首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orest M. Mylyk 《Genetics》1975,80(1):107-124
Evidence is presented for five or six previously undetected heterokaryon incompatibility (het) loci, bringing to about ten the number of such genes known in Neurospora crassa. The genes were detected using chromosome duplications (partial diploids), on the basis of properties previously known for het genes in duplications. Duplications homozygous for het genes are usually normal in growth and morphology, whereas those heterozygous are strikingly different. The heterozygotes are inhibited in their initial growth, produce brown pigment on appropriate medium, and later "escape" from their inhibition, as a result of somatic events, to produce wild-type growth. - Five normal-sequence strains were crossed to 14 duplication-producing chromosome rearrangements, and the duplication progeny were examined for properties characteristic of duplications heterozygous for known het genes. Each cross produced duplications for a specific region of the genome, depending on the rearrangement. Normal-sequence strains were wild types from nature, chosen from diverse geographic locations to serve as sources of genetic variation. - The duplication method was very effective. Most of the longer duplications uncovered het genes. The genes are: het-5 (on linkage group IR, in the region covered by duplications produced using rearrangement T (IR LEADS TO VIR)NM103), het-6 (on IIL, covered by T(IIL LEADS TO VI)P2869 and T(IIL LEADS TO IIIR)AR18 duplications), het-7 (tentatively assigned to IIIR, T(IIIR LEADS TO VIL)D305), het-8 (VIL, T(VIL LEADS TO IR)T39M777), het-9 (VIR LEADS TO IVR)AR209), and het-10 (VIIR, T(VIIR LEADS TO IL)5936.  相似文献   

2.
Heterokaryons of Saccharomyces cerevisiae have been constructed utilizing the kar1-1 mutation, which prevents nuclear fusion during conjugation (J. Conde and G. Fink, Proc. Natl. Acad. Sci. U.S.A. 73:3651-3655, 1976). Each heterokaryon contained two haploid nuclei that were marked on several chromosomes. They segregated haploid progeny (cytoductants), most of which have the nuclear genotype of one or the other of the heterokaryon parents, but they occasionally segregated progeny having a recombinant genotype (exceptional cytoductants). Exceptional cytoductants receive the majority of their genome from one parent (the recipient) and a minority from the other (the donor). Transfer of two markers from the donor nucleus to the recipient is rarely coincident for markers located on different chromosomes but is nearly always coincident for those markers located on the same chromosome, suggesting that whole chromosomes are transferred from the donor nucleus to the recipient. In crosses of kar1-1 X KAR1 parents, either nucleus may act as a recipient or donor with equal probability. Recipient nuclei acquired 9 of the 10 chromosomes examined, with frequencies which were inversely correlated with the size of the chromosome. When a chromosome is acquired by the recipient nucleus, it either replaces its homolog or exists in a disomic condition. Haploid progeny emanating from kar1 X KAR1 crosses are frequently inviable. I tested whether this inviability might be the result of chromosome loss by donor nuclei. Viability of progeny from kar1 X KAR1 heterokaryons was improved when the parental nuclei were diploid to an extent consistent with the hypothesis, and diploid progeny which had become monosomic were recovered from these heterokaryons. The following sequence of events accounts for chromosome transfer in kar1 X KAR1 heterokaryons. After cell fusion, each nucleus in the heterokaryon has a probability of about 0.38 of losing one or more chromosomes. A nucleus sustaining such a loss can become a donor in a chromosome transfer event. If the other nucleus does not sustain a mortal chromosome loss, it can become a recipient in a transfer event. The chance of acquiring a chromosome lost by the donor is greater for smaller chromosomes than for larger ones and is about 0.05 for the average chromosome.  相似文献   

