首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 451 毫秒
1.
Sylvatic plague, caused by Yersinia pestis, frequently afflicts prairie dogs (Cynomys spp.), causing population declines and local extirpations. We tested the effectiveness of bait-delivered sylvatic plague vaccine (SPV) in prairie dog colonies on 29 paired placebo and treatment plots (1–59 ha in size; average 16.9 ha) in 7 western states from 2013 to 2015. We compared relative abundance (using catch per unit effort (CPUE) as an index) and apparent survival of prairie dogs on 26 of the 29 paired plots, 12 with confirmed or suspected plague (Y. pestis positive carcasses or fleas). Even though plague mortality occurred in prairie dogs on vaccine plots, SPV treatment had an overall positive effect on CPUE in all three years, regardless of plague status. Odds of capturing a unique animal were 1.10 (95% confidence interval [C.I.] 1.02–1.19) times higher per trap day on vaccine-treated plots than placebo plots in 2013, 1.47 (95% C.I. 1.41–1.52) times higher in 2014 and 1.19 (95% C.I. 1.13–1.25) times higher in 2015. On pairs where plague occurred, odds of apparent survival were 1.76 (95% Bayesian credible interval [B.C.I.] 1.28–2.43) times higher on vaccine plots than placebo plots for adults and 2.41 (95% B.C.I. 1.72–3.38) times higher for juveniles. Our results provide evidence that consumption of vaccine-laden baits can protect prairie dogs against plague; however, further evaluation and refinement are needed to optimize SPV use as a management tool.  相似文献   

2.
Oral vaccination is an emerging management strategy to reduce the prevalence of high impact infectious diseases within wild animal populations. Plague is a flea-borne zoonosis of rodents that often decimates prairie dog (Cynomys spp.) colonies in the western USA. Recently, an oral sylvatic plague vaccine (SPV) was developed to protect prairie dogs from plague and aid recovery of the endangered black-footed ferret (Mustela nigripes). Although oral vaccination programs are targeted toward specific species, field distribution of vaccine-laden baits can result in vaccine uptake by non-target animals and unintended indirect effects. We assessed the impact of SPV on non-target rodents at paired vaccine and placebo-treated prairie dog colonies in four US states from 2013 to 2015. Bait consumption by non-target rodents was high (70.8%, n?=?3113), but anti-plague antibody development on vaccine plots was low (23.7%, n?=?266). In addition, no significant differences were noted in combined deer mice (Peromyscus maniculatus) and western harvest mouse (Reithrodontomys megalotis) abundance or community evenness and richness of non-target rodents between vaccine-treated and placebo plots. In our 3-year field study, we could not detect a significant positive or negative effect of SPV application on non-target rodents.  相似文献   

3.
The endangered black-footed ferret (Mustela nigripes) is affected by plague, caused by Yersinia pestis, both directly, as a cause of mortality, and indirectly, because of the impacts of plague on its prairie dog (Cynomys spp.) prey base. Recent developments in vaccines and vaccine delivery have raised the possibility of plague control in prairie dog populations, thereby protecting ferret populations. A large-scale experimental investigation across the western US shows that sylvatic plague vaccine delivered in oral baits can increase prairie dog survival. In northern Colorado, an examination of the efficacy of insecticides to control fleas and plague vaccine shows that timing and method of plague control is important, with different implications for long-term and large-scale management of Y. pestis delivery. In both cases, the studies show that ambitious field-work and cross-sectoral collaboration can provide potential solutions to difficult issues of wildlife management, conservation and disease ecology.  相似文献   

4.
Transmission of Yersinia pestis to the long-tailed suslik (Citellus undulatus) by fleas (Citellophilus tesquorum) in the Tuva natural plague focus in different seasons (spring, summer, and autumn) was studied experimentally. Between feeding periods, insects were kept in an artificial nest under temperature and humidity closely corresponding to seasonal ones. The character of the agent transmission was estimated according to the fraction of fleas with the agent in the aggregated state (bacterial lumps, partial blocks of proventriculus), the fraction of blocked individuals, and the fraction of infected susliks and of those with the generalized form of infection. Seasonal dynamics of epizootic process of the Y. pestis transmission corresponded to the results obtained in the epizootic examination of the Tuva natural plague focus and reflected the dynamics of the epizootic process (increase-peak-decline). The activity of the formation of a proventriculus block in C. t. altaicus, the infection ability of the fleas, and the sensitivity of long-tailed Siberian susliks to Y. pestis were the highest in mid-summer (July-first ten days of August), during the period of epizooty activation in the focus. The maximal number of C. t. altaicus with the plague agent at the aggregated state was observed in the cold period, before wintering of insects and after their hibernation.  相似文献   

