首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immature rabbits have greater maximal airway narrowing with bronchoconstriction in vivo compared with mature animals. As isolated immature lungs have a lower shear modulus, it is unclear whether the greater airway narrowing in the immature lung is secondary to less tethering between the airways and the lung parenchyma or to differences in the mechanical properties of the mature and immature airways. In the present study, we compared the mechanical properties of fluid-filled, isolated, intraparenchymal airway segments of the same generation from mature and immature rabbits. Stimulation with ACh resulted in greater airway narrowing in immature than mature bronchi. The immature bronchi were more compliant, had a lower resting airway volume, and were more collapsible compared with the mature bronchi. When the airways were contracted with ACh under isovolume conditions, the immature bronchi generated greater active pressure, and they were more sensitive to ACh than were mature bronchi. Our results suggest that maturational differences in the structure and function of the airways in the absence of the lung parenchyma can account for the greater maximal narrowing of immature than mature airways in vivo.  相似文献   

2.
Our laboratory has previously demonstrated that maximal bronchoconstriction produces a greater degree of airway narrowing in immature than in mature rabbit lungs (33). To determine whether these maturational differences could be related to airway structure, we compared the fraction of the airway wall occupied by airway smooth muscle (ASM) and cartilage, the proportion of wall area internal to ASM, and the number of alveolar attachments to the airways, from mature and immature (6-mo- and 4-wk-old, respectively) rabbit lungs that were formalin fixed at total lung capacity. The results demonstrate that the airway walls of immature rabbits had a greater percentage of smooth muscle, a lower percentage of cartilage, and fewer alveolar attachments compared with mature rabbit airways; however, we did not find maturational differences in the airway wall thickness relative to airway size. We conclude that structural differences in the airway wall may contribute to the greater airway narrowing observed in immature rabbits during bronchoconstriction.  相似文献   

3.
We previously demonstrated that airway responsiveness is greater in immature than in mature rabbits; however, it is not known whether there are maturational differences in the effect of transpulmonary pressure (Ptp) on airway size and airway responsiveness. The relationship between Ptp and airway diameter was assessed in excised lungs insufflated with tantalum powder. Diameters of comparable intraparenchymal airway segments were measured from radiographs obtained at Ptp between 0 and 20 cmH(2)O. At Ptp > 8 cmH(2)O, the diameters were near maximal in both groups. With diameter normalized to its maximal value, changing Ptp between 8 and 0 cmH(2)O resulted in a greater decline of airway caliber in immature than mature airways. The increases in lung resistance (RL) in vivo at Ptp of 8, 5, and 2 cmH(2)O were measured during challenge with intravenous methacholine (MCh: 0.001-0.5 mg/kg). At Ptp of 8 cmH(2)O, both groups had very small responses to MCh and the maximal fold increases in RL did not differ (1.93 +/- 0.29 vs. 2.23 +/- 0.19). At Ptp of 5 and 2 cmH(2)O, the fold increases in RL were greater for immature than mature animals (13.19 +/- 1.81 vs. 3.89 +/- 0.37) and (17.74 +/- 2.15 vs. 4.6 +/- 0.52), respectively. We conclude that immature rabbits have greater airway distensibility and this difference may contribute to greater airway narrowing in immature compared with mature rabbits.  相似文献   

4.
Maximal airway narrowing during bronchoconstriction is greater in immature than in mature rabbits. At a given transpulmonary pressure (PL), the lung parenchyma surrounding the airway resists local deformation and provides a load that opposes airway smooth muscle shortening. We hypothesized that the force required to produce lung parenchymal deformation, quantified by the shear modulus, is lower in immature rabbit lungs. The shear modulus and the bulk modulus were measured in isolated mature (n = 8; 6 mo) and immature (n = 9; 3 wk) rabbit lungs at PL of 2, 4, 6, 8, and 10 cmH(2)O. The bulk modulus increased with increasing PL for mature and immature lungs; however, there was no significant difference between the groups. The shear modulus was lower for the immature than the mature lungs (P < 0.025), progressively increasing with increasing PL (P < 0.001) for both groups, and there was no difference between the slopes for shear modulus vs. PL for the mature and the immature lungs. The mean value of the shear modulus for mature and immature rabbit lungs at PL = 6 cmH(2)O was 4.5 vs. 3.8 cmH(2)O. We conclude that the shear modulus is less in immature than mature rabbit lungs. This small maturational difference in the shear modulus probably does not account for the greater airway narrowing in the immature lung, unless its effect is coupled with a relatively thicker and more compliant airway wall in the immature animal.  相似文献   

