlabeled AT III X thrombin complexes compete on the binding of the iodinated ligand. 125I-AT III X trypsin complexes bind with a KD of 1.4 X 10(-7) M to high affinity-binding sites present on the cell surface of corneal endothelial cells. Saturation of binding to the cell surface is observed at a concentration of 2.5 X 10(-7) M 125I-AT III X trypsin complexes and the number of binding sites per cell is about 4 X 10(4). The cell surface binding reaches a maximum by 15 min and then decreases with time. The cells, when incubated at 37 degrees C, appear to internalize the bound complexes by adsorptive endocytosis which proceeds at a rate of 0.5-0.8 pmole/1 X 10(6) cells/h. The internalization process of 125I-AT III X protease complexes is saturated at a concentration of 2.5 X 10(-7) M. Since the cells release 125I-labeled material into the extracellular media which cannot be precipitated by trichloroacetic acid (TCA), it probably represents degradation of 125I-AT III X protease complexes into small fragments at a linear rate of about 0.5 pmole/1 X 10(6) cells/h. The described process of AT III X protease complexes binding, internalization and subsequent degradation by corneal endothelial cells may represent a clearing mechanism for extracellular AT III X protease complexes formed under pathological conditions.  相似文献   

7.
Summary This study examined whether nonconfluent endothelial cell cultures reacted differently than confluent ones toward thrombin-stimulated platelets or a heparinized salt solution. The adherence to the endothelial cell cultures of51Cr-labeled human platelets stimulated at different thrombin concentrations was studied. There was significantly higher adherence of stimulated platelets to nonconfluent cultures compared with confluent ones. This was confirmed by scanning electron microscopy, which also revealed a tendency for the platelets to adhere at the cell periphery. Electron microscopy also showed that thrombin-stimulated platelets induced endothelial cell contraction. Part of the peripheral endothelial cell surface toward the bottom of the culture dish was inverted, facing the lumen of the dish. This phenomenon was particularly seen in nonconfluent cultures. When51Cr-labeled endothelial cultures were incubated with a mildly injurious fluid as heparinized sodium acetate and 20% serum, at 20° C for 30 min, the nonconfluent cultures showed significantly more cell detachment and release of51Cr than the confluent ones. We conclude that under the conditions of the present experiments there are differences in the reactivity of confluent and nonconfluent endothelial cell cultures. These differences probably reflect biological dissimilarities. In experiments where properties of cultured endothelium are studied, care should be taken that the degree of confluency is standardized.  相似文献   