5.
Plague, a disease caused by Yersinia pestis introduced into North America about 100?years ago, is devastating to prairie dogs and the highly endangered black-footed ferret. Current attempts to control plague in these species have historically relied on insecticidal dusting of prairie dog burrows to kill the fleas that spread the disease. Although successful in curtailing outbreaks in most instances, this method of plague control has significant limitations. Alternative approaches to plague management are being tested, including vaccination. Currently, all black-footed ferret kits released for reintroduction are vaccinated against plague with an injectable protein vaccine, and even wild-born kits are captured and vaccinated at some locations. In addition, a novel, virally vectored, oral vaccine to prevent plague in wild prairie dogs has been developed and will soon be tested as an alternative, preemptive management tool. If demonstrated to be successful, oral vaccination of selected prairie dog populations could decrease the occurrence of plague epizootics in key locations, thereby reducing the source of bacteria while avoiding the indiscriminate environmental effects of dusting. Just as rabies in wild carnivores has largely been controlled through an active surveillance and oral vaccination program, we believe an integrated plague management strategy would be similarly enhanced with the addition of a cost-effective, bait-delivered, sylvatic plague vaccine for prairie dogs. Control of plague in prairie dogs, and potentially other rodents, would significantly advance prairie dog conservation and black-footed ferret recovery.  相似文献   

6.
Sylvatic plague vaccine (SPV) is a virally vectored bait-delivered vaccine expressing Yersinia pestis antigens that can protect prairie dogs (Cynomys spp.) from plague and has potential utility as a management tool. In a large-scale 3-year field trial, SPV-laden baits containing the biomarker rhodamine B (used to determine bait consumption) were distributed annually at a rate of approximately 100–125 baits/hectare along transects at 58 plots encompassing the geographic ranges of four species of prairie dogs. We assessed site- and individual-level factors related to bait uptake in prairie dogs to determine which were associated with bait uptake rates. Overall bait uptake for 7820 prairie dogs sampled was 70% (95% C.I. 69.9–72.0). Factors influencing bait uptake rates by prairie dogs varied by species, however, in general, heavier animals had greater bait uptake rates. Vegetation quality and day of baiting influenced this relationship for black-tailed, Gunnison’s, and Utah prairie dogs. For these species, baiting later in the season, when normalized difference vegetation indices (a measure of green vegetation density) are lower, improves bait uptake by smaller animals. Consideration of these factors can aid in the development of species-specific SPV baiting strategies that maximize bait uptake and subsequent immunization of prairie dogs against plague.  相似文献   

7.
It has long been theorized that deer mice (Peromyscus maniculatus) are a primary reservoir of Yersinia pestis in California. However, recent research from other parts of the western USA has implicated deer mice as spillover hosts during epizootic plague transmission. This retrospective study analyzed deer mouse data collected for plague surveillance by public health agencies in California from 1971 to 2016 to help elucidate the role of deer mice in plague transmission. The fleas most commonly found on deer mice were poor vectors of Y. pestis and occurred in insufficient numbers to maintain transmission of the pathogen, while fleas whose natural hosts are deer mice were rarely observed and even more rarely found infected with Y. pestis on other rodent hosts. Seroprevalence of Y. pestis antibodies in deer mice was significantly lower than that of several chipmunk and squirrel species. These analyses suggest that it is unlikely that deer mice play an important role in maintaining plague transmission in California. While they may not be primary reservoirs, results supported the premise that deer mice are occasionally exposed to and infected by Y. pestis and instead may be spillover hosts.  相似文献   

