首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zika virus (ZIKV) has been associated with morbidities such as Guillain‐Barré, infant microcephaly, and ocular disease. The spread of this positive‐sense, single‐stranded RNA virus and its growing public health threat underscore gaps in our understanding of basic ZIKV virology. To advance knowledge of the virus replication cycle within mammalian cells, we use serial section 3‐dimensional electron tomography to demonstrate the widespread remodelling of intracellular membranes upon infection with ZIKV. We report extensive structural rearrangements of the endoplasmic reticulum and reveal stages of the ZIKV viral replication cycle. Structures associated with RNA genome replication and virus assembly are observed integrated within the endoplasmic reticulum, and we show viruses in transit through the Golgi apparatus for viral maturation, and subsequent cellular egress. This study characterises in detail the 3‐dimensional ultrastructural organisation of the ZIKV replication cycle stages. Our results show close adherence of the ZIKV replication cycle to the existing flavivirus replication paradigm.  相似文献   

2.
Zika virus (ZIKV) is a significant global health threat due to its potential for rapid emergence and association with severe congenital malformations during infection in pregnancy. Despite the urgent need, accurate diagnosis of ZIKV infection is still a major hurdle that must be overcome. Contributing to the inaccuracy of most serologically-based diagnostic assays for ZIKV, is the substantial geographic and antigenic overlap with other flaviviruses, including the four serotypes of dengue virus (DENV). Within this study, we have utilized a novel T cell receptor (TCR) sequencing platform to distinguish between ZIKV and DENV infections. Using high-throughput TCR sequencing of lymphocytes isolated from DENV and ZIKV infected mice, we were able to develop an algorithm which could identify virus-associated TCR sequences uniquely associated with either a prior ZIKV or DENV infection in mice. Using this algorithm, we were then able to separate mice that had been exposed to ZIKV or DENV infection with 97% accuracy. Overall this study serves as a proof-of-principle that T cell receptor sequencing can be used as a diagnostic tool capable of distinguishing between closely related viruses. Our results demonstrate the potential for this innovative platform to be used to accurately diagnose Zika virus infection and potentially the next emerging pathogen(s).  相似文献   

3.
The recent re-emergence of Zika virus (ZIKV), a member of the Flaviviridae family, has become a global emergency and a serious public health threat worldwide. ZIKV infection causes severe neuroimmunopathology and is particularly harmful to the developing fetuses of infected pregnant women causing various developmental abnormalities. Currently, there are no effective methods of preventing or treating ZIKV infection, and new treatment options are urgently needed. Therefore, we have used an in vitro plaque assay to screen a limited proprietary library of small organic compounds and identified highly bioactive leads, with the most active analogs showing activity in low picomolar range. Identified “hits” possess certain common structural features that can be used in the design of the next generation(s) of ZIKV inhibitors. Collectively, our findings suggest that identified compounds represent excellent template(s) for the development of inexpensive and orally available anti-Zika drugs.  相似文献   

4.
5.
王然  陈辉  安静 《微生物学报》2017,57(2):188-196
寨卡病毒系由伊蚊传播的黄病毒,超过20亿人在其流行区域生活。近几年,在中南美洲乃至世界范围内爆发的寨卡疫情已对全球公共卫生事业构成严重威胁。已有研究证实寨卡病毒感染为格林巴利综合征的病因之一;孕妇感染寨卡病毒后,可造成新生儿小头症。早日研制出安全有效的寨卡疫苗之重要性不言而喻。全球率先报道的寨卡疫苗为一款DNA疫苗,其在设计、制备和生产方面均较其他类型疫苗更加简易,且可避免可复制型疫苗因毒力回复而造成对孕妇和胎儿的健康威胁,在寨卡疫苗的研究中具有显著优势。其他传统类型疫苗和基于抗体的新型疫苗等均有研究机构开展研究,并已取得阶段性进展,本文将扼要综述寨卡疫苗的研究现状与进展。  相似文献   

6.
Luo  Dan  Miao  Yuanjiu  Ke  Xianliang  Tan  Zhongyuan  Hu  Chun  Li  Penghui  Wang  Ting  Zhang  Yuan  Sun  Jianhong  Liu  Yan  Wang  Hanzhong  Zheng  Zhenhua 《中国病毒学》2020,35(5):637-650
Virologica Sinica - Zika virus (ZIKV) is emerging as a significant pathogen worldwide and may cause severe neurological disorders such as fetal microcephaly and Guillain-Barre syndrome. No drug or...  相似文献   