3.
Turner BC 《Genetics》1977,85(3):439-460
Nontandem terminal chromosome duplications derived from N. crassa translocation T(I-->VI)NM103 give rise mitotically to some daughter nuclei which have become euploid by loss of one or the other of the two duplicated segments. Loss of the segment in normal sequence occurs as often as loss of the translocated segment. This is in contrast to all of several other Neurospora duplications that have been studied, where loss of the segment in normal sequence is absent or rare.--T(NM103) has the distal two thirds of linkage group IR exchanged with the right tip of VI. Crosses to normal sequence produce a class of morphologically distinct progeny with IR chromosome duplications. For a few days after germination, test crosses of these progeny are barren (make perithecia but few or no spores, as observed commonly with Neurospora duplications). Growing duplication cultures become fertile by accumulating nuclei which have been reduced to either normal sequence (by loss of the segment in translocation sequence) or translocation sequence (by loss of the segment in normal sequence). Both types usually appear within the first week of growth. Naturally formed mixtures or heterokaryons of NM103 duplication nuclei and their reduced euploid products have been studied by plating and by progeny testing. Determination of nuclear type is based on culture morphology, expression of genetic markers, and crossing behavior. Within the limits of testing, loss is found to begin precisely at the interchange points. The unique finding of frequent breakdown of normal-sequence linkage group I chromosomes is not dependent on the strain from which the chromosome was derived. Many different strains were tested, and for each one evidence was found that nuclei reduced to translocation sequence had been produced from duplication nuclei by loss of the segment in normal sequence.  相似文献   

4.
Bhat A  Kasbekar DP 《Genetics》2001,157(4):1581-1590
In Neurospora crassa the ability of an ectopic gene-sized duplication to induce repeat-induced point mutation (RIP) in its target gene was suppressed in crosses that were heterozygous for another larger chromosome segment duplication. Specifically, the frequency of RIP in the erg-3 gene due to a 1.3-kb duplication was reduced if the chromosome segment duplications Dp(IIIR > [I;II]) AR17, Dp(VIR > IIIR) OY329, or Dp(IVR > VII) S1229 were present in either the same or the other parental nucleus of the premeiotic dikaryon. We suggest that the larger duplications act as sinks to titrate the RIP machinery away from the smaller duplication. In contrast, RIP efficiency was relatively unaffected in comparably unproductive interspecies crosses with N. intermedia and N. tetrasperma. These findings offer a novel explanation for the observed persistence of the transposable element Tad in only a subset of Neurospora strains.  相似文献   

5.
Perkins DD 《Genetics》1972,71(1):25-51
In strain T(I-->II)39311 a long interstitial segment is transposed from IL to IIR, where it is inserted in reversed order with respect to the centromere. In crosses of T x T essentially all asci have eight viable, black spores, and all progeny are phenotypically normal. When T(I-->II)39311 is crossed by Normal sequence (N), the expected duplication class is viable while the corresponding deficiency is lethal; 44% of the asci have 8 Black (viable) spores and 0 White (inviable) spores, 41% have 4 Black: 4 White, and 10% have 6 Black: 2 White. These are the ascus types expected from normal centromere disjunction without crossing over (8B:0W and 4B:4W equally probable), and with crossing over between centromere and break point (6B:2W). On germination, 8B:0W asci give rise to only parental types-4 T and 4 N; 4B:4W asci usually give four duplication (Dup) progeny; and 6B:2W asci usually give 2 T, 2 N, 2 Dup. Thus one third of all viable, black ascospores contain duplications.-Recessive markers in the donor chromosome which contributes the translocated segment can be mapped by duplication coverage. Ratios of 2 Dominant: 1 Recessive vs. 1 Dominant: 2 Recessive distinguish location in or outside the transposed segment. Eleven loci including mating type have been shown to lie within the segment, and markers at four loci have been transferred into the segment by meiotic recombination. The frequency of marker transfer indicates that the inserted segment usually pairs with its homologue. Ascus types that would result from single exchanges within the insertion are infrequent, as expected if asci containing dicentric bridges usually do not survive.-Duplication ascospores germinate to produce distinctive inhibited colonies. Later these "escape" to grow like wild type, and genes that were initially heterozygous in the duplication segregate when escape occurs. As with duplications from pericentric inversion In(IL-->IR)H4250 (Newmeyer and Taylor 1967), the initial inhibition is attributed to mating-type heterozygosity, and escape to a somatic event that makes mating type homoor hemizygous.-Twenty additional duplication-generating Neurospora rearrangements are listed and described briefly in an Appendix.  相似文献   