8.
Thrombin (Th) binds specifically to confluent cultures of adult bovine aortic (ABAE) and bovine brain capillary (BBC) endothelial cells. Saturation of 125I-Th binding is observed after 1 h exposure to the ligand and at an extracellular concentration of 0.5 and 1.0 microgram/ml for ABAE and BBC cells, respectively. Under optimal conditions both ABAE and BBC cultures bind about 2 to 5 ng/10(6) cells, which represents about 20% of Th binding to bovine corneal endothelial (BCE) cells. Under optimal conditions less than 30% of the total cell associated 125I-Th is internalized in ABAE and BBC cells, while in BCE cells the extent of internalization is more than 50%. The internalized 125I-Th is degraded both in ABAE and BBC cells as previously demonstrated in BCE cells. As analyzed by SDS-PAGE, 17%, 22% and 77% of the bound 125I-Th is in complex with anti-thrombins (anti-Ths) in BBC, ABAE and BCE cultures, respectively. ABAE cells possess 3 types of complexes, one which appears only on the cell surface with a molecular weight of 78 kDa, and two others which appear only in the conditioned medium (CM) with molecular weights of 84 and 85 kDa. BBC and BCE cells demonstrate only one type of complex with a molecular weight of 77 kDa which appears both on the cell surface and in the CM. The 125I-Th 77 kDa complex formed in the CM of BCE cells is recognized and bound by BBC cells and ABAE cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Confluent cultures of adult bovine aortic endothelial (ABAE), correal endothelial (BCE), and fetal bovine heart endothelial (FBHE) cells form a monolayer of highly flattened, closely apposed, and nonoverlapping cells. In ABAE and BCE cultures, this is associated with a 50-fold decrease in the rate of DNA synthesis and correlates with a 14-fold decrease in protein synthesis. In contrast, in confluent FBHE cultures only partial decreases in the rates of DNA synthesis (6-fold) and protein synthesis (3-fold) are observed. FBHE cells therefore fulfill the morphological, but not the biochemical, criteria for confluent cultured endothelial cell monolayers. The appearance of the cytoskeletal elements actin, tubulin, and vimentin in sparse and confluent cultures of endothelial cells has been analyzed by two-dimensional gel electrophoresis and immunofluorescence. Sparse versus confluent ABAE, FBHE, and BCE cultures showed no changes in their relative rates of synthesis or cellular content of tubulin. Actin behaved similarly to tubulin in FBHE and BCE cultures, while in ABAE cultures a small increase (3-fold) in its relative rate of synthesis was observed in confluent versus sparse cultures. BCE cultures showed no change in the rate of synthesis of vimentin, but the cellular content of vimentin was markedly increased when cultures reached confluence. When the distribution of vimentin in both sparse and confluent BCE cultures was analyzed by immunofluorescence, in both cases it appeared distributed throughout the cytoplasm as thin fibers and bundles of fibers. In confluent ABAE cultures, both the relative amount and biosynthetic rate of vimentin increased by 15-fold. This increase in the intracellular accumulation of vimentin correlated with its immunofluorescent distribution within the cells. While in sparse cultures, vimentin appeared to be distributed as thin fibers, in confluent cultures thick curl-like fibrous bundles could be seen distributed throughout the cytoplasm and organized in a perinuclear ring. In contrast, in FBHE cultures no significant changes in the distribution and organization of rate of synthesis of vimentin were observed.  相似文献   

10.
Author index     
Binding of biologically active [125I]thrombin to several normal and transformed human and chicken cell lines was found to depend on cell density; more [125I]thrombin per cell was bound to sparse than to dense cultures. When normal and transformed cells were compared at equal densities the previously reported difference in [125I]thrombin binding was not evident.  相似文献   

11.
We have prepared a monoclonal antibody directed against human thrombomodulin. We used the antibody to measure thrombomodulin molecules in cultured human endothelial cells from umbilical vein and in a human lung cancer cell line (A549). Endothelial cells contain approximately 30,000-55,000 molecules of thrombomodulin/cell while the A549 cell has about 1/4 of this number. About 50-60% of thrombin binding sites on endothelial cells are thrombomodulin, while about 90% of thrombin binding sites on A549 cells are thrombomodulin. Exposure of these cells to thrombin decreased thrombomodulin on the cell surface suggesting that internalization of thrombin-thrombomodulin occurred. The internalized 125I-thrombin was degraded in the cells and thrombomodulin reappeared on the cell surface after 30 min, suggesting the recycling of thrombomodulin. The rate of protein C activation correlated with the presence of the thrombin-thrombomodulin complex on the cell surface. The binding of thrombin to cell-surface thrombomodulin accelerates protein C activation; the subsequent internalization of the thrombin-thrombomodulin complex is associated with cessation of protein C activation. Therefore, endocytosis of thrombin-thrombomodulin may serve to control protein C activation. The uptake and degradation of thrombin bound to thrombomodulin may provide a mechanism for clearance of thrombin from the circulation.  相似文献   

