首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comparative study of the effect of some benzodiazepine deprivatives (chlonazepam, lorazepam, diazepam, and medazepam) on the recovery cycles of the interzonal response was carried out on unanesthetized curare-immobilized cats. These drugs proved to selectively inhibit the testing potential within the range of 20 to 100 msec. between the conditioning and the testing stimuli. This indicates that potentiation of GABA-ergic inhibition in the cerebral cortex. The threshold doses of the drugs inducing the depression of the test response and of ED50, preventing the development of convulsions, caused by GABA deficiency or by GABA-ergic receptor block, were compared; a correlation between the mentioned effects was demonstrated. The significance of GABA-positive effect of benzodiazepines in the mechanism of their anticonvulsive activity is suggested.  相似文献   

2.
Nicotine is a psychoactive ingredient in tobacco that significantly contributes to the harmful tobacco smoking habit. Nicotine dependence is more prevalent than dependence on any other substance. Preclinical research in animal models of the various aspects of nicotine dependence suggests a critical role of glutamate, gamma-aminobutyric acid (GABA), cholinergic and dopamine neurotransmitter interactions in the ventral tegmental area and possibly other brain sites, such as the central nucleus of the amygdala and the prefrontal cortex, in the effects of nicotine. Specifically, decreasing glutamate transmission or increasing GABA transmission with pharmacological manipulations decreased the rewarding effects of nicotine and cue-induced reinstatement of nicotine seeking. Furthermore, early nicotine withdrawal is characterized by decreased function of presynaptic inhibitory metabotropic glutamate 2/3 receptors and increased expression of postsynaptic glutamate receptor subunits in limbic and frontal brain sites, while protracted abstinence may be associated with increased glutamate response to stimuli associated with nicotine administration. Finally, adaptations in nicotinic acetylcholine receptor function are also involved in nicotine dependence. These neuroadaptations probably develop to counteract the decreased glutamate and cholinergic transmission that is hypothesized to characterize early nicotine withdrawal. In conclusion, glutamate, GABA and cholinergic transmission in limbic and frontal brain sites are critically involved in nicotine dependence.  相似文献   

3.
A study was made of the effect of haloperidol on convulsions induced in mice by bicuculline and thiosemicarbazide and on the recovery cycles of the primary response in the rat sensorimotor cortex. In doses of 0.3--0.5 mg/kg producing a tranquilizing effect, haloperidol exerts a protective action in convulsions induced by bicuculline blocking of the GABA receptors and enhances the depression of the testing response during recovery cycle of the rat sensorimotor cortex primary response. It means that over this dosage range haloperidol potentiates GABA-induced effects. An increase in the neuroleptic dose up to 1--2 mg/kg entails disappearance of the efficacy shown by both the tests. The authors' own and reported data suggest an important role played by the postsynaptic GABA-positive effect in realization of the tranquilizing action of haloperidol and other neurotropic agents.  相似文献   

4.
The purpose of this study was to determine the effects of summation of contraction on acceleration signals in human skeletal muscle. The torque parameters of dorsiflexion and acceleration signals in the tibialis anterior muscle were measured during evoked isometric contractions. In an examination of two-pulse trains with different inter-pulse intervals, the torque and accelerometer responses to inter-pulse intervals of 10–100 ms were recorded. In an investigation of the effects of different numbers of stimuli, the torque and accelerometer responses to 1–8 pulses with a constant inter-pulse interval of 10 ms were recorded. The present study found that there was a difference in acceleration amplitude between the single-pulse and two-pulse trains with an inter-pulse interval of 10 ms but not two-pulse trains with an inter-pulse interval of 20 ms or more. In the investigation of different numbers of stimuli, we found a similar MMG amplitude across 2–8 pulses. Moreover, we observed that the maximal time to the peak acceleration signal was ~27 ms. In a comparison of torque parameters with acceleration signals, the present study clearly shows that acceleration amplitude is poorly correlated to changes in force parameters when the inter-pulse interval or the number of stimuli are increased. These results suggest that the absence of associated changes in acceleration peak is due to the long interval for the subsequent pulses relative to the time at which acceleration peak is achieved (~27 ms). These findings will provide useful information concerning the method for assessing summation of contraction with an accelerometer.  相似文献   