8.
Potential impacts of an exotic grass, Hemarthria altissima, on restoration of wet prairie community structure (species richness and cover of indicator species) and assembly processes (temporal turnover rates of plant species) on the Kissimmee River floodplain in Central Florida, USA, were evaluated over a 12-year period before and after restoration of hydrologic regimes (2001), and implementation of herbicide treatments (2006–2007) to control its spread. Thresholds for impacts were derived from comparisons of sample sites with variable levels of H. altissima cover. Prior to herbicide treatments, cover of H. altissima exhibited a logistic increase over time, with peak colonization and expansion occurring during major flood events. Mean post-restoration cover of three native wet prairie indicator species (Polygonum punctatum, Panicum hemitomon, and Luziola fluitans) increased to 37.8 ± 3.4 % in plots in which H. altissima cover was <12 %, and did not exceed 15 % in any plots with H. altissima cover >30 %. Prior to and after herbicide treatments, these indicator species largely accounted for observed differences in wet prairie community structure (i.e., cover of wetland forbs and grasses) between heavily infested sites and plots with low or no cover of H. altissima. The cover threshold at which H. altissima began to have these community-level effects was 40–50 %, but lower species richness was found only where H. altissima cover was >80 %. Increasing cover of H. altissima led to a significant decline in temporal turnover rates of plant species (P < 0.001, r2 = 0.10), but also was largely due to plots with very high (>75 %) cover of H. altissima. Mean temporal turnover rates of plant species increased significantly (P = 0.03) after herbicide treatments and subsequently were highest during an ensuing flood pulse. However, 2–3 years after herbicide treatments, regrowth of H. altissima reestablished high cover (mean = 59 ± 9.5 %) in over half of the treated plots. The ability of H. altissima to establish dominant cover in restored hydrologic conditions on the Kissimmee River floodplain, and documented regrowth following herbicide treatments, increase the potential for this exotic grass species to be a pervasive threat to successful reestablishment of wet prairie community structure and assembly processes.  相似文献   

9.
Invasive plants have wide-ranging impacts on native systems including reducing native plant richness and altering soil chemistry, microbes, and nutrient cycling. Increasingly, these effects are found to linger long after removal of the invader. We examined how soil chemistry, bacterial communities, and litter decomposition varied with cover of Euonymus fortunei, an invasive evergreen liana, in two central Kentucky deciduous forests. In one forest, E. fortunei invaded in the late 1990s but invasion remained patchy and we paired invaded and uninvaded plots to examine the associations between E. fortunei cover and our response variables. In the second forest, E. fortunei had completely invaded the forest by 2005; areas where it had been selectively removed by 2010 were paired with an adjacent invaded plot. Where E. fortunei had patchily invaded, E. fortunei patches had up to 3.5× nitrogen, 2.7× carbon, and 1.9× more labile glomalin in soils than uninvaded plots, whereas there were no differences in soil characteristics between invaded and removal plots. In the patchily invaded forest, bacterial community composition varied among invaded and non-invaded plots, whereas bacterial communities did not vary among invaded and removal plots. Finally, E. fortunei leaf litter decomposed faster (k = 4.91 year?1) than the native liana (k = 3.77 year?1), Vitis vulpina; decomposition of both E. fortunei and V. vulpina was faster in invaded (k = 7.10 year?1) than removal plots (k = 4.77 year?1). Our findings suggest that E. fortunei invasion increases the rate of leaf litter decomposition via high-quality litter, alters the decomposition environment, and shifts in the soil biotic communities associated with a dense mat of wintercreeper. Land managers with limited resources should target the densest mats for the greatest restoration potential and remove wintercreeper patches before they establish dense mats.  相似文献   

10.
Six lactic acid bacteria (LAB) strains, Lactococcus lactis BFE 920, L. lactis subsp. lactis ATCC 11454, L. lactis subsp. cremoris ATCC 14365, Lactobacillus curvatus L442, Lact. curvatus LTH 1174, and Lact. bavaricus MN, were grown in cheddar cheese whey supplemented with complex nutrient sources. Cell-free culture supernatants were freeze-dried, and the resulting bacteriocin-containing powders were applied on the surface of hot dogs that were inoculated (~4 log cfu/hot dog) with a five-strain Listeria monocytogenes cocktail. Hot dogs were vacuum-sealed and stored at 4 °C for 4 weeks. L. monocytogenes was enumerated, using both tryptic soy agar (TSA) and oxford listeria agar (OXA), on day 0 and at 1, 2, 3, and 4 weeks of the refrigerated storage. In hot dogs containing only the L. monocytogenes inoculum, L. monocytogenes counts increased from 4 up to 7 log cfu/hot dog. All samples containing freeze-dried bacteriocin-containing powders exhibited significantly lowered (P < 0.05) L. monocytogenes populations on the surface of hot dogs throughout the 4-week study except for bavaricin MN powder. Bacterial counts on hot dogs packed without any powder were statistically equal on day 0 when enumerated on OXA. Freeze-dried bacteriocin-containing powders from Lact. curvatus L442 and L. lactis subsp. cremoris ATCC 14365 decreased L. monocytogenes populations on the surface of hot dogs by greater than 2 log cfu/hot dog throughout the 4-week study. For the powdered bacteriocin preparations from L. lactis BFE 920, L. lactis subsp. lactis ATCC 11454, and Lact. curvatus LTH 1174, L. monocytogenes populations were determined to be approximately 3-log cfu/hot dog after 4 weeks of storage.  相似文献   

