首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of the stimulatory effect of glutathione on proteolysis in mouse kidney lysosomes and a lack of an effect in lysomes from the liver was investigated. The stimulation in kidney lysosomes was inhibited by serine plus borate, a reversible inhibitor of γ-glutamyl transpeptidase. Treatment of mouse kidney lysosome suspensions with l-(αS,5S)-α-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (acivicin), an irreversible inhibitor of the transpeptidase, also inhibited the effect of glutathione, but this inhibition was completely relieved by washing and addition of freshly prepated kidney membranes or purified γ-glutamyl transpeptidase to the incubation mixtures. Cysteinyl-glycine, a product of the action of γ-glutamyl transpeptidase, stimulated proteolysis in acivicin-inhibited kidney lysosome preparations similarly to glutathione, and cysteine had no effect at equivalent concentrations. Glutathione also stimulated proteolysis in liver lysosomes in the presence of washed kidney membranes or γ-glutamyl transpeptidase, but the effect was similar to that produced by equivalent concentrations of cysteine. These results suggest that the stimulatory effect of glutathione was mediated by the action of γ-glutamyl transpeptidase present in contaminating cell membrane fragments in the lysosome preparations, and that glutathione does not take part in intralysosomal proteolysis. However, the possibility that cysteinyl-glycine is a physiological intralysosomal disulfide reductant in kidney lysosomes has not been excluded.  相似文献   

2.
A purification procedure, based on that previously used for rat kidney gamma-glutamyl transpeptidase, was used for the purification of glutathione oxidase (which converts glutathione to gluthathione disulfide). The two activities co-purified, the ratio of the activities remaining constant through all steps of the isolation procedure. The purified enzyme was separable into 12 isozymic species by isoelectric focusing. All 12 isozymes exhibited a constant ratio of transpeptidase to glutathione oxidase activities, strongly supporting the conclusion that conversion of glutathione to glutathione disulfide is a catalytic function of gamma-glutamyl transpeptidase. Modulation of oxidase activity by inhibitors and acceptor substrates of transpeptidase is discussed in relation to the possible glutathione binding sites involved in gamma-glutamyl transfer and oxidase activities of the enzyme.  相似文献   

3.
4.
5.
gamma-Glutamyl transpeptidases (GGTs) are essential for hydrolysis of the tripeptide glutathione (gamma-glutamate-cysteine-glycine) and glutathione S-conjugates since they are the only enzymes known to cleave the amide bond linking the gamma-carboxylate of glutamate to cysteine. In Arabidopsis thaliana, four GGT genes have been identified based on homology with animal GGTs. They are designated GGT1 (At4g39640), GGT2 (At4g39650), GGT3 (At1g69820), and GGT4 (At4g29210). By analyzing the expression of each GGT in plants containing GGT:beta-glucuronidase fusions, the temporal and spatial pattern of degradation of glutathione and its metabolites was established, revealing appreciable overlap among GGTs. GGT2 exhibited narrow temporal and spatial expression primarily in immature trichomes, developing seeds, and pollen. GGT1 and GGT3 were coexpressed in most organs/tissues. Their expression was highest at sites of rapid growth including the rosette apex, floral stem apex, and seeds and might pinpoint locations where glutathione is delivered to sink tissues to supplement high demand for cysteine. In mature tissues, they were expressed only in vascular tissue. Knockout mutants of GGT2 and GGT4 showed no phenotype. The rosettes of GGT1 knockouts showed premature senescence after flowering. Knockouts of GGT3 showed reduced number of siliques and reduced seed yield. Knockouts were used to localize and assign catalytic activity to each GGT. In the standard GGT assay with gamma-glutamyl p-nitroanilide as substrate, GGT1 accounted for 80% to 99% of the activity in all tissues except seeds where GGT2 was 50% of the activity. Protoplasting experiments indicated that both GGT1 and GGT2 are localized extracellularly but have different physical or chemical associations.  相似文献   

6.
The apparent glutathione oxidase activity of gamma-glutamyl transpeptidase is due to nonenzymatic oxidation and transhydrogenation reactions of cysteinylglycine, an enzymatic product formed from glutathione by hydrolysis or autotranspeptidation. Since cysteinylglycine reacts with oxygen more rapidly than does glutathione, the rate of disulfide formation is increased and either cystinyl-bis-glycine or the mixed disulfide of cysteinylglycine and glutathione forms as an intermediate product. Nonenzymatic transhydrogenation reactions of these disulfides with glutathione yield glutathione disulfide and thus account for the apparent glutathione oxidase activity of gamma-glutamyl transpeptidase. A sensitive assay for glutathione oxidation is described, and it is shown that covalent inhibitors of gamma-glutamyl transpeptidase abolish the oxidase activity of the purified enzyme and of crude homogenates of mouse and rat kidney.  相似文献   

