首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equipotential lines were calculated, using the Poisson-Boltzmann equation, for six Cu,Zn superoxide dismutases with different protein electric charge and various degrees of sequence homology, namely those from ox, pig, sheep, yeast, and the isoenzymes A and B from the amphibian Xenopus laevis. The three-dimensional structures of the porcine and ovine superoxide dismutases were obtained by molecular modelling reconstruction using the structure of the highly homologous bovine enzyme as a template. The three-dimensional structure of the evolutionary distant yeast Cu,Zn superoxide dismutase was recently resolved by us, while computer-modelled structures are available for X. laevis isoenzymes. The six proteins display large differences in the net protein charge and distribution of electrically charged surface residues but the trend of the equipotential lines in the proximity of the active sites was found to be constant in all cases. These results are in line with the very similar catlytic rate constants experimentally measured for the corresponding enzyme activities. This analysis shows that electrostatic guidance for the enzyme-substrate interaction in Cu,Zn superoxide dismutases is related to a spatial distribution of charges, arranged so as to maintain, in the area surrounding the active sites, an identical electrostatic potential distribution, which is conserved in the evolution of this protein family.  相似文献   

2.
Electrostatic potential calculations have been performed on three different Cu, Zn superoxide dismutases (superoxide: superoxide oxidoreductase, EC 1.15 1.1 ), in order to evaluate the degree of conservation of the pattern of the electrostatic interactions between O2 and the active site recently pointed out in bovine Cu Zn SOD. The three Cu, Zn SODs that have been selected for this study, namely the bovine, ovine, and porcine enzymes, are highly homologous as to reasonably assume identical three-dimensional structure but display large differences in their net charge, as shown by their pI's which span over a wide range pHrange: 8.0 (sheep), 6.5(pig), 5.2(ox). Despite such a large difference in the net protein charge and in the spatial arrangement of electrostatic charges, electrostatic potential calculations show that the electrostatic channel directing the negatively charged substrate toward the positive catalytic site is strictly preserved with the same features for the three proteins. This suggests that the electrostatic funnel for conducting small anions into the active site is a highly conservative property in the evolution of Cu, Zn SOD.  相似文献   

3.
The electrostatic steering mechanism of bovine erythrocyte Cu/Zn superoxide dismutase (SOD) was investigated through the use of Brownian dynamics. Simulations of enzyme/substrate encounter were carried out on 14 different SOD models defined by simple changes in the enzyme's point charge distribution. The magnitude and ionic strength dependence of reaction rates, rates for collision anywhere on the enzyme surface, and collision efficiency factors were analyzed to elucidate both the general and specific roles for point charges associated with amino acid residues. Collision rates for the general enzyme surface appear to be solely determined by the net charge on the enzyme. At physiological ionic strength this effect is negligible, with only 6% variation in collision rates observed as the net charge ranges from +2e to -10e. With the exception of a few charged residues in the active-site channel of SOD, point charge modifications had modest effects on reaction rates. For a large region within and surrounding the channel, reaction rates increased or decreased by only 10-15% with the addition or subtraction of a protonic unit of charge, respectively. This effect simply disappeared with increasing distance from the active site. More dramatic effects were seen at only three residues: arginine-141, glutamate-131, and lysine-134. Implications for rate enhancement through site-directed mutagenesis are discussed.  相似文献   

4.
This study shows significant effects of protein surface charges on stability and these effects are not eliminated by salt screening. The stability for a variant of protein G B1 domain was studied in the pH-range of 1.5-11 at low, 0.15 M, and 2 M salt. The variant has three mutations, T2Q, N8D, and N37D, to guarantee an intact covalent chain at all pH values. The stability of the protein shows distinct pH dependence with the highest stability close to the isoelectric point. The stability is pH-dependent at all three NaCl concentrations, indicating that interactions involving charged residues are important at all three conditions. We find that 2 M salt stabilizes the protein at low pH (protein net charge is +6 and total number of charges is 6) but not at high pH (net charge is or=18). Furthermore, 0.15 M salt slightly decreases the stability of the protein over the pH range. The results show that a net charge of the protein is destabilizing and indicate that proteins contain charges for reasons other than improved stability. Salt seems to reduce the electrostatic contributions to stability under conditions with few total charges, but cannot eliminate electrostatic effects in highly charged systems.  相似文献   