5.
The effects of DL-penicillamine (DL-PeA), hydrazine and toxopyrimidine (TXP, 2-methyl-6-amino-5-hydroxymethylpyrimidine) on gamma-aminobutyric acid (GABA) metabolism in mouse brain were studied. All these compounds inhibited the activity of glutamate decarboxylase [EC 4.1.1.15] (GAD) and slightly inhibited that of 4-aminobutyrate: 2-oxoglutarate aminotransferase [EC 2.6.1.19] (GABA-T). In contrast, very different effects were observed on GABA levels; hydrazine caused a marked increase, DL-PeA had no effect, and TXP caused a slight decrease in the content of the amino acid. These results could be described by an equation which related the excitable state to changes in the flux of the GABA bypass. Since the values obtained from the equation clearly reflect the seizure activity, it is suggested that the decreased GABA flux might be a cause of convulsions induced by these drugs.  相似文献   

6.
The anticonvulsive effects of GABA, taurine, and glycine were investigated on several chemically-induced and genetic seizure models. Intravenous injections of either GABA, taurine, or glycine provided protection against 3-mercaptopropionic acid (MPA)-induced convulsions in adult Swiss mice. GABA was partially effective against isonicotinic acid hydrazide and was without effect against bicuculline-induced convulsions bProlonged administration of glycine prevented MPA-induced convulsions but not electrically induced seizures or seizures induced by strychnine or metrazol.Intragastric glycine protected young audiogenic seizure-susceptible DBA/2 mice against all three phases of sound-induced convulsions (wild running, clonic and tonic seizure), but GABA and taurine provided little or no protection. With increase of glycine, the cerebral levels of glutamine and serine also increased, but that of glutamic acid decreased. The endogenous glutamic and glycine levels were slightly higher in the brains of the audiogenic seizure-susceptible DBA/2 mice than in that of the resistant BALB/Cy strain.  相似文献   

7.
This work was aimed to identify the action of several ion channel and pump inhibitors as well as nicotinic, GABAergic, purinergic and serotoninergic drugs on the resting membrane potential (RMP) and assess the role of cholinergic and GABAergic sensitivity in earthworm muscle electrogenesis. The nicotinic agonists acetylcholine (ACh), carbacholine (CCh) and nicotine depolarize the RMP at concentrations of 5 μM and higher. The nicotinic antagonists (+)tubocurarine, α-bungarotoxin, muscarinic antagonists atropine and hexamethonium do not remove or prevent the CCh-induced depolarization. Verapamil, tetrodotoxin, removal of Cl(-) and Ca(2+) from the solution also cannot prevent the depolarization by CCh. In a Na(+)-free medium, however, CCh lost this depolarization ability and this indicates that the drug opens the sodium permeable pathway. Serotonin, glutamate, glycine, adenosine triphosphate (ATP) and cis-4-aminocrotonic acid (GABA(C) receptor antagonist) had no effect on the RMP. On the other hand, isoguvacin, γ-aminobutyric acid (GABA) and baclofen (GABA(B) receptor agonist) hyperpolarized the RMP. Ouabain, bicucullin (GABA(A) antagonist) and phaclofen (GABA(B) antagonist), as well as the removal of Cl(-), suppressed the effect of GABA and baclofen. CCh did not enhance the depolarization generated by ouabain but, on the other hand, hindered the hyperpolarizing activity of baclofen both in the absence and presence of atropine and (+)tubocurarine. The long-term application of CCh depolarizes the RMP primarily by inhibiting the Na(+)/K(+)-ATPase. The muscle membrane also contains A and B type GABA binding sites, the activation of which increases the RMP at the expense of increasing the action of ouabain- and Cl(-) -sensitive electrogenic pumps.  相似文献   