6.
In rearrangement T(VLIVL)AR33 the segment of chromosome 2 bearing the nucleolus organizer is translocated to the end of chromosome 4. When AR33 is crossed by Normal sequence (N), one third of the viable progeny contain a stable nontandem duplication with two organizers per nucleus. The organizer-deficient complementary products are inviable. Chromosomes and nucleoli have been examined during meiosis and postmeiotic nuclear divisions in the ascus, comparing heterozygous AR33 × N crosses with N × N and with crosses heterozygous for other interchanges. When AR33 is heterozygous, asci are of three types having the nucleolus organizer duplicated in 0, 1 or 2 of the meiotic products. Frequencies of the ascus types are as expected from the known positions of rearrangement break points. Nucleoli formed by two organizers frequently fuse. Deficiency nuclei that contain no nucleolus organizer may form one or more small nucleolus-like bodies.  相似文献   

7.
A study of the karyotype composition of 22 geographycally removed natural populations of the malarial mosquito Anopheles messeae Fall revealed a chromosomal polymorphism characteristic of the whole species. 13 paracentric inversions were detected, no other gene arrangements being discovered. All the inversions can be divided into two classes: 1) wide spread inversions in hetero- and homozygous forms; 2) endemic ones discovered in individual populations in the form of heterozygotes. According to the presented photomap of salivary gland chromosomes, the inversion localization are as follows: IL1 (2a--4a), IL2 (1c--4a), IL3 (2a--3b), IL4 (1c--3b), IIR1 (7c--12c), IIR2 (10b--14b), IIL1 (15b--17a), IIIR1 (24a--26c), IIIR2 (23a--24c), IIIR3 (23b--25c), IIIR4 (27c--29c), IIIR5 (27d--30c), IIIL1 (34a--39d).  相似文献   

8.
D. Kaul  R. R. Tewari 《Genetica》1983,62(2):129-138
A comparison of the polytene chromosomes of Parasarcophaga argyrostoma, P. ruficornis, P. misera and P. knabi, is presented. There is close resemblance in the banding patterns of the four species. Two independent paracentric inversions in chromosome arm IIR, a small paracentric inversion in chromosome arm IIIR and a pericentric inversion in chromosome V were found to be fixed as interspecific differences.  相似文献   

9.
Two mutant strains harbouring a linear chromosome whose size reached 13 Mb (versus approximately 8 Mb for the wild type) were characterized. This chromosomal structure resulted from the fusion in inverted orientation of two chromosomes partially deleted on the same arm. The fusion occurred by illegitimate recombination between 6 bp repeats. This chromosomal structure was inherited in strict association with a high level of genetic instability (30% of mutants in a single progeny, phenomenon also called hypervariability) and chromosomal instability. In contrast, derivatives, which did not retain the chromosome fusion, showed a wild-type-like instability frequency (c. 1%). Stabilization of the chromosomal structure occurred by chromosome arm replacement or circularization. A high variability of the terminal inverted repeat (TIR) length in the rescued chromosomes (from 5 kb to approximately 1.4 Mb for linear derivatives) was observed. Mutant lineages harbouring the chromosomal fusion are characterized by a highly heterogeneous distribution of DNA in the spores, by the presence of spores without DNA as well as aberrant sporulation figures, and by the production of spores with a low germination rate. The wild-type characteristics were restored in the descendants, which lost the chromosomal fusion. Thus, the fusion of deleted chromosomes initiates a cycle of chromosome instability sharing several levels of analogy with the behaviour of dicentric chromosomes in eukaryotes. We propose that the high instability of the fused chromosomes results from the duplication of a region involved in partitioning of the chromosomes (parAB-oriC ).  相似文献   

10.
P J Yeadon  D E Catcheside 《Genetics》1998,148(1):113-122
Multiple polymorphisms distinguish Emerson and Lindegren strains of Neurospora crassa within the histidine-3 gene and in its distal flank. Restriction site and sequence length polymorphism in a set of 14 PCR products covering this 6.9-kb region were used to identify the parental origin of DNA sequence information in prototrophic progeny of crosses heterozygous for auxotrophic mutations in his-3 and the silent sequence differences. Forty-one percent of conversion tracts are interrupted. Where the absence of rec-2+ permits activity of the recombination hotspot cog, conversion appears to originate at cog and conversion tracts are up to 5.9 kb long. The chromosome bearing cog(L), the dominant allele that confers a high frequency of recombination, is almost invariably the recipient of information. In progeny from crosses heterozygous rec-2/rec-2+, conversion tracts are much shorter, most are not initiated at cog and either chromosome seems equally likely to be converted. Although 32% of his-3 prototrophs have a crossover that may be associated with conversion, it is suggested that the apparent association between conversion and crossing over at this locus may be due to confounding of coincidental events rather than to a mechanistic relationship.  相似文献   