11.
Alimentary activity and mortality was assessed in fleas Citellophilus tesquorum altaicus non-infected with Yersinia pestis and those with initial infection levels 50 and 100% during feeding on a non-specific host (white mice). The presence of the plague pathogen in fleas significantly stimulated their feeding activity, especially in females. No effect of infection on flea mortality was observed. At the same time, male fleas died more frequently than females.  相似文献   

12.

Objective

To develop a safe and effective oral vaccine against Helicobacter pylori using its HpaA protein expressed in Lactococcus lactis.

Results

The gene encoding HpaA was obtained by PCR and ligated to pNZ8110-lysM following digestion with NaeI + SphI. The recombinant plasmid was transferred into E. coli for multiplication, and then into L. lactis. The recombinant L. lactis was induced to express HpaA, resulting in two products of 29 and 25 kDa, both of which yielded positive immunoreaction with mouse antisera against H. pylori, as confirmed by immunoblot assays. The 29 kDa product constituted 12% of the cell lysates. Oral inoculation with the engineered L. lactis evoked significantly elevated serum IgG level in mice (P < 0.05).

Conclusions

A novel engineered L. lactis strain was developed that efficiently produces whole HpaA protein with desired antigenicity and potent immunogenicity. It provides a basis for approaches to L. lactis-delivered anti-H. pylori vaccination.
  相似文献   

13.
It is well documented that phosphorus (P) input stimulates biological nitrogen (N) fixation (BNF) in tropical forests with non-legume trees. However, in tropical legume forests with soil N enrichment and P deficiency, the effects of P availability and its combination with N on BNF remain poorly understood. In this study, we measured BNF rate in different compartments, i.e., bulk soil, forest floor, rhizosphere, and nodules, in two tropical plantations with legume trees Acacia auriculiformis (AA) versus non-legume trees Eucalyptus urophylla, (EU) in southern China after 4 years of P addition and combined N and P additions. The objective was to investigate how P addition and its combination with N addition regulate BNF in a tropical legume plantation, and to compare the effects with those in a non-legume plantation. Our results showed that total BNF rates were significantly higher in the P-addition plots than in the control plots by 27.4 ± 4.3 and 23.3 ± 1.7 % in the EU and AA plantations, respectively. Total BNF rates were significantly higher in the NP-addition plots than in the control plots by 27.7  ± 5.0 and 8.5 ± 1.4 % in the EU and AA plantations, respectively, which contrasted to our previous result that total BNF rates were significantly lower in N-addition plots than in the control plots in the AA plantation. These findings suggest that P input can stimulate BNF in tropical forest biome dominated by legume trees, even in consideration of elevated atmospheric N deposition. Thus, our study revealed the important role of P in regulating biological N input, which should be taken into account in the modeling of biogeochemical cycles in the future.  相似文献   

