首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J D Otvos  H R Engeseth  S Wehrli 《Biochemistry》1985,24(24):6735-6740
113Cd NMR analysis of rabbit liver metallothionein 2 reconstituted with 113Cd at all seven binding sites has previously indicated that the metals are arranged in two metal-thiolate clusters [Otvos, J.D., & Armitage, I.M. (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 7094-7098]. Spectra of the protein always contained more than seven resonances, however, suggesting the samples were in some way heterogeneous. Results of a recent study of 113Cd metallothionein reconstituted in a different manner but also giving spectra with more than seven resonances have been interpreted as arguing against the two-cluster model of metal binding and in favor of a model in which structural flexibility of the protein allows many configurational substates of the cluster(s) to coexist [Vasak, M., Hawkes, G.E., Nicholson, J.K., & Sadler, P.J. (1985) Biochemistry 24, 740-747]. Data are presented here that indicate that dimers and larger oligomers of metallothionein formed as byproducts of metal reconstitution are the likely source of at least some of the 113Cd resonances attributed by these workers to configurational substrates. Removal of the contaminating oligomers by gel filtration yields a verifiably homogeneous protein whose 113Cd spectrum consists of seven resonances of comparable intensity. Unambiguous confirmation of the existence and structures of the two previously proposed metal-thiolate clusters was obtained by two-dimensional chemical shift correlation spectroscopy and spectral simulation of the 113Cd-113Cd splitting patterns of the individual resonances.  相似文献   

2.
The formation of two metal-thiolate clusters in rabbit liver metallothionein 2 (MT) has been examined by 113Cd NMR spectroscopy at pH 7.2 and 8.6. The chemical shifts of the 113Cd resonances developing in the course of apoMT titration with 113Cd(II) ions have been compared with those of fully metal occupied 113Cd7-MT. At pH 7.2 and at low metal occupancy (less than 4), a cooperative formation of the four-metal cluster (cluster A) occurs. Further addition of 113Cd(II) ions generates all the resonances of the three-metal cluster (cluster B) in succession, suggesting cooperative metal binding to this cluster also. In contrast, similar studies at pH 8.6, at low metal occupancy (less than 4), reveal a broad NMR signal centered at 688 ppm. This observation indicates that an entirely different protein structure exists. When exactly 4 equiv of 113Cd(II) are bound to apoMT, the 113Cd NMR spectrum changes to the characteristic spectrum of cluster A. Further addition of 113Cd(II) ions again leads to the cooperative formation of cluster B. These results stress the determining role of the cluster A domain on the overall protein fold. The observed pH dependence of the cluster formation in MT can be rationalized by the different degree of deprotonation of the cysteine residues (pKa approximately 8.9), i.e., by the difference in the Gibbs free energy required to bind Cd(II) ions to the thiolate ligands at both pH values.  相似文献   

3.
The structure of [113Cd(7)]-metallothionein (MT_nc) of the Antarctic fish Notothenia coriiceps, the first three-dimensional structure of a fish metallothionein, was determined by homonuclear 1H NMR experiments and heteronuclear [1H, 113Cd]-correlation spectroscopy. MT_nc is composed of an N-terminal beta domain with 9 cysteines and 3 metal ions and a carboxy-terminal alpha-domain with 11 cysteines and 4 metal ions. The position of the ninth Cys of the alpha domain of MT_nc is different from the corresponding Cys of mammalian MTs. As a result, the last CXCC motif in the mammalian MT sequence becomes CXXXCC in the fish MT. This difference leads to a structural change of the alpha domain and, in turn, to a different charge distribution with respect to that observed in mammalian metallothioneins.  相似文献   