7.
Hexachlorocyclohexane (BHC) induced gamma-Glutamyl transpeptidase in rat liver. The enzyme was partially purified from normal BHC fed and fetal liver and also from hepatoma. The gel filtration and electrophoretic properties of the BHC-induced enzyme was compared against that of the other three. Chemical induced hepatoma showed an additional peak of activity in Sephadex G-200 filtration. The other enzymes could be cleaved by papain to give a fraction which cochromatographed with the additional peak of hepatoma enzyme. BHC-induced enzyme and normal enzyme had similar electrophoretic mobility but differed from that of hepatoma and fetal liver enzyme which showed a slightly slower movement.  相似文献   

8.
9.
Inhibitors for glutathione S-transferase (GST) iso-enzymes from rat liver with high affinity for the glutathione-binding site (G-site) have been developed. In previous studies, a model was described for the G-site of GST (Adang, A. E. P., Brussee, J., van der Gen, A., and Mulder, G. J. (1990) Biochem. J. 269, 47-54) in terms of essential and nonessential interactions between groups in glutathione (GSH) and the G-site. Based on this model, compounds were designed that have high affinity for the G-site but cannot be conjugated. In the dipeptide gamma-L-glutamyl-D-aminoadipic acid (gamma-L-Glu-D-Aad), the L-cysteinylglycine moiety is replaced by D-aminoadipic acid. This dipeptide is an efficient competitive inhibitor (toward GSH) of mu class GST isoenzymes with Ki values of 34 microM for GST isoenzyme 3-3 and 8 microM for GST isoenzyme 4-4. Other GSH-dependent enzymes, such as gamma-glutamyl transpeptidase (gamma-GT), glutathione reductase, and glutathione peroxidase, were not inhibited by 1 mM of gamma-L-Glu-D-Aad. Inhibition is also highly stereospecific since gamma-L-Glu-L-Aad is only a poor inhibitor (Ki = 430 microM for GST 3-3). Gamma-L-Glutamyl-D-norleucine also had a much higher Ki value for GST 3-3. Thus, the presence of a delta-carboxylate group in D-Aad appears to be essential for a high affinity inhibitor. An additional hydrophobic group did not result in increased inhibitory potency. In a different approach, the gamma-L-glutamyl moiety in GSH was replaced by delta-L-aminoadipic acid; delta-L-Aad-L-Cys-Gly is an efficient cosubstrate analogue for GSTs with Km values comparable to GSH and Vmax values ranging from 0.24 to 57 mumol/min/mg for the different GSTs. The structures of the efficient inhibitor and the cosubstrate analogue were combined in delta-L-Aad-D-Aad, which had a Ki value of 68 microM with GST 3-3. In order to investigate their possible use in vivo studies, the degradation of gamma-L-Glu-D-Aad and delta-L-Aad-L-Cys-Gly by gamma-GT was investigated. The peptides showed no measurable hydrolysis rates under conditions where GSH was rapidly hydrolyzed. Thus, an efficient, mu class-specific GST inhibitor and a gamma-glutamyl-modified cosubstrate analogue of GSH were developed. Their gamma-GT stability offers the possibility to use these peptides in in vivo experiments.  相似文献   