14.
We studied long-term effects of fertilization with wood ash on biomass, vitality and mycorrhizal colonization of fine roots in three conifer forest stands growing in Vacciniosa turf. mel. (V), Myrtillosa turf. mel. (M) and Myrtillosa turf. mel./Caricoso-phragmitosa (MC) forest types on peat soils. Fertilization trials amounting 5 kg/m2 of wood ash were established 12 years prior to this study. A total of 63 soil samples with roots were collected and analysed. Ectomycorrhizal (ECM) fungi in roots were identified by morphotyping and sequencing of the fungal internal transcribed spacer (ITS) region. In all forest types, fine root biomass was higher in fertilized plots than in control plots. In M forest type, proportion of living fine roots was greater in fertilized plots than in control plots, while in V and MC, the result was opposite. Fifty ECM species were identified, of which eight were common to both fertilized and control plots. Species richness and Shannon diversity index were generally higher in fertilized plots than in control plots. The most common species in fertilized plots were Amphinema byssoides (17.8 %) and Tuber cf. anniae (12.2 %), while in control plots, it was Tylospora asterophora (18.5 %) and Lactarius tabidus (20.3 %). Our results showed that forest fertilization with wood ash has long-lasting effect on diversity and composition of ECM fungal communities.  相似文献   

15.

Key message

This article provides significant data in the debate on whether siltation might have a negative impact on the hydraulic functioning of two widespread mangrove tree species Avicennia marina and Rhizophora mucronata.

Abstract

Elevated sediment addition, or siltation, within mangrove ecosystems is considered as being negative for trees and saplings, resulting in stress and higher mortality rates. However, little is known about how siltation influences the hydraulic functioning of mangrove trees. Comparing two mangrove tree species (Avicennia marina Vierh. Forsk. and Rhizophora mucronata Lam.) from low and high-siltation plots led to the detection of anatomical and morphological differences and tendencies. Adaptations to high siltation were found to be either mutual among both species, e.g., significant smaller single leaf area (p A.marina  = 0.058, F1.38 = 3.8; p R.mucronata  = 0.005, F1.38 = 8.7; n = 20 × 20) and a tendency towards smaller stomatal areas (p A.marina  = 0.131, F1.8 = 2.8; p R.mucronata  = 0.185, F1.8 = 2.1, n = 5 × 60), or species-specific trends for A. marina, such as higher phloem band/growth layer ratios (p = 0.101, F1.8 = 3.4, n = 5 × 3) and stomatal density (p = 0.052, F1.8 = 5.2, n = 5 × 4). All adaptations seemingly contributed to a comparable hydraulic conductivity independent of the degree of siltation. These findings indicate that silted trees level off fluctuations in their hydraulic performance as a survival mechanism to cope with this less favourable environment. Most of the trees’ structural adaptations to cope with siltation are similar to known drought stress-imposed adaptations.
  相似文献   

16.
17.
Sylvatic plague (Yersinia pestis) was introduced into North America over 100 years ago. The disease causes high mortality and extirpations in black-tailed prairie dogs (Cynomys ludovicianus), which is of conservation concern because prairie dogs provide habitat for the critically endangered black-footed ferret (Mustela nigripes). Our goal was to help elucidate the mechanism Y. pestis uses to persist in prairie ecosystems during enzootic and epizootic phases. We used a nested PCR protocol to assay for plague genomes in fleas collected from prairie dog burrows potentially exposed to plague in 1999 and 2000. No active plague epizootic was apparent in the 55 prairie dog colonies sampled in 2002 and 2003. However, 63% of the colonies contained plague-positive burrows in 2002, and 57% contained plague-positive burrows in 2003. Within plague-positive colonies, 23% of sampled burrows contained plague-positive fleas in 2002, and 26% contained plague-positive fleas in 2003. Of 15 intensively sampled colonies, there was no relationship between change in colony area and percentage of plague-positive burrows over the two years of the study. Some seasonality in plague prevalence was apparent because the highest percentages of plague-positive colonies were recorded in May and June. The surprisingly high prevalence of plague on study area colonies without any obvious epizootic suggested that the pathogen existed in an enzootic state in black-tailed prairie dogs. These findings have important implications for the management of prairie dogs and other species that are purported to be enzootic reservoir species.  相似文献   