4.
Products of metal exchange reactions of metallothionein   总被引:3,自引:0,他引:3  
Hepatic metallothionein (MT) isolated from Cd-exposed animals always contains Zn (2-3 mol/mol of protein) in addition to Cd (4-5 mol/mol of protein), and the two metals are distributed in a nonuniform, but reproducible, manner among the seven binding sites of the protein's two metal-thiolate clusters. Different methodologies of preparing rabbit liver Cd, Zn-MT in vitro were investigated to provide insight into why such a distinct mixture of mixed-metal clusters is produced in vivo and by what mechanism they form. 113Cd NMR spectra of the products of stepwise displacement of Zn2+ from Zn7-MT by 113Cd2+ show that Cd binding to the clusters is not cooperative (i.e., clusters containing exclusively Cd are not formed in preference to mixed-metal Cd, Zn clusters), there is no selective occupancy of one cluster before the other, and many clusters are produced with a nonnative metal distribution indicating that this pathway is probably not followed in vivo. In contrast, the surprising discovery was made that the native cluster compositions and their relative concentrations could be reproduced exactly by simply mixing together the appropriate amounts of Cd7-MT and Zn7-MT and allowing intermolecular metal exchange to occur. This heretofore unknown metal interchange reaction occurs readily, and the driving force appears to be the relative thermodynamic instability of three-metal clusters containing Cd. With this new insight into how Cd,Zn-MT is likely to be formed in vivo we are able for the first time to postulate rational explanations for previous observations regarding the response of hepatic Zn and metallothionein levels to Cd administration.  相似文献   

5.
P Palumaa  E A Mackay  M Vasák 《Biochemistry》1992,31(7):2181-2186
The effect of free Cd(II) ions on monomeric Cd7-metallothionein-2 (MT) from rabbit liver has been studied. Slow, concentration-dependent dimerization of this protein was observed by gel filtration chromatographic studies. The dimeric MT form, isolated by gel filtration, contains approximately two additional and more weakly bound Cd(II) ions per monomer. The incubation of MT dimers with complexing agents EDTA and 2-mercaptoethanol leads to the dissociation of dimers to monomers. The results of circular dichroism (CD) and electronic absorption studies indicate that the slow dimerization process is preceded by an initial rapid Cd-induced rearrangement of the monomeric Cd7-MT structure. The 113Cd NMR spectrum of the MT dimer revealed only four 113Cd resonances at chemical shift positions similar to those observed for the Cd4 cluster of the well-characterized monomeric 113Cd7-MT. This result suggests that on dimer formation major structural changes occur in the original three-metal cluster domain of Cd7-MT.  相似文献   

6.
Using a yeast expression vector system, we have expressed both wild type and six mutated Chinese hamster metallothionein coding sequences in a metal-sensitive yeast strain in which the endogenous metallothionein gene has been deleted. The mutant proteins have single or double cysteine to tyrosine replacements (C13Y, C50Y, and C13,50Y), single cysteine to serine replacements (C13S and C50S), or a single cysteine to alanine replacement (C50A). These proteins function in their yeast host in cadmium detoxification to differing extents. Metallothioneins which contain a cysteine mutation at position 50 (C50Y, C50S, C50A, and C13,50Y) conferred markedly less cadmium resistance than wild type metallothionein, or metallothionein with a single cysteine mutation at position 13 (C13Y and C13S). Wild type and three of the mutant Chinese hamster metallothioneins (C13Y, C50Y, and C13,50Y) were purified from yeast grown in subtoxic levels of either CdCl2 or 113CdCl2. All three of the mutant proteins bound less cadmium than the wild type protein when metal-binding stoichiometries were determined. The one-dimensional 113Cd NMR spectrum of the recombinant wild type Chinese hamster metallothionein was compared to the spectra of native rat and rabbit liver metallothioneins. The close correspondence between the 113Cd chemical shifts in these metallothioneins is consistent with the presence of two separate metal clusters, A and B, corresponding, respectively, to the alpha- and beta-domains, in the recombinant metallothionein. The one-dimensional 113Cd NMR spectra recorded on each of the three mutant metallothioneins, on the other hand, provide some indication as to the structural basis for the reduced, by one, metal stoichiometry of each of the mutant metallothioneins. For the C13Y mutant, it appears that the beta-domain now binds a total of two metal ions whereas with the C50Y mutant, the alpha-domain appears metal-deficient. For the double mutant, C13,50Y, the 113Cd resonances are indicative of major structural reorganizations in both domains.  相似文献   