11.
Iu M Novikov  V M Kabanova 《Genetika》1979,15(6):1033-1045
The dependent combination of chromosomal variants by five paracentric inversions (IL1, IL2, IIR1, IIIR1, IIIL1) in Anopheles messeae population from the West Siberia was discovered. It is found that the inversion interactions interactions are the same at both larval and imaginal parts of the population, and they are stable during four years of studying. The inversion of hetero- and homozygotes demonstrates identical properties, that is, phylogenetic secondary sequencies dominate in heterozygotes. Two associative groups of chromosome variants were revealed. The association correlates with geographic distribution and temporal dynamics of inversions and on the whole, it reflects the evolutionary history of inversion polymorphism in A. messeae. It is supposed that the adaptive association of inversions found is the high degree polymorphism formed and functioned on the basis of the groups of inversion chromosome blocks.  相似文献   

12.
Comparative analysis of chromosomal macrorestriction polymorphism of the two closely related Lactococcus lactis subsp. cremoris strains MG1363 and NCDO763 revealed the presence of a large inversion covering half of the genome. To determine what kind of genetic element could be implicated in this rearrangement, the two inversion junctions of MG1363 and NCDO763 chromosomes were cloned and characterized. Nucleotide sequence analysis showed the presence of one copy of the lactococcal IS905 element in each junction. Each copy of this element contained the same nucleotide mutation that inactivates the putative transposase. Comparison of the sequences surrounding the insertion sequence demonstrated that the large inversion arose from a single-step homologous recombination event between the two defective copies of the IS905 element. The large inversion presumably conferred no selective disadvantage on strain NCDO763 because this rearrangement did not alter the oriC-terC symmetry of the chromosome and the local genetic environment.  相似文献   

13.
Genome imprinting phenomena on mouse chromosome 7   总被引:12,自引:0,他引:12  
Heterozygotes for the reciprocal translocation T(7;15)9H were intercrossed, with albino (c) and underwhite (uw) as genetic markers, in order to study genetic complementation in mouse chromosome 7. Chromosome 15 is known to show normal complementation. Neither reciprocal cross in which one parent was c/c and the other wild type yielded albino progeny at birth although about 17% would be expected, but albino foetuses were recovered when the mother was c/c and father wild type. These products of maternal duplication/paternal deficiency for distal 7 were markedly retarded with small placentae. No albino foetuses were found when the father was c/c and mother wild type, which suggested earlier lethality. Equivalent crosses with uw (chromosome 15) as proximal marker gave normal underwhite progeny when the mother was uw/uw but small placentae, retardation and neonatal death of presumptive underwhites in the reciprocal cross. These abnormal newborn would have had a maternal duplication/paternal deficiency for proximal 7. These and other findings indicate that one region of defective complementation probably lies distal to the breakpoint of T(7;18)50H at 7E2-F2, while another is between the centromere and 7B3. Examination of man-mouse homologies suggests that the loci for three pathological human conditions (Beckwith-Weidemann syndrome, dystrophia myotonia and rhabdomyosarcoma) with differential parental transmission may be located in homologous regions to those affected by imprinting phenomena on mouse chromosome 7.  相似文献   

14.
M. Enomoto  Y. Komoda    A. Tominaga 《Genetics》1991,129(3):631-638
Strain 1485IN carries a chromosomal inversion which corresponds to 35% of the chromosome and includes proC, trp and his genes. The termini of the inversion lie between the lac and proC loci and between his and cdd of the normal strain. Using Tn10 and Tn5 in transduction crosses between the normal and inversion strains, the termini were mapped to sites located approximately 0.25 min and 1.6 min away from proC and his, respectively within a region of roughly 4 kb long. The crosses where the normal strains carrying Tn10 near the terminus are donors and the inversion strain is a recipient, yielded unusual Tetr His- recombinants, which arose from illegitimate recombination leading to the replacement of a chromosomal his+ region with a transducing fragment carrying proC. Another rearrangement was detected between the normal and inversion strains in a region outside the inverted segment near the cdd locus.  相似文献   