8.
In this study, we attempted to clarify the mechanisms mediating cyclosporine-evoked convulsions. Cyclosporine (50 mg/kg, i.p.) significantly enhanced the intensity of convulsions induced by bicuculline (GABA receptor antagonist), but not those induced by strychnine (glycine receptor antagonist), N-methyl-D-aspartic acid, quisqualic acid or kainic acid (glutamate receptor agonists). Bicuculline plus cyclosporine-induced convulsions were significantly suppressed by an activation of GABAergic transmission with diazepam, phenobarbital and valproate. The GABA turnover estimated by measuring aminooxyacetic acid-induced GABA accumulation in the mouse brain was significantly inhibited by cyclosporine (50 mg/kg, i.p.). When cultured rat cerebellar granule cells were exposed to 1 microM cyclosporine for 24 hr, the specific [3H]muscimol (10 nM) binding to intact granule cells decreased to 53% of vehicle controls. The present study provides the first evidence suggesting that cyclosporine inhibits GABAergic neural activity and binding properties of the GABAA receptor. These events are closely related to the occurrence of adverse central effects including tremors, convulsions, coma and encephalopathy under cyclosporine therapy.  相似文献   

9.
A well-known protective effect of aminooxyacetic acid against thiosemicarbazide convulsions was confirmed; it was shown that a similar, although somewhat weaker activity, was exerted by sodium hydroxybutyrate. Surprisingly, the effect of aminooxyacetic acid was diminished by sodium hydroxybutyrate. Sodium hydroxybutyrate in combination with aminooxyacetic acid decreased the protective activity of the latter against thiosemicarbazide convulsions and diminished the extent of GABA accumulation characteristic of aminooxyacetic acid action. This effect is attributed to the competition between the aminooxyacetic acid, sodium hydroxybutyrate and GABA for alpha-ketoglutarate-GABA-transaminase and possible for the GABA-ergic receptor.  相似文献   

10.
We present an overview of the long-term adaptation of hippocampal neurotransmission to cholinergic and GABAergic deafferentation caused by excitotoxic lesion of the medial septum. Two months after septal microinjection of 2.7 nmol alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA), a 220% increase of GABA(A) receptor labelling in the hippocampal CA3 and the hilus was shown, and also changes in hippocampal neurotransmission characterised by in vivo microdialysis and HPLC. Basal amino acid and purine extracellular levels were studied in control and lesioned rats. In vivo effects of 100 mm KCl perfusion and adenosine A(1) receptor blockade with 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) on their release were also investigated. In lesioned animals GABA, glutamate and glutamine basal levels were decreased and taurine, adenosine and uric acid levels increased. A similar response to KCl infusion occurred in both groups except for GABA and glutamate, which release decreased in lesioned rats. Only in lesioned rats, DPCPX increased GABA basal level and KCl-induced glutamate release, and decreased glutamate turnover. Our results evidence that an excitotoxic septal lesion leads to increased hippocampal GABA(A) receptors and decreased glutamate neurotransmission. In this situation, a co-ordinated response of hippocampal retaliatory systems takes place to control neuron excitability.  相似文献   

11.
Abstract: The striatal neurochemical changes induced by pp'DDT (600 mg/kg) in mice were: an increase in the concentration of free ammonia, a decrease in the level of GABA and a reduction in the level of acetylcholine. These changes were maximal 5 h after treatment with pp'DDT, when the animals developed 'severe' convulsions. The convulsions and striatal neurochemical changes were modified to different degrees by barbiturates. Phenobarbitone protected all the animals from pp'DDT-induced convulsions. The levels of striatal acetylcholine and GABA in these animals were within normal limits. Prominal reduced the severity of convulsions in pp'DDT-treated animals. The levels of striatal acetylcholine and GABA were significantly lower than control values in these animals. Primidone neither modified the convulsions nor the striatal neurochemical changes in pp'DDT-treated animals. The increase in the concentration of free ammonia, in pp'DDT-treated animals, was not modified by barbiturates. Aminooxyacetic acid raised the GABA level above normal and abolished the convulsions in pp'DDT-treated animals; the level of acetylcholine was within normal limits in these animals. Hydroxylamine produced a similar but less marked effect. Pyridoxine had no effect on convulsions or striatal neurochemical changes induced by pp'DDT. The increase in the concentration of free ammonia in pp'DDT-treated animals was not modified by these agents. It is likely that pp'DDT produced stimulatory effects by increasing the concentration of free ammonia which may be involved in reducing the level of GABA, while changes in the level of acetylcholine may be an effect of pp'DDT-induced convulsions.  相似文献   