7.
Possible origins of the different metal co-ordination topologies in the recently determined structures of rat metallothionein-2 (MT2) in single crystals and rabbit MT2 in solution were investigated. A complete structure determination for rat MT2 in solution by nuclear magnetic resonance (n.m.r.) showed that the differences in the spatial structures cannot be attributed to the different primary structures of the two species. Comparison of [113Cd7]MT2 obtained by reconstitution of the apoprotein in vitro with preparations using a different procedure showed, moreover, that the metal co-ordination observed in solution by n.m.r. is not an artefact of the protein reconstitution. Solutions of high-pressure liquid chromatographically homogeneous biosynthetic preparations of [113Cd, Zn]MT2 were obtained from rat liver following injection of 113Cd into rats in vivo, without further metal exchange after protein isolation. They contain a mixture of several forms of MT2 with different relative metal compositions, giving rise to an increased number of 113Cd resonances. For the components of the four-metal cluster, the major one of these different forms exhibits patterns in the two-dimensional [1H, 113Cd]-correlated spectra that are indistinguishable from those of [113Cd7]MT2, thereby implying identity of cluster coordination and topology. These results are discussed with regard to continued investigations into the differences between the solution structure and crystal structure of MT2.  相似文献   

8.
13C NMR spectra are presented for the calcium binding protein parvalbumin (pI 4.25) from carp muscle in several different metal bound forms: with Ca2+ in both the CD and EF calcium binding sites, with Cd2+ in both sites, with 113Cd2+ in both sites, and with 113Cd2+ in the CD site and Lu3+ in the EF site. The different metals differentially shift the 13C NMR resonances of the protein ligands involved in chelation of the metal ion. In addition, direct 13C-113Cd spin-spin coupling is observed which allows the assignment of protein carbonyl and carboxyl 13C NMR resonances to ligands directly interacting with the metal ions in the CD and EF binding sites. The displacement of 113Cd2+ from the EF site by Lu3+ further allows these resonances to be assigned to the CD or EF site. The occupancy of the two sites in the two cadmium species and in the mixed Cd2+/Lu3+ species is verified by 113Cd NMR. The resolution in these 113Cd NMR spectra is sufficient to demonstrate direct interaction between the two metal binding sites.  相似文献   

9.
Metallothioneins (MTs) are cysteine-rich, metal-binding proteins known to provide protection against cadmium toxicity in mammals. Metal exchange of Zn(2+) ions for Cd(2+) ions in metallothioneins is a critical process for which no mechanistic or structural information is currently available. The recombinant human alpha domain of metallothionein isoform 1a, which encompasses the metal-binding cysteines between Cys33 and Cys60 of the alpha domain of native human metallothionein 1a, was studied. Characteristically this fragment coordinates four Cd(2+) ions to the 11 cysteinyl sulfurs, and is shown to bind an additional Cd(2+) ion to form a novel Cd(5)alpha-MT species. This species is proposed here to represent an intermediate in the metal-exchange mechanism. The ESI mass spectrum shows the appearance of charge state peaks corresponding to a Cd(5)alpha species following addition of 5.0 molar equivalents of Cd(2+) to a solution of Cd(4)alpha-MT. Significantly, the structurally sensitive CD spectrum shows a sharp monophasic peak at 254 nm for the Cd(5)alpha species in contrast to the derivative-shaped spectrum of the Cd(4)alpha-MT species, with peak maxima at 260 nm (+) and 240 nm (-), indicating Cd-induced disruption of the exciton coupling between the original four Cd(2+) ions in the Cd(4)alpha species. The (113)Cd chemical shift of the fifth Cd(2+) is significantly shielded (approximately 400 p.p.m.) when compared with the data for the Cd(2+) ions in Cd(4)alpha-MT by both direct and indirect (113)Cd NMR spectroscopy. Three of the four original NMR peaks move significantly upon binding the fifth cadmium. Evidence from indirect (1)H-(113)Cd HSQC NMR spectra suggests that the coordination environment of the additional Cd(2+) is not tetrahedral to four thiolates, as is the case with the four Cd(2+) ions in the Cd(4)alpha-MT, but has two thiolate ligands as part of its ligand environment, with additional coordination to either water or anions in solution.  相似文献   