15.
Human sperm chromosomes were studied in a man heterozygous for a pericentric inversion of chromosome 3(p25q21). The pronuclear chromosomes were analyzed after in vitro penetration of golden hamster eggs. A total of 144 sperm were examined: 69.2% were chromosomally balanced and 30.8% were recombinant. Of the balanced complements, the proportion with a normal chromosome 3 (37.6%) was approximately equal to the proportion with an inverted 3 (31.6%). Of the recombinant complements, the proportion of sperm with a duplication q/deletion p (17.3%) was approximately equal to the reciprocal event of duplication p/deletion q (13.5%). The recombinant chromosome 3 with a duplication q and deletion p has been observed in several abnormal children, but the duplication p/deletion q has never been reported. My results demonstrate that both recombinant chromosomes are produced as expected from an unequal number of crossovers within an inversion loop. In all likelihood the duplication p/deletion q chromosome is an early embryonic lethal because of the amount of genetic material deleted. The proportions of X-bearing (48.9%) and Y-bearing sperm (51.1%) were not significantly different from the expected 1:1 ratio. There was no evidence for an interchromosomal effect. Of the three inversions studied by human sperm chromosome analysis, recombinant chromosomes have been observed only in this case.  相似文献   

16.
Knowledge of intrachromosomal transpositions has until now been primarily cytological and has been limited to Drosophila and to humans, in both of which segmental shifts can be recognized by altered banding patterns. There has been little genetic information. In this study, we describe the genetic and cytogenetic properties of a transposition in Neurospora crassa. In Tp(IRIL)T54M94, a 20 map unit segment of linkage group I has been excised from its normal position and inserted near the centromere in the opposite arm, in inverted order. In crosses heterozygous for the transposition, about one-fifth of surviving progeny are duplications carrying the transposed segment in both positions. These result from crossing over in the interstitial region. There is no corresponding class of progeny duplicated for the interstitial segment. The duplication strains are barren in test crosses. A complementary deficiency class is represented by unpigmented, inviable ascospores. Extent of the duplication was determined by duplication-coverage tests. Orientation of the transposed segment was determined using Tp x Tp crosses heterozygous for markers inside and outside the transposed segment, and position of the insertion relative to the centromere was established using quasi-ordered half-tetrads from crosses x Spore killer. Quelling was observed in the primary transformants that were used to introduce a critical marker into the transposed segment by repeat-induced point mutation (RIP).  相似文献   

17.
We report on a girl with psychomotor retardation, severe speech developmental delay and mild dysmorphic features. Molecular cytogenetic analysis showed that the patient was carrier of an insertion (6)(p22.5-->22.4) in chromosome 12. Analysis of the chromosomes of the mother revealed the presence of a complex chromosomal rearrangement. In addition to the insertion (6)(p22.5-->22.4) in chromosome 12 and a pericentric inversion in chromosome 12, the 6p subtelomeric region was absent in the mother. This is, to our knowledge, the smallest pure duplication of chromosome 6p as well as the smallest cryptic subtelomeric 6pter deletion thus far reported.  相似文献   