5.
The rates of exchange of the C-2 protons of histidine residues in copper-zinc superoxide dismutase are substantially decreased by metal ion binding. This observation was used to distinguish between ligand and non ligand histidine residues in bovine and yeast copper-zinc superoxide dismutases; the effect was shown to depend only on metal ion co-ordination and not as a consequence of concomitant changes in protein structure. Selective deuteration of the zinc-only proteins at pH (uncorrected pH-meter reading) 8.2 and 50 degrees C resulted in the distinction between copper and zinc ligand resonances in the 1H n.m.r. spectrum of the enzymes. This method is proposed as a generally applicable technique for identifying histidine residues as ligands in metalloproteins.  相似文献   

6.
The enthalpies of interaction between bovine catalase and sodium n-dodecyl sulphate (SDS) in aqueous solutions of pH 3.2,6.4 and 10.0 have been measured over a range of SDS concentrations by microcalorimetry at 25°C. The enthalpies increase with decreasing pH and with increasing SDS concentration and largely arise from the interations between the anionic head group of SDS and the cactionic amino acid residues on the protein. Chemically modified catalase in which a proportion of carboxylic acid groups have been coupled with either glycine methyl ester or ethylenediamine have been prepared and characterized in terms of their enzymic activities, spectral properties and sedimentation behaviour. The enthalpies of interaction of these catalases with SDS have been studied at pH 6.4. The results of the experiments suggest that the enthalpies of interaction with SDS can be correlated with the ratio of cationic to anionic amino acid residues on the surface of the catalase molecules and hence the nominal net surface charge. The variation in the enthalpy of interaction of catalases with surface charge, as a consequence of variation in pH, differs from the variation with charge at constant pH possibly due to the thermal effect of proton binding to the catalase—complexes.  相似文献   

7.
The proposed biological function of beta-lactoglobulins as transporting proteins assumes a binding ability for ligands and high stability under the acidic conditions of the stomach. This work shows that the conformational stability of nonruminant porcine beta-lactoglobulin (BLG) is not consistent with this hypothesis. Thermal denaturation of porcine BLG was studied by high-sensitivity differential scanning calorimetry within the pH range 2.0-10.0. Dependences of the denaturation temperature and enthalpy on pH were obtained, which reveal a substantial decrease in both parameters in acidic and basic media. The denaturation enthalpy follows a linear dependence on the denaturation temperature. The slope of this line is 9.4 +/- 0.6 kJ.mol-1. K-1,which is close to the denaturation heat capacity increment DeltadCp = 9.6 +/- 0.5 kJ.mol-1.K-1, determined directly from the thermograms. At pH 6.25 the denaturation temperatures of porcine and bovine BLG coincide, at 83.2 degrees C. At this pH the denaturation enthalpy of porcine BLG is 300 kJ.mol-1. The denaturation transition of porcine BLG was shown to be reversible at pH 3.0 and pH 9.0. The transition profile at both pH values follows the two-state model of denaturation. Based on the pH-dependence of the transition temperature and the linear temperature dependence of the transition enthalpy, the excess free energy of denaturation, DeltadGE, of porcine BLG was calculated as a function of pH and compared with that of bovine BLG derived from previously reported data. The pH-dependence of DeltadGE is analysed in terms of the contributions of side-chain H-bonds to the protein stability. Interactions stabilizing native folds of porcine and bovine BLG are discussed.  相似文献   

8.
Incubation in 8M urea (pH 7.4) inactivated yeast Cu, Zn superoxide dismutase with biphasic first order kinetics (k for the decrease from 100% to 16% activity = 6.5 × 10?3 min?1; k for the decrease from 16% to 0.1% activity = 2.5 × 10?3 min?1). The inactivation was fully reversible on dilution with or dialysis against urea-free buffer. No inactivation was shown to occur in similar experiments with the bovine Cu, Zn enzyme. EPR spectra recorded immediately after addition of 8M urea showed a more axial line shape and a higher A of the copper signal typical of the native enzyme. In the case of the yeast enzyme, this change was more pronounced and further incubation led to a new type of copper signal, typical of the inactivated enzyme. All EPR changes were reversible. Comparative analysis of the amino acid sequence of the two enzymes showed substantial identity of the protein regions contributing the ligands to the metals and the disulfide bridge. Differential destabilization of active sites by urea should be due to replacements in other protein segments, such as the three C-terminal and some N-terminal residues.  相似文献   