10.
A sensitive and chemical species-selective technique of differential pulse anodic stripping voltammetry (DPASV) was applied in studying the cadmium-metallothionein (Cd-MT) interaction. The amperometric titrations of the purified MT20 and MT10 fractions, isolated by verified biochemical procedures from the digestive gland of cadmium-exposed mussels Mytilus galloprovincialis, with Cd2+ ions were performed in the buffered sodium chloride solution of 0.59 M ionic strength, pH 7.9 and 25 degrees C. Applying the DPASV method at various cadmium to metallothionein ratio several groups of chemical species were recorded. The data on the available ligand concentration to complex cadmium ions (CL), the apparent concentration stability constants (K,) of the respective complexes and the reliability of the determined complexing parameters are discussed. In quantifying the Cd-MT interaction the interference of dithiotreitol (DTT), which is used as the reducing agent in isolation and purification of MTs, is documented.  相似文献   

11.
Hasler DW  Jensen LT  Zerbe O  Winge DR  Vasák M 《Biochemistry》2000,39(47):14567-14575
Human neuronal growth inhibitory factor, a metalloprotein classified as metallothionein-3 (MT-3), impairs the survival and the neurite formation of cultured neurons. In these studies the double P7S/P9A mutant (mutMT-3) and single mutants P7S and P9A of human Zn(7)-MT-3 were generated, and their effects on the biological activity and the structure of the protein were examined. The biological results clearly established the necessity of both proline residues for the inhibitory activity, as even single mutants were found to be inactive. Using electronic absorption, circular dichroism (CD), magnetic CD (MCD), and (113)Cd NMR spectroscopy, the structural features of the metal-thiolate clusters in the double mutant Cd(7)-mutMT-3 were investigated and compared with those of wild-type Cd(7)-MT-3 [Faller, P., Hasler, D. W., Zerbe, O., Klauser, S., Winge, D. R., and Vasák, M. (1999) Biochemistry 38, 10158] and the well characterized Cd(7)-MT-2a from rabbit liver. Similarly to (113)Cd(7)-MT-3 the (113)Cd NMR spectrum of (113)Cd(7)-mutMT-3 at 298 K revealed four major and three minor resonances (approximately 20% of the major ones) between 590 and 680 ppm, originating from a Cd(4)S(11) cluster in the alpha-domain and a Cd(3)S(9) cluster in the beta-domain, respectively. Due to the presence of dynamic processes in the structure of MT-3 and mutMT-3, all resonances showed the absence of resolved homonuclear [(113)Cd-(113)Cd] couplings and large apparent line widths (between 140 and 350 Hz). However, whereas in (113)Cd(7)-mutMT-3 the temperature rise to 323 K resulted in a major recovery of the originally NMR nondetectable population of the Cd(3)S(9) cluster resonances, no such temperature effect was observed in (113)Cd(7)-MT-3. To account for the observed NMR features, a dynamic structural model for the beta-domain is proposed, which involves a folded and a partially unfolded state. It is suggested that in the partially unfolded state a slow cis/trans isomerization of Cys-Pro(7) or Cys-Pro(9) amide bonds in (113)Cd(7)-MT-3 takes place and that this process represents a rate-limiting step in a correct domain refolding. In addition, closely similar apparent stability constants of human MT-3, mutMT-3, and rabbit MT-2a with Cd(II) and Zn(II) ions were found. These results suggest that specific structural features dictated by the repetitive (Cys-Pro)(2) sequence in the beta-domain of MT-3 and not its altered metal binding affinity compared to MT-1/MT-2 isoforms are responsible for the biological activity of this protein.  相似文献   