12.
Human angiogenin is a plasma protein with angiogenic and ribonucleolytic activities. Angiogenin inhibited both DNA replication and proliferation of aortic smooth muscle cells. Binding of 125I-angiogenin to bovine aortic smooth muscle cells at 4 degrees C was specific, saturable, reversible and involved two families of interactions. High-affinity binding sites with an apparent dissociation constant of 0.2 nm bound 1 x 104 molecules per cell grown at a density of 3 x 104.cm-2. Low-affinity binding sites with an apparent dissociation constant of 0.1 micrometer bound 4 x 106 molecules.cell-1. High-affinity binding sites decreased as cell density increased and were not detected at confluence. 125I-angiogenin bound specifically to cells routinely grown in serum-free conditions, indicating that the angiogenin-binding components were cell-derived. Affinity labelling of sparse bovine smooth muscle cells yielded seven major specific complexes of 45, 52, 70, 87, 98, 210 and 250-260 kDa. The same pattern was obtained with human cells. Potential modulators of angiogenesis such as protamine, heparin and the placental ribonuclease inhibitor competed for angiogenin binding to the cells. Together these data suggest that cultured bovine and human aortic smooth muscle cells express specific receptors for human angiogenin.  相似文献   

13.
The correlation between the binding and processing of trypsin and its effect on prostacyclin (PGI2) production in cultured adult bovine aortic endothelial (ABAE) cells was studied. ABAE cells demonstrated an ability to produce PGI2 in a dose-response manner to trypsin at the range of 0.1-2.0 micrograms/ml with a saturation at a concentration of 1 microgram/ml. Likewise, 125I-trypsin binding to the cultured cells increased in a dose-response way and reached saturation at a concentration of about 1 microgram/ml; 125I-trypsin was bound to a specific high-affinity cell-surface receptor with a dissociation constant (Kd) of 1.5 X 10(-8) M and each of the confluent ABAE cells has about 1.2 X 10(5) such receptors sites. The cell-surface receptor for trypsin displayed specific characteristics and an excess amount of unlabeled trypsin successfully abolished 125I-trypsin binding while thrombin in excess failed to compete for 125I-trypsin binding. Only a small fraction of the cell-surface-bound 125I-trypsin was internalized and subsequently degraded by ABAE cells as compared to the process of 125I-trypsin internalization by human skin fibroblasts (HSF). This study demonstrated that the stimulatory effect of trypsin on prostacyclin production and release by ABAE cells might be mediated by a specific cell-surface receptor for trypsin on these cells distinct from the thrombin receptor.  相似文献   

14.
Elastin production by cultured calf pulmonary artery endothelial cells   总被引:7,自引:0,他引:7  
Calf pulmonary artery (CPA) endothelial cells synthesize and secrete soluble elastin when incubated in medium conditioned by arterial smooth muscle cells. Endothelial cell tropoelastin cross-reacts with antiserum to bovine ligamentum nuchae elastin and comigrates on SDS-PAGE with tropoelastins from fetal bovine ligamentum nuchae fibroblasts, aortic smooth muscle cells, and ear chondroblasts at an apparent molecular weight of 70,000. Endothelial cells synthesize only one-third as much elastin as these other cell types, however. Approximately 80% of the elastin synthesized by endothelial cells in confluent culture is released into the culture medium. The remaining 20% remains associated with the cell layer and is readily extractable with dilute acetic acid as un-cross-linked, 70,000-dalton tropoelastin. The addition of beta-aminopropionitrile to culture medium did not alter the ratio of tropoelastin in the medium and cell layer, suggesting that cross-linking of tropoelastin does not occur in culture. Immunofluorescent staining of confluent endothelial cell cultures with antielastin serum demonstrated elastin occurring as a web-like network of fine filaments extending throughout the extracellular space. The fibrous elastin was different in organization and distribution from fibers stained with antifibronectin serum, which were localized primarily beneath the cell layer and in regions of cell-cell contact. Extracellular matrix remaining after solubilization of cellular material with Triton X-100 stained positive for fibronectin, but not for elastin.  相似文献   