10.
11.
Stein RL  DeCicco C  Nelson D  Thomas B 《Biochemistry》2001,40(19):5804-5811
gamma-Glutamyl transpeptidase (gammaGTase) catalyzes the transfer of the gamma-glutamyl moiety of gamma-glutamyl-derived peptides, such as glutathione (gammaGlu-Cys-Gly), and anilides, such as gamma-glutamyl-7-amido-4-methylcoumarin (gammaGlu-AMC), to acceptor molecules, including water and various dipeptides. These acyl-transfer reactions all occur through a common acyl-enzyme intermediate formed from attack of an active site hydroxyl on the gamma-carbonyl carbon of gammaGlu-X with displacement of X. In this paper, we report that gammaGTase is potently inhibited by the gamma-boronic acid analogue of L-glutamic acid, 3-amino-3-carboxypropaneboronic acid (gamma-boroGlu). We propose that gamma-boroGlu adds to the active site hydroxyl of gammaGTase to form a covalent, tetrahedral adduct that resembles tetrahedral transition states and intermediates that occur along the reaction pathway for gammaGTase-catalyzed reactions. Our studies demonstrate that gamma-boroGlu is a competitive inhibitor of the gammaGTase-catalyzed hydrolysis of gammaGlu-AMC with a K(i) value of 35 nM. Kinetics of inhibition studies allow us to estimate the following values: k(on) = 400 mM(-1) s(-1) and k(off) = 0.02 s(-1). We also found that gamma-boroGlu is an uncompetitive inhibitor of Gly-Gly-promoted transamidation of gammaGlu-AMC. This observation is consistent with the kinetic mechanism we determined for gammaGTase-catalyzed transamidation of gammaGlu-AMC by Gly-Gly to form gammaGlu-Gly-Gly. To probe rate-limiting transition states for gammaGTase catalysis and inhibition, we determined solvent deuterium isotope effects. Solvent isotope effects on k(c)/K(m) for hydrolysis of gammaGlu-AMC and k(on) for inhibition by gamma-boroGlu are identical and equal unity, suggesting that the processes governed by these rate constants are both rate-limited by a step that is insensitive to solvent deuterium such as a conformational fluctuation of the initially formed E-S or E-I complex. In contrast, the solvent isotope effect on k(c) is 2.4. k(c) is rate-limited by hydrolysis of the acyl-enzyme intermediate that is formed during reaction of gammaGTase with gammaGlu-AMC. Thus, the magnitude of this isotope effect suggests the formation of a catalytically important protonic bridge in the rate-limiting transition state for deacylation.  相似文献   

12.
13.
Glutathione synthetase deficiency results in decreased cellular glutathione content and consequent overproduction of 5-oxoproline. L-serine in borate buffer inhibits γ-glutamyl transpeptidase, the major catabolic enzyme for glutathione. Treatment of glutathione synthetase deficient fibroblasts with 40mM serine and borate for 24 hours produced more than a 2-fold increase in cellular glutathione content. L-serine alone led to a smaller increase in glutathione level, and borate alone was without effect. On exposure to serine and borate, 5-oxoproline formation from L-glutamate was decreased to normal levels in glutathione synthetase deficient fibroblasts, presumably secondary to feedback inhibition of γ-glutamylcysteine synthetase by the increased intracellular glutathione concentration. Cellular free amino acid content was generally unaffected by such exposure although increases were observed in serine and phosphoserine. This model system suggests that γ-glutamyl transpeptidase inhibition may be a rational approach to alleviating the effects of glutathione synthetase deficiency.  相似文献   

14.
1. Gills, kidney, intestinal caeca and liver of trout have glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene (200 500 nmol/min/mg protein), and reduced glutathione (0.5 2.0 mmol/kg tissue). 2. Only kidney and intestinal caeca have substantial gamma-glutamyl transpeptidase activity with gamma-glutamyl-rho-nitroanilide (2-9 nmol/min/mg protein). 3. Renal gamma-glutamyl transpeptidase is membrane-bound and has similar kinetic properties to its mammalian counterparts. 4. The data are consistent with the presence of a mercapturic acid pathway in trout.  相似文献   

15.
A series of S-alkyl L-homocysteine analogues of glutathione was synthesized with varied oxidation state of the sulfur and tested for inhibition of rat kidney gamma-glutamyl transpeptidase (GGT). The strong selectivity of the enzyme with respect to the sulfur oxidation state reveals important information for the development of powerful competitive inhibitors.  相似文献   

16.
Modulation of gamma-glutamyl transpeptidase activity by bile acids   总被引:1,自引:0,他引:1  
The free bile acids (cholate, chenodeoxycholate, and deoxycholate) stimulate the hydrolysis and transpeptidation reactions catalyzed by gamma-glutamyl transpeptidase, while their glycine and taurine conjugates inhibit both reactions. Kinetic studies using D-gamma-glutamyl-p-nitroanilide as gamma-glutamyl donor indicate that the free bile acids decrease the Km for hydrolysis and increase the Vmax; transpeptidation is similarly activated. The conjugated bile acids increase the Km and Vmax of hydrolysis and decrease both of these for transpeptidation. This mixed type of modulation has also been shown to occur with hippurate and maleate (Thompson, G.A., and Meister, A. (1980) J. Biol. Chem. 255, 2109-2113). Glycine conjugates are substantially stronger inhibitors than the taurine conjugates. The results with free cholate indicate the presence of an activator binding domain on the enzyme with minimal overlap on the substrate binding sites. In contrast, the conjugated bile acids, like maleate and hippurate, may overlap on the substrate binding sites. The results suggest a potential feedback role for bile ductule gamma-glutamyl transpeptidase, in which free bile acids activate the enzyme to catabolize biliary glutathione and thus increase the pool of amino acid precursors required for conjugation (glycine directly and taurine through cysteine oxidation). Conjugated bile acids would have the reverse effect by inhibiting ductule gamma-glutamyl transpeptidase.  相似文献   