9.
The CuZn superoxide dismutases (SODs) from ox, sheep, pig and yeast were investigated by pulse radiolysis in order to evaluate the role of electrostatic interactions between O2.- and SOD proteins in the mechanism of action of the SOD enzymes. The protein net charge in this series varies, as evaluated by the protein pI values spanning over a large range of pH: 8.0 (sheep), 6.5 (pig), 5.2 (ox) and 4.6 (yeast). The amino acid sequences are largely conserved, with the three mammalian proteins being highly homologous and the yeast protein having some distinct variations in the region surrounding the active site. At pH 8.0 the activities of the SODs from various sources are similar, though the minor differences observed suggest that in the highly homologous mammalian series the most acidic protein is the most enzymically efficient one. The pH-dependences of the various activities in the pH range 7-12 are similar, and the related curves are best fitted by two pK values, which are approx. 9.2 and 11.0 for the mammalian enzymes and 9.1 and 11.4 for the yeast enzyme. The activities of the proteins at I 0.1 are decreased by approx. 20% when compared with the activity at I 0.02 at pH 8.5, whereas at pH above 10 the pH-dependence of the activity approaches that determined at I 0.02 and at pH 11.9 the activity is essentially independent of ionic strength. The dependence upon ionic strength also depends on the salt used, with perchlorate being more effective than phosphate or borate or Mops and still effective at pH above 10.5, where the effect of other salts becomes negligible. The dual and concerted dependence of the activities of different SODs on pH and salt concentration is explained with the encounter of O2.- with the active-site copper being governed by the protonation of two positively charged groups in the vicinity of the active site. The gradient between these localized charges and the rest of the protein may explain the different activities of the mammalian proteins at lower pH. On the basis of the sequence variation of the SODs examined it is not possible to definitely identify these groups. Likely candidates are conserved basic amino acid side chains in the vicinity (less than or equal to 1.2 nm) of the active site, i.e. Lys-134 and Arg-141, but co-ordination of OH- in the first copper co-ordination sphere may be an additional factor accounting for the higher pK.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The amino acid sequences near the amino termini of glyceraldehyde-3-phosphate dehydrogenase from bovine and porcine liver have been determined. Using classical peptide isolation techniques as well as automated Edman degradation, the NH2-terminal 30 residues of the bovine liver enzyme were determined to be Val-Lys-Val-Gly-Val-Asn-Gly-Phe-Gly-Arg-Ile-Gly-Arg-Leu-Val-Thr-Arg-Ala-Ala-Phe-Asn-Ser-Gly-Lys-Val-Asp-Ile-Val-Phe-Ile. Twenty-two residues from the NH2-terminus of the porcine liver enzyme, determined using the automated Edman degradation, were identical to the corresponding sequence from bovine liver enzyme. Both liver enzymes have Asn at position 6. The corresponding residue 6 in the muscle and yeast glyceraldehyde-3-phosphate dehydrogenases is Asp. This evidence suggests that the Asn-6 residue is specific for the liver tissues. The exchange of Asn for Asp may significantly alter the allosteric properties of muscle and liver enzymes especially the activity of the liver enzymes in gluconeogenesis.  相似文献   

11.
The Cu,Zn superoxide dismutase from yeast was crystallized in the orthorhombic space group P21212 with unit cell dimension a = 105.1 A,b = 142.2 A, c = 62.1 A. The crystals grow in 25 mM citrate, 10 mM phosphate buffer pH 6.5, and 6% (W/V) polyethylene glycol, with a Vm of 3,4 A3/dalton, for two dimers/asymmetric unit. The crystals were unstable in the mother liquor, but were stabilized by transfer to a 35% polyethylene glycol solution. This crystalline form diffracts at high resolution and is suitable for determination of the atomic structure. The three dimensional structure of the yeast enzyme could be model-built by computer graphics techniques using the bovine enzyme atomic coordinates as template. The proposed model requires removal of some salt bridges and non equivalence of the metal-binding sites in the subunits, in line with reported functional properties of the yeast enzyme.  相似文献   

12.
Bovine and porcine pancreatic phospholipases A2, and porcine isophospholipase A2, have been investigated by one- and two-dimensional 1H NMR spectroscopy. Resonances have been assigned for 20-26 residues in each enzyme, including all the aromatic residues, by a strategy based on the semiquantitative comparison of proximity relationships deduced from NOE experiments with those seen in the crystal structure NOE experiments indicate that the loop comprising residues 59-70, which has a different conformation in the crystal structures of the bovine and porcine enzymes, has the same conformation in these two enzymes in solution. Selective changes in the line width of a limited number of resonances as a function of pH, temperature, and calcium concentration provide evidence for a local conformational equilibrium. This equilibrium involves a limited region of the protein structure around residues 25, 41, 106, and 111; it has been identified in the bovine enzyme and porcine isoenzyme but is not apparent in the porcine enzyme.  相似文献   