15.
The production and localization of laminin, as a function of cell density (sparse versus confluent cultures) and growth stage (actively growing versus resting cultures), has been compared on the cell surfaces of cultured vascular and corneal endothelial cells. Comparison of the abilities of the two types of cells to secrete laminin and fibronectin into their incubation medium reveals that vascular endothelial cells can secrete 20-fold as much laminin as can corneal endothelial cells. In contrast, both cell types produce comparable amounts of fibronectin. Furthermore, if one compares the secretion of laminin and fibronectin as a function of cell growth, it appears that the laminin released into the medium by either vascular or corneal endothelial cells, is a function of cell density and cell growth, since this release is most pronounced when the cells are sparse and actively growing, and decreases by 10- and 30-fold, respectively, when either vascular or corneal endothelial cell cultures become confluent. With regard to fibronectin secretion, no such variation can be seen with vascular endothelial cell cultures, regardless of whether they are sparse and actively growing or confluent and resting. Corneal endothelial cell cultures, demonstrated a twofold increase in fibronectin production when they were confluent and resting as compared to when they were sparse and actively growing. When the distribution of laminin versus fibronectin within the apical and basal cell surfaces of cultured corneal and vascular endothelial cells is compared, one can observe that unlike fibronectin, which in sparse and subconfluent cultures can be seen to be associated with both the apical cell surface. In confluent cultures, laminin can be found associated primarily with the extracellular matrix beneath the cell monolayer, where it codistributes with type IV collagen.  相似文献   

16.
We have studied the interaction of 125I-antithrombin (125I-AT) with microvascular endothelial cells (RFPEC) to localize the cellular site of anticoagulantly active heparan sulfate proteoglycans (HSPG). The radiolabeled protease inhibitor bound specifically to the above HSPG with a Kd of approximately 50 nM. Confluent monolayer RFPEC cultures exhibited a linear increase in the amount of AT bound per cell for up to 16 d, whereas suspension RFPEC cultures possessed a constant number of protease inhibitor binding sites per cell for up to 5 d. These results suggest that monolayer RFPEC cultures secrete anticoagulantly active HSPG, which then accumulate in the extracellular matrix. This hypothesis was confirmed by quantitative light and EM level autoradiography which demonstrated that the AT binding sites are predominantly located in the extracellular matrix with only small quantities of protease inhibitor complexed to the cell surface. We have also pinpointed the in vivo position of anticoagulantly active HSPG within the blood vessel wall. Rat aortas were perfused, in situ, with 125I-AT, and bound labeled protease inhibitor was localized by light and EM autoradiography. The anticoagulantly active HSPG were concentrated immediately beneath the aortic and vasa vasorum endothelium with only a very small extent of labeling noted on the luminal surface of the endothelial cells. Based upon the above data, we propose a model whereby luminal and abluminal anticoagulantly active HSPG regulate coagulation mechanism activity.  相似文献   

17.
The specific binding sites for tissue-type plasminogen activator (t-PA) were investigated in human umbilical vein endothelial cells. After adding 125I-t-PA (M.W. 70 kDa) to endothelial cells in suspension culture, the ligand was recovered from the cell extract after disuccinimidyl suberate treatment as a high molecular complex with M.W. of 90 kDa on SDS-PAGE. The complex reacted to only anti-t-PA IgG but not to anti-PAI-1 IgG immunoblot analysis, indicating a t-PA specific binding protein. 125I-t-PA ligand blotting of the cell extract revealed that the binding protein had M.W. 20 kDa. The binding of 125I-t-PA to endothelial cells was reduced in the presence of an excess amount of t-PA, plasminogen and 6-aminohexanoic acid, indicating that the binding sites were also recognized by plasminogen, and that t-PA and plasminogen were bound via lysine binding sites in the molecule. These findings suggest that human endothelial cells have specific t-PA binding molecules which may be expressed on the cell surface as t-PA receptors.  相似文献   