12.
Metallothioneins constitute a class of ubiquitously occurring low molecular mass proteins (6–7 kDa) possessing two cysteine thiolate-based metal clusters usually formed by the preferential binding of d10 metal ions such as Zn II and Cd II. The three-dimensional solution structure of mammalian proteins has been determined by two-dimensional NMR spectroscopy of 113Cd7-metallothionein. The structure shows two protein domains encompassing the M3(CysS)9- and M4(CysS)11-cluster with each metal ion being tetrahedrally coordinated by thiolate ligands. The application of 113Cd NMR proved to be indispensable in the structural studies of metallothioneins. Thus, both homonuclear 113Cd decoupling studies and 113Cd-113Cd COSY of 113Cd7-metallothionein established the existence of two metal-thiolate clusters in this protein. The identification of sequence specific cysteine-cadmium coordinative bonds came from heteronuclear 113Cd-1H COSY experiments. Independently, the 113Cd NMR characterization of the intermediate metal-protein complexes, leading to the cluster structure in 113Cd7- metallothionein, revealed a stepwise cluster formation process with the Cd4(CysS)11-cluster being formed first. The recent demonstration of a Karplus-like dependence between the heteronuclear 3J(113 Cd,1 H) coupling constants for the cysteine C protons and the H-C: -S -Cd dihedral angles should allow to derive the geometry of the Cd-(S-Cys) centers in various metallothioneins and related metalloproteins. A possible application of 113Cd NMR to the study of metallothioneins in the environment is discussed.  相似文献   

13.
Naturally occurring metallothionein (MT) is a metal binding protein, which binds to seven Zn2+ through 20 conserved cysteines and forms two metal binding clusters with a Zinc-Blende structure. We demonstrate that the MT, when substituting the Zn2+ ions by Mn2+ and Cd2+, exhibits magnetic hysteresis loop observable by SQUID from 10 to 330 K. The magnetic moment may have originated from the bridging effect of the sulfur atoms between the metal ions that leads to the alignment of the electron spins of the Mn2+ ions inside the clusters. The protein backbone may restrain the net spin moment of Mn2+ ions from thermal fluctuation. The modified magnetic-metallothionein is a novel approach to creating molecular magnets with operating temperatures up to 330 K.  相似文献   

14.
Ejnik JW  Muñoz A  DeRose E  Shaw CF  Petering DH 《Biochemistry》2003,42(28):8403-8410
The NMR determination of the structure of Cd(7)-metallothionein was done previously using a relatively large protein concentration that favors dimer formation. The reactivity of the protein is also affected under this condition. To examine the influence of protein concentration on metallothionein conformation, the isolated Cd(4)-alpha-domain was prepared from rabbit metallothionein-2 (MT 2), and its three-dimensional structure was determined by heteronuclear, (1)H-(111)Cd, and homonuclear, (1)H-(1)H NMR, correlation experiments. The three-dimensional structure was refined using distance and angle constraints derived from these two-dimensional NMR data sets and a distance geometry/simulated annealing protocol. The backbone superposition of the alpha-domain from rabbit holoprotein Cd(7)-MT 2 and the isolated rabbit Cd(4)-alpha was measured at a RMSD of 2.0 A. Nevertheless, the conformations of the two Cd-thiolate clusters were distinctly different at two of the cadmium centers. In addition, solvent access to the sulfhydryl ligands of the isolated Cd(4)-alpha cluster was 130% larger due to this small change in cluster geometry. To probe whether these differences were an artifact of the structure calculation, the Cd(4)-alpha-domain structure in rabbit Cd(7)-MT 2 was redetermined, using the previously defined set of NOEs and the present calculation protocol. All calculations employed the same ionic radius for Cd(2+) and same cadmium-thiolate bond distance. The newly calculated structure matched the original with an RMSD of 1.24 A. It is hypothesized that differences in the two alpha-domain structures result from a perturbation of the holoprotein structure because of head-to-tail dimerization under the conditions of the NMR experiments.  相似文献   