13.
The complete amino acid sequence of the heme alpha-containing subunit V of bovine heart cytochrome oxidase was determined to be: H2N-Ser-His-Gly-Ser-His-Glu-Thr-Asp-Glu-Glu-Phe-Asp-Ala-Arg-Trp-Val-Thr-Tyr-Phe-Asn-Lys-Pro-Asp-Ile-Asp-Ala-Trp-Glu-Leu-Arg-Lys-Gly-Met-Asn-Thr-Leu-Val-Gly-Tyr-Asp-Leu-Val-Pro-Glu-Pro-Lys-Ile-Ile-Asp-Ala-Ala-Leu-Arg-Ala-Cys-Arg-Arg-Leu-Asn-Asp-Phe-Ala-Ser-Ala-Val-Arg-Ile-Leu-Glu-Val-Val-Lys-Asp-Lys-Ala-Gly-Pro-His-Lys-Glu-Ile-Tyr-Pro-Tyr-Val-Ile-Gln-Glu-Leu-Arg-Pro-Thr-Leu-Asn-Glu-Leu-Gly-Ile-Ser-Thr-Pro-Glu-Glu-Leu-Gly-Leu-Asp-Lys-Val-COOH. The subunit V is a single polypeptide which consists of 109 amino acid residues. The protein contains 48.6% hydrophobic residues and 34.0% hydrophilic residues and it is an acidic protein having a net charge of -3 at neutral pH. The molecular weight of subunit V was calculated to be 12,436 and that for the heme alpha-containing polypeptide was 13,295.  相似文献   

14.
The trend of the electric field and the value of the electric field flux, sensed by the superoxide substrate in the proximity of the active site, were found to be constant in three highly homologous Cu,Zn superoxide dismutases from ox, pig and sheep, which display large differences in net protein charge and distribution of electrically charged surface residues but very similar catalytic rate constants. The spatial relationship of charges on the protein surface apparently has been conserved during the evolution of this enzyme to create electrostatic facilitation of catalysis.  相似文献   

15.
Unlike phenylalanyl-tRNA synthetase from lower eukaryotes, the corresponding enzyme from higher eukaryotes displays a pronounced tendency to associate with ribosomes in vitro. To attempt to uncover the structural features responsible for this difference in behavior, a comparative study of the enzymes purified to homogeneity from sheep liver and yeast was undertaken. The two alpha 2 beta 2-type enzymes displayed remarkably similar subunit molecular masses (71 and 63 kDa for sheep, 74 and 63 kDa for yeast), yet differed markedly in their isoelectric points (8.0 and 5.6 pH units, respectively). Mild tryptic digestion of the enzyme from sheep led to preferential degradation of the 63-kDa beta subunit into two major fragments of 35 and 25 kDa, respectively, with concomitant loss of activity. The isoelectric points of the denatured fragments were found to be distinctly lower than that of the denatured beta subunit, implying that the residues responsible for the basic net charge of the original beta subunit are mainly clustered in a small portion of the polypeptide chain which was excised during proteolysis. Despite their different isoelectric points, the enzymes from yeast and sheep displayed identical requirements for aminoacylation of tRNA at optimal rates. Moreover, the incidence of variations in pH and ionic strength on the kinetic parameters of the two enzymes was indistinguishable. Interpreted in terms of the polyelectrolyte theory, these results support the view that the residues responsible for the basic net charge of the mammalian enzyme are located in a region distal from the active site. It is suggested that the cationic charge of the enzyme allows anchorage to a cellular component carrying negative charges, possibly the ribosome.  相似文献   

16.
ABSTRACT

A previous study1 of the selective solubility of myelin basic protein (MBP) of tissue extracts at pH 9.0 has raised issues of its quantitative recovery, and the differential solubility of its charge isomers. The pH-dependent solubility of proteins of acid extracts of delipidated tissue of bovine spinal cord was therefore reexamined. MBP of whole extracts was completely soluble up to pH 8.0 only, and less so by 25 % at pH 9.0, and 43 % at pH 10.0. The proteins other than MBP were virtually insoluble between pH 5.0 to 6.0, and 9.0 to 10.0. The solubility of the main charge isomers I to III of MBP of 18.5 kDa was found not to be affected by pH. Either pH 5.0 or 9.0 is therefore suitable for the selective isolation of MBP from whole tissue extracts, only pH 5.0 providing for the complete recovery of MBP. The pH-dependent solution behaviour was also examined following the separation of proteins of whole extracts by anion exchange chromatogra phy at pH 10.4. Purified MBP and several related minor cationic components of lower molecular weight were soluble throughout. In contrast, the anionic proteins were only partly soluble between pH 4.0 to 10.0, i.e. by 4 to 20%. The results are consistent with specific protein-protein interactions of the proteins of whole extracts, either enhancing the solubility of non-MBP proteins, e.g. at pH 7.0, or impairing that of MBP between pH 8.0 to 10.0.  相似文献   