18.
The olfactory receptor (OR)-gene superfamily is the largest in the mammalian genome. Several of the human OR genes appear in clusters with > or = 10 members located on almost all human chromosomes, and some chromosomes contain more than one cluster. We demonstrate, by experimental and in silico data, that unequal crossovers between two OR gene clusters in 8p are responsible for the formation of three recurrent chromosome macrorearrangements and a submicroscopic inversion polymorphism. The first two macrorearrangements are the inverted duplication of 8p, inv dup(8p), which is associated with a distinct phenotype, and a supernumerary marker chromosome, +der(8)(8p23.1pter), which is also a recurrent rearrangement and is associated with minor anomalies. We demonstrate that it is the reciprocal of the inv dup(8p). The third macrorearrangment is a recurrent 8p23 interstitial deletion associated with heart defect. Since inv dup(8p)s originate consistently in maternal meiosis, we investigated the maternal chromosomes 8 in eight mothers of subjects with inv dup(8p) and in the mother of one subject with +der(8), by means of probes included between the two 8p-OR gene clusters. All the mothers were heterozygous for an 8p submicroscopic inversion that was delimited by the 8p-OR gene clusters and was present, in heterozygous state, in 26% of a population of European descent. Thus, inversion heterozygosity may cause susceptibility to unequal recombination, leading to the formation of the inv dup(8p) or to its reciprocal product, the +der(8p). After the Yp inversion polymorphism, which is the preferential background for the PRKX/PRKY translocation in XX males and XY females, the OR-8p inversion is the second genomic polymorphism that confers susceptibility to the formation of common chromosome rearrangements. Accordingly, it may be possible to develop a profile of the individual risk of having progeny with chromosome rearrangements.  相似文献   

19.
We have followed the transmission of Ophiostoma ulmis.l. chromosome length polymorphisms (CLPs) into the F2 generation to determine the reproducibility of a genome rearrangement culminating in the conversion of a 1.0 Mb chromosome into a 800 kb chromosome. The 1.0 Mb chromosome in strain CESS16K is thus far unique among O. ulmi s.l. wild-type strains, as no other wild-type strains have been observed with chromosomes smaller than 2.3 Mb. It has been previously shown that the 1.0 Mb chromosome is mitotically stable, carries at least one normally expressed gene, and is transmitted through meiosis. In this study, a series of crosses were performed to further elucidate the pattern of inheritance of the 1.0 Mb chromosome and the process of conversion of the 1.0 Mb species to 800 kb. In crosses where the 1.0 Mb chromosome was allowed to pair with itself or with the 800 kb chromosome, all progeny inherited a copy of the 1.0 Mb or 800 kb form, further demonstrating the A-type nature of these small chromosomes. When a cross was repeated between the strains CESS16K (1.0 Mb chromosome) and FG245Br-O (no 1.0 Mb or 800 kb chromosome), the occurrence of a 800 kb chromosome was observed in 9% of the progeny. A reciprocal cross between an 800 kb strain and a strain with no 800 kb or 1.0 Mb chromosome was conducted, and a progeny strain containing a 1.0 Mb chromosome was recovered. The reproducibility and reciprocality of the 1.0 Mb to 800 kb chromosome conversion demonstrates that meiotic processes are responsible for this CLP, and that O. ulmi s.l. strains with various divergent genome architectures can remain sexually compatible. Received: 6 February 1996 / Accepted: 21 January 1997  相似文献   

20.
We have followed the transmission of Ophiostoma ulmis.l. chromosome length polymorphisms (CLPs) into the F2 generation to determine the reproducibility of a genome rearrangement culminating in the conversion of a 1.0 Mb chromosome into a 800 kb chromosome. The 1.0 Mb chromosome in strain CESS16K is thus far unique among O. ulmi s.l. wild-type strains, as no other wild-type strains have been observed with chromosomes smaller than 2.3 Mb. It has been previously shown that the 1.0 Mb chromosome is mitotically stable, carries at least one normally expressed gene, and is transmitted through meiosis. In this study, a series of crosses were performed to further elucidate the pattern of inheritance of the 1.0 Mb chromosome and the process of conversion of the 1.0 Mb species to 800 kb. In crosses where the 1.0 Mb chromosome was allowed to pair with itself or with the 800 kb chromosome, all progeny inherited a copy of the 1.0 Mb or 800 kb form, further demonstrating the A-type nature of these small chromosomes. When a cross was repeated between the strains CESS16K (1.0 Mb chromosome) and FG245Br-O (no 1.0 Mb or 800 kb chromosome), the occurrence of a 800 kb chromosome was observed in 9% of the progeny. A reciprocal cross between an 800 kb strain and a strain with no 800 kb or 1.0 Mb chromosome was conducted, and a progeny strain containing a 1.0 Mb chromosome was recovered. The reproducibility and reciprocality of the 1.0 Mb to 800 kb chromosome conversion demonstrates that meiotic processes are responsible for this CLP, and that O. ulmi s.l. strains with various divergent genome architectures can remain sexually compatible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号