7.
Zika virus (ZIKV) had remained a relatively obscure flavivirus until a recent series of outbreaks accompanied by unexpectedly severe clinical complications brought this virus into the spotlight as causing an infection of global public health concern. In this review, we discuss the history and epidemiology of ZIKV infection, recent outbreaks in Oceania and the emergence of ZIKV in the Western Hemisphere, newly ascribed complications of ZIKV infection, including Guillain-Barré syndrome and microcephaly, potential interactions between ZIKV and dengue virus, and the prospects for the development of antiviral agents and vaccines.  相似文献   

8.
The Zika virus (ZIKV) used to be an obscure flavivirus closely related to dengue virus (DENV). Transmission of this epidemic pathogen occurs mainly via mosquitoes, but it is also capable of placental and sexual transmission. Although the characteristics of these viruses are well defined, infections are unpredictable in terms of disease severity, unusual clinical manifestations, unexpected methods of transmission, long-term persistence, and the development of new strains. Recently, ZIKV has gained huge medical attention following the large-scale epidemics around the world, and reported cases of congenital abnormalities associated with Zika virus infections which have created a public health emergency of international concern. Despite continuous research on ZIKV, no specific treatment or vaccine has been developed, excepting a preventive strategy for congenital ZIKV infection. Probiotics, known as GRAS, are bacteria that confer various health beneficial effects, and have been shown to be effective at curing a number of viral diseases by modulating the immune system. Furthermore, probiotic preparations consisting of dead cells and cellular metabolites, so-called “Ghost probiotics”, can also act as biological response modifiers. Here, we review available information on the epidemiology, transmission, and clinical features of ZIKV, and on treatment and prevention strategies. In addition, we emphasize the use of probiotics and plant-based natural remedies and describe their action mechanisms, and the green technologies for microbial conversion, which could contribute to the development of novel therapies that may reduce the pathogenicity of ZIKV. Accordingly, we draw attention to new findings, unanswered questions, unresolved issues, and controversies regarding ZIKV.  相似文献   

9.
Bats play important roles as pollen disseminators and pest predators. However, recent interest has focused on their role as natural reservoirs of pathogens associated with emerging infectious diseases. Prior to the outbreak of severe acute respiratory syndrome (SARS), about 60 bat virus species had been reported. The number of identified bat viruses has dramatically increased since the initial SARS outbreak, and most are putative novel virus species or genotypes. Serious infectious diseases caused by previously identified bat viruses continue to emerge throughout in Asia, Australia, Africa and America. Intriguingly, bats infected by these different viruses seldom display clinical symptoms of illness. The pathogenesis and potential threat of bat-borne viruses to public health remains largely unknown. This review provides a brief overview of bat viruses associated with emerging human infectious diseases.  相似文献   

10.
This review describes characteristics of the genus Arcobacter. Unlike its close phenotypically related neighbour Campylobacter, Arcobacter is not currently a major public health concern, but is considered as an emerging human pathogen, and is of significance towards animal health. This review focuses on the public health significance, culturing and typing, reservoirs, and antimicrobial studies of Arcobacter. Collectively, increasing knowledge in these areas will help to develop measures, which can be used to control this emerging pathogen.  相似文献   

11.
The recent global Zika epidemics have revealed the significant threat that mosquito-borne viruses pose. There are currently no effective vaccines or prophylactics to prevent Zika virus (ZIKV) infection. Limiting exposure to infected mosquitoes is the best way to reduce disease incidence. Recent studies have focused on targeting mosquito reproduction and immune responses to reduce transmission. Previous work has evaluated the effect of insulin signaling on antiviral JAK/STAT and RNAi in vector mosquitoes. Specifically, insulin-fed mosquitoes resulted in reduced virus replication in an RNAi-independent, ERK-mediated JAK/STAT-dependent mechanism. In this work, we demonstrate that targeting insulin signaling through the repurposing of small molecule drugs results in the activation of both RNAi and JAK/STAT antiviral pathways. ZIKV-infected Aedes aegypti were fed blood containing demethylasterriquinone B1 (DMAQ-B1), a potent insulin mimetic, in combination with AKT inhibitor VIII. Activation of this coordinated response additively reduced ZIKV levels in Aedes aegypti. This effect included a quantitatively greater reduction in salivary gland ZIKV levels up to 11 d post-bloodmeal ingestion, relative to single pathway activation. Together, our study indicates the potential for field delivery of these small molecules to substantially reduce virus transmission from mosquito to human. As infections like Zika virus are becoming more burdensome and prevalent, understanding how to control this family of viruses in the insect vector is an important issue in public health.  相似文献   