17.
gamma-Glutamyl transpeptidase has multi-catalytic activities. It degrades glutathione and can produce ammonia from glutamine. The present study was designed to examine whether the decreased cell proliferation, cellular glutathione content and concurrent increase in ammonia production in senescent cells in culture are the result of increased gamma-glutamyl transpeptidase activity. We used IMR-90 fibroblast and 3T3 LI preadipocyte cultures. The cellular glutathione content depended upon cell proliferation and cell density. The glutathione content was higher in cells at logarithmic growth, and lower at stationary growth or post confluency; dead cells had no detectable glutathione by the method currently used. The glutathione content was minimal in "old" IMR-90 cells, regardless of cell density. On the other hand, an increase occurred in the unit number of molecules of bound 5-iodoacetoamidofluorescein, an active-site directed stoichiometric inhibitor of transpeptidase. That result corresponded favorably with the increased enzyme activity, suggesting that the number of enzyme molecules per cell was increased. The inhibition of ammonia production of the cultures by inhibition of gamma-glutamyl transpeptidase by 5-iodoacetoamidofluorescein and reversible inhibition of ammonia production by a serine-borate mixture were consistent with our postulate. Addition of NH4Cl (0.1 mM) to IMR-90 cultures caused increased activities of transpeptidase and some of the lysosomal enzymes; concurrently, the amount of cellular glutathione and the number of cell divisions decreased. This suggests that the increased ammonia production presumably resulting from glutaminase activity of the observed increase of transpeptidase may profoundly affect certain cellular functions.  相似文献   

18.
γ-Glutamyl transpeptidase (EC 2.3.2.2) converts leukotriene C to leukotriene D by removal of a glutamyl residue. The Michaelis constant for leukotriene C4 hydrolysis was found to be 5.6 μM. Under the same conditions the Km value for hydrolysis of reduced glutathione was 5.7 μM. This suggests that leukotriene C4 and glutathione may be competing substrates for γ-glutamyl transpeptidase under physiological conditions. The apparent KI for inhibition of leukotriene C4 hydrolysis by equimolar amounts of L-serine and sodium borate was 0.8 mM.  相似文献   

19.
The lysosomotropic agent chloroquine is widely used as a specific inhibitor of intralysosomal proteolysis in isolated hepatocytes. It was shown that in vitro chloroquine reversibly inhibited purified cathepsins H, B, L in concentrations less than those observed inside lysosomes in vivo. However, administration of high doses of chloroquine to rats (30-50 mg/kg i.p. as a single or repeated injections) was followed by increased cathepsin D and cysteine proteinase activities, as well as other lysosomal enzymes. Chloroquine administration did not induce any changes of carbon particles phagocytosis by liver cells (macrophages); modifications of fluid-phase (125I-PVP uptake) and receptor-mediated endocytosis (125I-asialo-fetuin uptake) were noted. Chloroquine administered in vivo reproduced some symptoms of lysosomal storage diseases (especially during repeated drug administration).  相似文献   

20.
The effect of a single administration of lead nitrate on the activity of gamma-glutamyltranspeptidase (gamma-GT), adenosine triphosphatase (ATPase), the placental form of glutathione S-transferase (GST-P) and adenylate cyclase (AC), four enzymes widely used as phenotypic markers for preneoplasia, was investigated in the liver of male Wistar rats. The results of the histochemical enzymatic staining indicated that an acute treatment with lead nitrate induces the activity of gamma-GT, mainly in the hepatocytes located around zone I of the liver acinus, with a maximum seen between 72-96 hours. On the other hand, the activity of ATPase was found to be severely inhibited at 2-3 days after treatment, as shown by a strong decrease in the staining of the bile canaliculi of zones II and III. Immunohistochemical analysis revealed that lead nitrate administration also resulted in the appearance in most of the hepatocytes of GST-P, an enzyme whose activity is almost undetectable in normal rat liver, but is elevated in preneoplastic liver lesions. Finally, lead nitrate treatment resulted in an inhibition of AC activity which was maximal after 24 hours.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号