17.
Human Cu-Zn superoxide dismutase prepared by different methods shows varying properties relevant to its sulfhydryl chemistry. A cysteine residue not found in the analogous bovine enzyme appears to be responsible for its unusual lability. Alkylation of this cysteine results in a marked increase in stability, and this form of the protein may be readily crystallized. The primary structure of the 153 amino acid residues found in the human protein has been determined, and 82% of the residues are identical with those of the bovine enzyme. A significant variation is seen in the portion of those proteins comprising residues 17-36, with eleven changes being noted.  相似文献   

18.
Inhibitors of the peptidase and esterase activities of carboxypeptidases A and B have been isolated from extracts of Ascaris lumbricoides var suis. These proteins were obtained by treatment of the aqueous extracts at low pH, precipitation with ammonium sulfate, molecular sieving on Bio-Gel P-4, and chromatography on DEAE-cellulose. The inhibitors were resolved into three homogeneous peaks on CM-cellulose. These components, CM-A, CM-B, and CM-C, have constant specific activity and were recovered in a 41% yield. They moved as single bands when subjected to electrophoresis at high or low pH on polyacrylamide gels and they have similar amino acid compositions. Methionine, tyrosine, and cysteine are absent from each of the inhibitors. The 65 residues of CM-B suggest a minimum molecular weight of 7530, in close agreement to the value of 7600 +/- 200 determined on a Bio-Gel P-100 column. Each of the proteins has the same NH2-terminal residues, NH2-Asx-Glx-Val-Glx- and the same COOH-terminal residue, leucine. A plot of per cent acrylamide versus log relative mobility suggests that the three proteins are charge isomers. CM-B appears to be stable to high NaCl concentrations, extremes of pH, high temperatures, and digestion by intestinal proteases. Carboxypeptidase C, carboxypeptidase N, and yeast protease C are not inhibited by CM-B. However, the exopeptidase and esterase activities of human carboxypeptidase A are inhibited. The inhibitors appear to bind to bovine carboxypeptidase A with an atypical stoichiometry. Two moles of CM-B inhibitor bind to 1 mol of enzyme. The evidence is: (a) a demonstrated purity of bovine carboxypeptidase A, (b) minimal and maximal inhibitor molecular weights by different methods, of 7600 and 8300, and (c) a maximum specific activity of apparently homogeneous inhibitors which is 50% of that predicted for unit stoichiometry.  相似文献   

19.
Chemical modification of bovine and yeast Cu,Zn superoxide dismutases with phenylglyoxal diminishes the catalytic activities by greater than or equal to 98%, and treatment of these enzymes with butanedione plus borate leads to greater than or equal to 96% inactivation. The activity loss is accompanied by the modification of less than two arginine residues per subunit with no concomitant loss of Cu or Zn. The phenylglyoxal-modified enzymes require at least a 20-fold greater concentration of cyanide for 50% inhibition than do the corresponding native enzymes. Polyacrylamide-gel electrophoresis and activity staining of the phenylglyoxal-inactivated enzymes demonstrate that the residual activity is largely associated with modified forms that bear lower net positive charge than the native superoxide dismutases.  相似文献   

20.
Polyethylene glycol (PEG) is extensively employed for protein purification by fractional precipitation. Efficiency of precipitation is highest when the solution pH is near the isoelectric point of the target protein. At pH values far from the isoelectric point of the target protein, proteins develop a net positive or negative charge and are not more resistant to precipitation. We have found that divalent cations (Ba2+, Sr2+, and Ca2+) or divalent anions (SO4(2-)) significantly change the pattern of PEG precipitation when the ion is chosen so as to counteract the expected net charge on the target protein. At moderate (5-50 mM) concentrations of Ba2+, negatively charged proteins can be precipitated from solution at pH values as high as 10 with efficiency unchanged from precipitation at pH values near their isoelectric point values. The mechanism of PEG precipitation of protein at these high pH values appears to be unchanged from the mechanism operative at the protein isoelectric point. Precipitation is rapid and the capacity for protein precipitation is high. There is no detectable coprecipitation of small molecules (AMP, ATP, and NADH) or soluble proteins (carbonic anhydrase) induced when large quantities of protein are precipitated by this method. The purification of bovine carbonic anhydrase from erythrocyte lysate is more efficient at pH 10 in the presence of Ba2+ than is conventional PEG precipitation carried out at the isoelectric point of carbonic anhydrase. Application of these observations should broaden the utility of protein purification by fractional precipitation with PEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号