12.
BackgroundZika virus (ZIKV), a mosquito-borne flavivirus, is a re-emerging virus that constitutes a public health threat due to its recent global spread, recurrent outbreaks, and infections that are associated with neurological abnormalities in developing fetuses and Guillain-Barré syndrome in adults. To date, there are no approved vaccines against ZIKV infection. Various preclinical and clinical development programs are currently ongoing in an effort to bring forward a vaccine for ZIKV.Methodology/Principle findingsWe have developed a ZIKV vaccine candidate based on Virus-Like-Particles (VLPs) produced in HEK293 mammalian cells using the prM (a precursor to M protein) and envelope (E) structural protein genes from ZIKV. Transient transfection of cells via plasmid and electroporation produced VLPs which were subsequently purified by column chromatography yielding approximately 2mg/L. Initially, immunogenicity and efficacy were evaluated in AG129 mice using a dose titration of VLP with and without Alhydrogel 2% (alum) adjuvant. We found that VLP with and without alum elicited ZIKV-specific serum neutralizing antibodies (nAbs) and that titers correlated with protection. A follow-up immunogenicity and efficacy study in rhesus macaques was performed using VLP formulated with alum. Multiple neutralization assay methods were performed on immune sera including a plaque reduction neutralization test, a microneutralization assay, and a Zika virus Renilla luciferase neutralization assay. All of these assays indicate that following immunization, VLP induces high titer nAbs which correlate with protection against ZIKV challenge.Conclusions/SignificanceThese studies confirm that ZIKV VLPs could be efficiently generated and purified. Upon VLP immunization, in both mice and NHPs, nAb was induced that correlate with protection against ZIKV challenge. These studies support translational efforts in developing a ZIKV VLP vaccine for evaluation in human clinical trials.  相似文献   

13.
Distinguishing whether pathogens are novel or endemic is critical for controlling emerging infectious diseases, an increasing threat to wildlife and human health. To test the endemic vs. novel pathogen hypothesis, we present a unique analysis of intraspecific host-pathogen phylogenetic concordance of tiger salamanders and an emerging Ranavirus throughout Western North America. There is significant non-concordance of host and virus gene trees, suggesting pathogen novelty. However, non-concordance has likely resulted from virus introductions by human movement of infected salamanders. When human-associated viral introductions are excluded, host and virus gene trees are identical, strongly supporting coevolution and endemism. A laboratory experiment showed an introduced virus strain is significantly more virulent than endemic strains, likely due to artificial selection for high virulence. Thus, our analysis of intraspecific phylogenetic concordance revealed that human introduction of viruses is the mechanism underlying tree non-concordance and possibly disease emergence via artificial selection.  相似文献   

14.
It has come to light that Zika virus (ZIKV) infection during pregnancy can result in trans-placental transmission to the fetus along with fetal death, congenital microcephaly, and/or Central Nervous System (CNS) malformations. There are projected to be >9,200,000 births annually in countries with ongoing ZIKV transmission. In response to the ZIKV threat, the World Health Organization (WHO) is strategically targeting prevention of infection in pregnant women and funding contraception in epidemic regions. I propose that the damaging effects of ZIKV can be reduced using a seasonal window of opportunity for conception that may minimize maternal exposure. Like other acute viral infections—including the related flavivirus, dengue virus (DENV)—the transmission of ZIKV is anticipated to be seasonal. By seasonally planning pregnancy, this aspect of pathogen ecology can be leveraged to align sensitive periods of gestation with the low-transmission season.  相似文献   

15.
Li  Na  Wang  Zhen  Wang  Rui  Zhang  Zhe-Rui  Zhang  Ya-Nan  Deng  Cheng-Lin  Zhang  Bo  Shang  Lu-Qing  Ye  Han-Qing 《中国病毒学》2021,36(6):1465-1474
Virologica Sinica - Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. As an emerging virus, CHIKV imposes a threat to public health. Currently, there are no vaccines or antivirals available...  相似文献   