15.
The 1H (500-MHz), 113Cd (44-MHz), and 31P (81-MHz) NMR spectra of the bovine gamma-carboxyglutamate- (Gla-) containing protein osteocalcin and its Ca(II) and Cd(II) complexes in solution have been obtained. The 1H NMR spectrum of the native protein shows narrow resonances and a highly resolved multiplet structure suggesting rotational freedom of the side chains. In comparison to the simulated 1H NMR spectrum of a random polypeptide chain of the same amino acid composition, there is moderate chemical shift dispersion, indicating some conformational restraints to be present. Ca(II) binding broadens all 1H resonances, so severely at four Ca(II) ions per molecule that few structural conclusions can be made. Cd(II) substituted for Ca(II) has the same effect, and 113Cd NMR shows the Cd(II) to be in intermediate chemical exchange on the chemical shift time scale. Estimates of the chemical exchange rates required for 1H and 113Cd line broadening suggest a range of Kd values for the metal ion complexes from 10(-6) M to as high as 10(-3) M depending on the number of metal ions bound. Alternatively, 1H line broadening could be explained by relatively slow conformational fluxes in the protein induced by labile metal ion binding to one or more sites. Cd(II) when used to form a cadmium-phosphate mineral analogous to hydroxylapatite results in a crystal lattice that removes osteocalcin from solution just as effectively as hydroxylapatite. 113Cd(II) exchange at the binding sites of osteocalcin in solution is slowed dramatically by the addition of HPO4(2-). 31P NMR shows the interaction of phosphate with the protein to require the metal ion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The plant metallothionein 2 from Cicer arietinum (chickpea; cicMT2) is a typical member of this subfamily and features two cysteine-rich regions containing eight and six cysteine residues, respectively, separated by a linker region 41 amino acids in length. This metallothionein thus differs significantly from the well-studied vertebrate forms. A synthetic gene encoding cicMT2 was designed, cloned into a suitable vector, and the protein was over-expressed in Escherichia coli. For the first time, an in-depth spectroscopic characterization of cicMT2 in the presence of divalent metal ions is performed showing a binding capacity for five Zn(II), Cd(II), or Co(II) ions and the typical features of metal-thiolate clusters. Based on proteolytic digestion experiments, the cluster arrangement formed by the divalent metal ions and the cysteine thiolate groups connects the amino-terminal with the carboxy-terminal cysteine-rich region. The cluster formation process, put into effect with the addition of the fourth metal ion to the apo protein, was investigated using the characteristic shift of absorption bands observed in the UV/Vis spectra upon titration with Co(II). The pH-dependent Zn(II)- and Cd(II)-thiolate cluster stability is one of the highest observed for plant MTs so far, but lower than that usually found in vertebrate metallothioneins. The dependence of the pH stability on the ionic strength of the solution is more pronounced for the Cd(II)- than for the Zn(II)-form of the protein.  相似文献   

17.
Cadmium-113 nuclear magnetic resonance (113Cd nmr) was used to elucidate the structural properties of the cadmium binding sites in human liver metallothionein. The isotopically labeled 113Cd-metallothionein was prepared by the in vitro exchange of the native metals (greater than 94% zinc) for 113CdCl2 during isolation. The two isoproteins, MT-1 and MT-2, showed 113Cd nmr resonances in the chemical shift range 610–670 ppm. The multiplet structure of the resonances is due to two bond scalar interactions between adjacent 113Cd ions linked by cysteine thiolate ligands. Homonuclear 113Cd decoupling experiments allowed the determination of the metal cluster structure, which, similar to the rabbit liver metallothionein, consists of a four- and a three-metal cluster designated cluster A and cluster B, respectively. Chemical shift similarities in the 113Cd nmr spectra of the human, rabbit and calf liver MT-1 and MT-2 are observed, especially for cluster A. Small variations in chemical shifts are explained in terms of differences in the primary structure between the two human isoproteins.  相似文献   