18.
This study was carried out to investigate the effects of chromium intake on glycemic control, markers of cardio-metabolic risk, and oxidative stress in infertile polycystic ovary syndrome (PCOS) women candidate for in vitro fertilization (IVF). This randomized double-blind, placebo-controlled trial was done among 40 subjects with infertile PCOS candidate for IVF, aged 18–40 years old. Individuals were randomly allocated into two groups to take either 200 μg/day of chromium (n?=?20) or placebo (n?=?20) for 8 weeks. Biochemical parameters were assessed at baseline and at end-of-trial. Compared with the placebo, taking chromium supplements led to significant reductions in fasting plasma glucose (??2.3?±?5.7 vs. +?0.9?±?3.1 mg/dL, P?=?0.03), insulin levels (??1.4?±?2.1 vs. +?0.4?±?1.7 μIU/mL, P?=?0.004), homeostatic model of assessment for insulin resistance (??0.3?±?0.5 vs. +?0.1?±?0.4, P?=?0.005), and a significant increase in quantitative insulin sensitivity check index (+?0.004?±?0.008 vs. ??0.001?±?0.008, P?=?0.03). In addition, chromium supplementation significantly decreased serum triglycerides (??19.2?±?33.8 vs. +?8.3?±?21.7 mg/dL, P?=?0.004), VLDL- (??3.8?±?6.8 vs. +?1.7?±?4.3 mg/dL, P?=?0.004) and total cholesterol concentrations (??15.3?±?26.2 vs. ??0.6?±?15.9 mg/dL, P?=?0.03) compared with the placebo. Additionally, taking chromium supplements was associated with a significant increase in plasma total antioxidant capacity (+?153.9?±?46.1 vs. ??7.8?±?43.9 mmol/L, P?<?0.001) and a significant reduction in malondialdehyde values (?0.3?±?0.3 vs. +?0.1?±?0.2 μmol/L, P?=?0.001) compared with the placebo. Overall, our study supported that chromium administration for 8 weeks to infertile PCOS women candidate for IVF had beneficial impacts on glycemic control, few variables of cardio-metabolic risk, and oxidative stress.  相似文献   

19.
Research focused on the occurrence of Fusarium spp. in atmospheric dust or rainwater is not common. Preliminary studies with four sampling dates in 2007 revealed that several species of Fusarium may also be conveyed by rainwater. In order to determine the regular presence of Fusarium spp. in rainfall water, samples were systematically collected for a year (from October 2009 to October 2010) in three points on the Mediterranean coast of the province of Granada (Spain) 10-km distance between them. Throughout the year of sampling, a total of 179 rainwater samples were collected during every significant rainfall event. Eight different Fusarium species were isolated from the rainwater samples: F. oxysporum (32 %), F. proliferatum (26 %) and F. equiseti (20 %) coincide with previous studies, while F. dimerum (3 %), F. semitectum (4.7 %), F. solani (8 %), F. avenaceum (0.5 %) and F. chlamydosporum (3.7 %) were isolated for the first time from rainwater. Results were consistent with previous surveys conducted 100 km away from the sampling sites. Inoculation of 39 different isolates from five different Fusarium species showed pathogenicity on plants. Disease severity differed depending on the inoculated plant species, which means that rain water can be an effective vector to transport new pathogens into new cultivated areas. This work reveals some epidemiological aspects of Fusarium genus in natural environments. Some of the isolated Fusarium spp. are potential mycotoxin producers, such as zearalenone, fumonisin, moniliformin or nivalenol.  相似文献   

20.
Prairie cordgrass (Spartina pectinata Link) is a polyploid Chloridoid grass with tetraploid (2n = 40), hexaploid (2n = 60), and octoploid (2n = 80) cytotypes and is a potential dedicated energy crop with promising yields in marginal environments. Efforts to breed prairie cordgrass are currently hampered by the lack of a linkage map, the lack of a Chloridoid reference genome, and the lack of information on inheritance patterns (disomic versus polysomic). Genotyping-by-sequencing (GBS) was applied to a population of 85 progenies from a reciprocal cross of heterozygous tetraploid parents. A total of 26,418 SNPs were discovered, with a distribution of allele frequencies suggesting disomic inheritance. A filtered set of 3034 single-dose, high-coverage SNPs was used for pseudo-testcross mapping with 63 progenies, resulting in two parental maps of 20 linkage groups containing 1522 and 1016 SNPs and a nearly 1:1 ratio of coupling to repulsion phase linkages, again suggesting disomic inheritance. Genomic contigs from tef, another Chloridoid grass, were used as a bridge to associate genetic markers in prairie cordgrass with unique positions in the sorghum genome, providing a glimpse into synteny between Chloridoids and other grasses. GBS enabled rapid generation of a linkage map that will aid in future breeding and genomics efforts in prairie cordgrass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号