12.
Experiments reported in this study have been performed in order to investigate cholinergic and GABA-ergic neurotransmitter systems and substance P in the realization of internal inhibition and pain reinforcement. This was accomplished during the elaboration of inhibitory and defensive conditioned reflexes to light flashes in alert, nonimmobilized rabbits. Present results together with a review of past research indicate that the cholinergic system is directly involved in transmitting the effects of pain reinforcement to neocortical neurons. Substance P, a neuropeptide, reduces the background activity of neocortical and hippocampal neurons and the response of cortical neurons to pain and positive conditioned stimuli. The cholinergic system and substance P exert a modulating effect on the elaboration of internal inhibition. Phenybut, a GABA derivative capable of penetrating the blood-brain barrier, enhances inhibitory hyperpolarization in the cerebral cortex and improves discrimination between the inhibitory and reinforcing light flashes. It appears, therefore, that the GABA-ergic system plays a leading part in the elaboration of internal inhibition. Neuronal activity and slow potential changes in response to positive conditioned and pain stimuli occur in the same direction after administering the preparations, and the dynamics of these changes is different from that in responses to inhibitory stimuli. It may be supposed on these grounds that the neurotransmitter and neuromodulator systems studied possess a considerable degree of plasticity.  相似文献   

13.
In spite of many reports of arrest reaction in animals, there are very few reports in man. During a therapeutic stereotactic operation we observed peculiar phenomena caused by electrical stimulation to the deep structure of the cerebrum. This phenomenon is quite similar to that reported by Van Buren, but there are a few differences between them. Arrest reaction was observed in 14 of 23 cases, 17 of 28 tracks. Stimuli which caused the arrest reaction were 60--100 Hz square waves of 1 msec duration and 5--15 V. The electrical stimulation caused an interruption of counting and other motor actions, which could be resumed following release of stimuli. Psychic confusion or memory disturbances were not observed with the exception of a few cases. The arrest reaction that we observed is thought to be due to a direct effect on the head of the caudate nucleus, not due to secondary effects on the internal capsule and the motor fiber in vicinity of the caudate nucleus. However, the possibility that the current spread to the motor fiber cannot be definitely ruled out.  相似文献   

14.
Physiological mechanisms of antennal sucrose perception in the honey bee were analysed using behavioural and electrophysiological methods. Following sucrose stimulation of the tip of a freely moving antenna, the latency of proboscis extension was 320–340 ms, 80–100 ms after the first activity in muscle M17 controlling this response. When bees were allowed to actively touch a sucrose droplet with one antenna, contacts with the solution were frequent with durations of 10–20 ms and average intervals between contacts of approximately 40 ms. High sucrose concentrations led to short and frequent contacts. The proboscis response and M17 activity were largely independent of stimulus duration and temporal pattern. Taste hairs of the antennal tip displayed spike responses to sucrose concentrations down to at least 0.1%. The first 25 ms of the response were suitable for discrimination of sucrose concentrations. This time interval corresponds to the duration of naturally occurring gustatory stimuli. Sucrose responses between different hairs on the same antenna showed a high degree of variability, ranging from less than five to over 40 spikes per 0.5 s for a stimulus of 0.1% sucrose. This variability of receptor responses extends the dynamic range of sucrose perception over a large range of concentrations.  相似文献   

15.
Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG) data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta) at the moment of gamete release for 7.39±1.61 s in females and for 5.20±0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a β-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.  相似文献   

16.
Abstract: We have studied the effect of isonicotinic acid hydrazide (INH), a convulsant agent, on the extracellular levels of amino acids in the hippocampus, and the effect of sodium valproate (VPA) administration in INH-treated rats. INH (250 mg/kg) caused a rapid and sustained decrease in basal levels of GABA, and during this period convulsions of increasing severity were observed. Basal levels of glutamine, taurine, aspartate, and glutamate were unchanged by INH. When VPA was coadministered with INH, basal GABA levels were increased and no convulsions were observed. When transmitter release was evoked using 100 m M K+, the increase in dialysate GABA observed in INH-treated animals was less than that seen in controls and convulsions increased in frequency. K+-evoked release of glutamate and aspartate tended to be higher following INH treatment, and in the case of aspartate, this increase was significant. VPA reversed the changes in evoked release of glutamate and aspartate, and release of GABA was considerably greater than that seen in control or INH-treated rats. No drug effect on evoked changes in taurine or glutamine level was seen. These are the first data to show decreased extracellular GABA in conjunction with convulsions in freely moving animals in vivo.  相似文献   