16.
The continued spread of a highly pathogenic avian influenza (HPAI) H5N1 virus among poultry and wild birds has posed a potential threat to human public health. An influenza pandemic happens, when a new subtype that has not previously circulated in humans emerges. Almost all of the influenza pandemics in history have originated from avian influenza viruses (AIV). Birds are significant reservoirs of influenza viruses. In the present study, we performed a survey of avian influenza virus in ostriches and H5N1 virus (A/Ostrich/SuZhou/097/03, China097) was isolated. This H5N1 virus is highly pathogenic to both chickens and mice. It is also able to replicate in the lungs of, and to cause death in, BALB/c mice following intranasal administration. It forms plaques in chicken embryo fibroblast (CEF) cells in the absence of trypsin. The hemagglutinin (HA) gene of the virus is genetically similar to A/Goose/Guangdong/1/96(H5N1) and belongs to clade 0. The HA sequence contains multiple basic amino acids adjacent to the cleavage site, a motif associated with HPAI viruses. More importantly, the existence of H5N1 isolates in ostriches highlights the potential threat of wild bird infections to veterinary and public health.  相似文献   

17.
Emerging and reemerging infections pose a serious public health threat to most countries of tropical Africa. In the past decade, epidemics of diseases including cholera, dysentery, meningitis, yellow fever and Ebola virus have resulted in significant morbidity and mortality. Improved laboratory services and disease surveillance systems are essential to monitor disease trends and to initiate public health action. The present situation of emerging and reemerging infections in Africa is described in this review, and strategies for improved disease surveillance and monitoring are discussed.  相似文献   

18.
The recent explosive outbreak of Zika virus (ZIKV) infection has been reported in South and Central America and the Caribbean. Neonatal microcephaly associated with ZIKV infection has already caused a public health emergency of international concern. No specific vaccines or drugs are currently available to treat ZIKV infection. The ZIKV helicase, which plays a pivotal role in viral RNA replication, is an attractive target for therapy. We determined the crystal structures of ZIKV helicase-ATP-Mn2+ and ZIKV helicase-RNA. This is the first structure of any flavivirus helicase bound to ATP. Comparisons with related flavivirus helicases have shown that although the critical P-loop in the active site has variable conformations among different species, it adopts an identical mode to recognize ATP/Mn2+. The structure of ZIKV helicase-RNA has revealed that upon RNA binding, rotations of the motor domains can cause significant conformational changes. Strikingly, although ZIKV and dengue virus (DENV) apo-helicases share conserved residues for RNA binding, their different manners of motor domain rotations result in distinct individual modes for RNA recognition. It suggests that flavivirus helicases could have evolved a conserved engine to convert chemical energy from nucleoside triphosphate to mechanical energy for RNA unwinding, but different motor domain rotations result in variable RNA recognition modes to adapt to individual viral replication.  相似文献   

19.
Zika virus (ZIKV) poses a serious threat to global public health due to its close relationship with neurological and male reproductive damage. However, deficiency of human testicular samples hinders the in-depth research on ZIKV-induced male reproductive system injury. Organoids are relatively simple in vitro models, which could mimic the pathological changes of corresponding organs. In this study, we constructed a 3D testicular organoid model using primary testicular cells from adult BALB/c mice. Similar to the testis, this organoid system has a blood-testis barrier (BTB)-like structure and could synthesize testosterone. ZIKV tropism of testicular cells and ZIKV-induced pathological changes in testicular organoid was also similar to that in mammalian testis. Therefore, our results provide a simple and reproducible in vitro testicular model for the investigations of ZIKV-induced testicular injury.  相似文献   

20.
Dengue viruses (DENV serotypes 1–4) and Zika virus (ZIKV) are related flaviviruses that continue to be a public health concern, infecting hundreds of millions of people annually. The traditional live-attenuated virus vaccine approach has been challenging for the four DENV serotypes because of the need to achieve balanced replication of four independent vaccine components. Subunit vaccines represent an alternative approach that may circumvent problems inherent with live-attenuated DENV vaccines. In mature virus particles, the envelope (E) protein forms a homodimer that covers the surface of the virus and is the major target of neutralizing antibodies. Many neutralizing antibodies bind to quaternary epitopes that span across both E proteins in the homodimer. For soluble E (sE) protein to be a viable subunit vaccine, the antigens should be easy to produce and retain quaternary epitopes recognized by neutralizing antibodies. However, WT sE proteins are primarily monomeric at conditions relevant for vaccination and exhibit low expression yields. Previously, we identified amino acid mutations that stabilize the sE homodimer from DENV2 and dramatically raise expression yields. Here, we tested whether these same mutations raise the stability of sE from other DENV serotypes and ZIKV. We show that the mutations raise thermostability for sE from all the viruses, increase production yields from 4-fold to 250-fold, stabilize the homodimer, and promote binding to dimer-specific neutralizing antibodies. Our findings suggest that these sE variants could be valuable resources in the efforts to develop effective subunit vaccines for DENV serotypes 1 to 4 and ZIKV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号