18.
Scatchard analysis of binding of 125I-basic fibroblast growth factor (FGF) to baby hamster kidney (BHK) cells revealed the presence of two binding sites: a high affinity site with KD of 20 pM and 80,000 sites per cell and a low affinity site with KD of about 2 nM and 600,000 sites per cell. The binding to the two sites could be separated by first washing the cells with 2 M NaCl at pH 7.5 which released the low affinity binding and then extracting the cells with 0.5% Triton X-100 to recover the 125I-basic FGF bound to high affinity sites. The binding to the high affinity site was acid sensitive, suggesting that it represented binding to the receptor. Binding to the low affinity site could be competed strongly by heparin and less strongly by heparan sulfate but not by chondroitin sulfate, dermatan sulfate, or keratan sulfate. Treatment of BHK cells with heparinase abolished 62% of the low affinity binding, suggesting that the low affinity binding represented binding to cell-associated, heparin-like molecules. A variety of other cell types, including bovine capillary endothelial (BCE) cells, also demonstrated both low and high affinity binding sites. To test whether the low affinity binding might play a role in the basic FGF stimulation of plasminogen activator (PA) production by BCE cells, heparin was added to BCE cultures at concentrations which totally blocked binding of 125I-basic FGF to the low affinity sites. Addition of the heparin did not diminish the increased PA production induced by basic FGF. This suggests that the low affinity binding has no direct role in the stimulation of PA production in BCE cells.  相似文献   

19.
Previous work from this laboratory has indicated that thrombin's influence on cell growth can be negative as well as positive. Addition of enzyme to actively growing or confluent cultures of human skin fibroblasts produced growth stimulation, whereas cultures receiving thrombin at the time of subculture displayed inhibited DNA synthesis and mitosis. The specific binding of [125I]thrombin to cells under stimulatory and inhibitory conditions has been studied. Fibroblasts receiving enzyme at subculture bound about two times more [125I]thrombin than those processed in the same way several hours later. The apparent dissociation constant for both groups was approximately 1.5 x 10(-8) M. In each case binding was saturable, although cells receiving enzyme at subculture showed a much higher rate of binding. Experiments were conducted in which enzyme was added to cells at various times after subculture. It was found that the ability of these fibroblasts to specifically bind [125I]thrombin decreased progressively over a 2-h period after subculture and then remained constant for at least 24 h. Evidence is also presented indicating that the binding of [125I]thrombin in both experimental groups was inversely dependent upon the culture density. The biological effects of elevated thrombin binding in cells receiving enzyme at subculture were examined. It was found that inhibited DNA synthesis and altered cellular morphology were directly to this parameter. This study suggests that fibroblasts may possess cryptic thrombin receptors that become exposed during subculture or after injury in vivo. These possibilities and the relationship of cell shape to the availability of thrombin receptors are discussed.  相似文献   

20.
Transforming growth factor-beta (TGF-beta) is a bifunctional, density-dependent regulator of vascular smooth muscle cell (SMC) proliferation in vitro (at sparse densities SMC are growth-inhibited by the peptide, whereas at confluent densities TGF-beta potentiates their growth). We have used affinity labeling and ligand binding techniques to characterize cell surface receptors for TGF-beta under sparse and confluent culture conditions. Confluent SMC, whose growth are promoted by TGF-beta, exhibited a single class of high affinity TGF-beta binding sites (Kd = 6 pM, 3,000 sites/cell). In contrast, sparse SMC (whose growth are inhibited by TGF-beta) expressed two distinct classes of high affinity binding sites with binding constants of 6 pM (3,000 sites/cell) and 88 pM (11,000 sites/cell). By affinity labeling using 125I-TGF-beta and disuccinimidyl suberate cross-linking, confluent cells were found to express a major Mr = 280,000 TGF-beta receptor as well as trace amounts of low molecular weight (Mr = 85,000 and 65,000) receptor subtypes. All three of these receptors were determined, by ligand competition, to show similar affinity for TGF-beta. The predominant receptor subtypes expressed by sparse SMC exhibited apparent Mr = 75,000 and 65,000. In ligand competition experiments, the Mr = 75,000 receptor subtype (never present in confluent cultures) exhibited lower relative affinity for TGF-beta than did the Mr = 65,000 form. The ability of TGF-beta to inhibit SMC proliferation, therefore, correlates with the expression of a unique TGF-beta-binding protein on the SMC surface. The data suggest that TGF-beta may exert opposite biological effects on the same cell type via an interaction with distinct, selectively expressed receptor subtypes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号