18.
The detailed spectral changes observed in the absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra upon addition of Cd2+ to rat liver Cd, Zn-metallothionein (MT) are reported. Results from dialysis experiments clearly demonstrate that up to 8.6 mole equivalents of Cd2+ can be bound to this protein. The excess Cd2+ ions bound appear to have lower binding constants than those of the first seven Cd2+ ions bound. Red blood cell hemolysate (RBC) can compete with the metallothionein for all Cd2+ bound in excess of seven mole equivalents. Thus the RBC hemolysate method of estimating protein concentrations is shown to be correct when based upon complete loading of all binding sites in MT with Cd2+.  相似文献   

19.
The binding of diamagnetic Cd(II) and paramagnetic Co(II) ions to the metal-free form of crab, Cancer pagurus, metallothionein (MT) was studied by various spectroscopic techniques. Both reconstituted and native Cd(II)-MT containing 6 mol Cd(II)/mol protein display electronic absorption, circular dichroism (CD) and magnetic circular dichroism (MCD) spectra which were indistinguishable. The stoichiometric replacement of Cd(II) ions in native Cd(II)6-MT by paramagnetic Co(II) ions enabled the geometry of the metal-binding sites to be probed. The electronic absorption and MCD spectra of Co(II)6-MT revealed features characteristic of distorted tetrahedral tetrathiolate Co(II) coordination for all six metal-binding sites. The stepwise incorporation of Cd(II) and Co(II) ions into this protein was monitored by electronic absorption and CD, and by electronic absorption and EPR spectroscopy, respectively. The results indicate that the metal-thiolate cluster structure is generated when more than four metal ions are bound. Below this titration point separate tetrahedral tetrathiolate complexes exist. This suggests that the cluster formation occurs in a two-step process. Furthermore, the spectroscopic features in both Cd(II)- and Co(II)-metal derivatives above the full metal occupancy of six suggest the existence of one additional metal-binding site. The subsequent loss of one Cd(II) ion from crab Cancer Cd(II)7-MT in the gel filtration studies demonstrate the low metal-binding affinity of the latter site. While the spectroscopic properties indicate an exclusively tetrahedral type of metal-thiolate sulfur coordination for the binding of the first six metal ions, they suggest that the seventh metal ion is coordinated in a different fashion.  相似文献   

20.
The three-dimensional structures of the isolated Cd(3)beta domains from Homarus americanus metallothionein have been determined by NMR methods in order to establish a set of beta-domain structures for comparative analysis. First, it was determined that the Cd-cysteine connectivities forming the Cd(3)S(9) metal center were identical to those observed for the beta(N) domain in the native holoprotein. Time- and temperature-dependence studies of the (113)Cd and (1)H 1D-NMR spectra indicated that the beta(N) domain undergoes slow conformational changes before reaching an equilibrium structure. In addition to structural information provided by the metal-to-cysteine connectivities, Phi, chi(1) and chi(2) angle constraints, three H(N...)S hydrogen bond interactions were also determined from a long-range optimized (1)H(N)-(113)Cd HMQC experiment. A simulated annealing protocol was applied to the distance and angle constraints obtained from the 2D-NMR experiments to calculate the three-dimensional structure of the synthetic Cd(3)beta(N) domain of lobster metallothionein. Structure-reactivity relationships are proposed for the reactions of Cd(3)beta domains with 5,5'-dithiobis(2-nitrobenzoate), based on comparisons of surface exposure of sulfur atoms of the lobster and rabbit Cd(3)beta domain structures. Finally, the surface exposure of the beta domains of lobster is compared with beta domains from mammalian metallothioneins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号