17.
We investigated the electrophysiological response to matched two-formant vowels and two-note musical intervals, with the goal of examining whether music is processed differently from language in early cortical responses. Using magnetoencephalography (MEG), we compared the mismatch-response (MMN/MMF, an early, pre-attentive difference-detector occurring approximately 200 ms post-onset) to musical intervals and vowels composed of matched frequencies. Participants heard blocks of two stimuli in a passive oddball paradigm in one of three conditions: sine waves, piano tones and vowels. In each condition, participants heard two-formant vowels or musical intervals whose frequencies were 11, 12, or 24 semitones apart. In music, 12 semitones and 24 semitones are perceived as highly similar intervals (one and two octaves, respectively), while in speech 12 semitones and 11 semitones formant separations are perceived as highly similar (both variants of the vowel in ‘cut’). Our results indicate that the MMN response mirrors the perceptual one: larger MMNs were elicited for the 12–11 pairing in the music conditions than in the language condition; conversely, larger MMNs were elicited to the 12–24 pairing in the language condition that in the music conditions, suggesting that within 250 ms of hearing complex auditory stimuli, the neural computation of similarity, just as the behavioral one, differs significantly depending on whether the context is music or speech.  相似文献   

18.
Many reports have suggested that gamma-aminobutyric acid (GABA) may play a role in organophosphate-induced convulsions. The balance between GABA and acetylcholine (ACh) in the brain also has been suggested by some investigators to be related to brain excitability. We examined these questions by studying the levels of GABA and ACh and the ratios of GABA to ACh in rat striata and cerebella (two major motor control areas in the CNS) after the administration of soman, an organophosphate acetylcholinesterase inhibitor also known as nerve gas. Male Sprague-Dawley rats weighing 250-300 g were injected subcutaneously with three different doses of soman: a subconvulsive dose of 40 micrograms/kg (approximately 30% of the ED50 for convulsions in rats), a convulsive dose of 120 micrograms/kg (approximately one ED50 for convulsions), and a higher convulsive dose of 150 micrograms/kg (approximately 120% of the ED50 for convulsions). The incidence and severity of convulsions were monitored in individual rats until they were sacrificed by focused microwave irradiation of the head at the following time points after soman administration: 4 min, a time prior to the onset of convulsions; 10 min, the time of onset of convulsions; 1 h, the time of peak convulsive activity; and 6 h, a time at which rats were recovering from convulsions. Results showed that in rat striata and cerebella, neither changes in levels of GABA and ACh nor changes in ratios of GABA to ACh were related to soman-induced convulsions, i.e., none of the changes in either levels or ratios of these two neurotransmitters were related to the initiation of, maintenance of, or recovery from soman-induced convulsions.  相似文献   

19.
Daily administration of convulsive doses of pentetrazole in dogs resulted in a decrease in the seizure threshold and development of increasingly severe clonic-tonic convulsions. Concomitantly, the concentration of γ-aminobutyric acid (GABA) in cisternal cerebrospinal fluid (CSF) was markedly reduced, whereas plasma GABA levels were not altered. When re-tested after a 3-week resting period, animals were found to have retained their increased seizure sensitivity and reduction in CSF GABA levels. γ-Acetylenic GABA and phenobarbital in doses antagonizing the establishment of increased convulsive sensitivity in response to repeated pentetrazole injections also counteracted the fall in CSF GABA. Valproic acid proved less effective to influence the convulsive response of continued pentetrazole administration. The data suggest that a functional deficit in the GABA system may underlie the persistent changes in seizure susceptibility observed.  相似文献   

20.
Effects of gabaculine (5-amino cyclohexa-1,3-dienyl carboxylic acid), a new potent inhibitor of gamma-aminobutyrate (GABA) transaminase, on the brain GABA content and convulsions were studied in mice. Gabaculine (0.12–2.0 ug) injected intraventricularly elevated brain GABA content for a long period. Three hrs after treatment with gabaculine, picrotoxin- and thiosemicarbazide-induced convulsions were prevented, but not electroschock-induced convulsions.Intraperitoneal injection of gabaculine also increased brain GABA content.Thus gabaculine seems to be a useful tool for investigating the GABA function in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号