5.
Shen, X., V. Bhargava, G. R. Wodicka, C. M. Doerschuk, S. J. Gunst, and R. S. Tepper. Greater airway narrowing in immature thanin mature rabbits during methacholine challenge. J. Appl. Physiol. 81(6): 2637-2643, 1996.It hasbeen demonstrated that methacholine (MCh) challenge produces a greaterincrease in lung resistance in immature than in mature rabbits (R. S. Tepper, X. Shen, E. Bakan, and S. J. Gunst.J. Appl. Physiol. 79: 1190-1198, 1995). To determine whether this maturational difference in the response to MCh was primarily related to changes in airway resistance (Raw) or changes in tissue resistance, we assessed airway narrowing in1-, 2-, and 6-mo-old rabbits during intravenous MCh challenge (0.01-5.0 mg/kg). Airway narrowing was determined frommeasurements of Raw in vivo and from morphometric measurements on lungsections obtained after rapidly freezing the lung after the MChchallenge. The fold increase in Raw was significantly greater for 1- and 2-mo-old animals than for 6-mo-old animals. Similarly, the degree of airway narrowing assessed morphometrically was significantly greaterfor 1- and 2-mo-old animals than for 6-mo-old animals. The foldincrease in Raw was highly correlated with the degree of airwaynarrowing assessed morphometrically(r2 = 0.82, P < 0.001). We conclude that thematurational difference in the effect of MCh on lung resistance isprimarily caused by greater airway narrowing in the immature rabbits.

  相似文献   

6.
Structural components of the airway wall may act to load airway smooth muscle and restrict airway narrowing. In this study, the effect of load on airway narrowing was investigated in pig isolated bronchial segments. In some bronchi, pieces of cartilage were removed by careful dissection. Airway narrowing was produced by maximum electrical field stimulation. An endoscope was used to record lumen narrowing. The compliance of the bronchial segments was determined from the cross-sectional area of the lumen and the transmural pressure. Airway narrowing and the velocity of airway narrowing were increased in cartilage-removed airways compared with intact control bronchi. Morphometric assessment of smooth muscle length showed greater muscle shortening to acetylcholine in cartilage-removed airways than in controls. Airway narrowing was positively correlated with airway compliance. Compliance and area of cartilage were negatively correlated. These results show that airway narrowing is increased in compliant airways and that cartilage significantly loads airway smooth muscle in whole bronchi.  相似文献   

7.
To further investigate the effects of airway cartilage softening on static and dynamic lung mechanics, 11 rabbits were treated with 100 mg/kg iv papain, whereas 9 control animals received no pretreatment. Lung mechanics were studied 24 h after papain injection. There was no significant difference in lung volumes, lung pressure-volume curves, or chest wall compliance. Papain-treated rabbits showed increased lung resistance: 91 +/- 63 vs. 39 +/- 22 cmH2O X l-1 X s (mean +/- SD; P less than 0.05), decreased maximal expiratory flows at all lung volumes, and preserved density dependence of maximal expiratory flows. We conclude that increased airway wall compliance is probably the mechanism that limited maximal expiratory flow in this animal model. In addition the increased lung resistance suggests that airway cartilage plays a role in the regulation of airway caliber during quiet tidal breathing.  相似文献   

8.
Factors causing changes in pulmonary resistance and dynamic compliance with immunoglobulin (Ig) E anaphylaxis in spontaneously breathing rabbits were assessed in ventilated rabbits using tantalum bronchography and wet-to-dry wt ratios. Ventilated rabbits demonstrated changes in resistance and compliance similar to spontaneously breathing rabbits. Chlorpheniramine pretreatment prevented increases in resistance but not decreases in compliance. Anaphylaxis constricted small (less than 1 mm) airways 20.9 +/- 16.0% (mean +/- SD) and intermediate (between 1 and 3 mm) airways 21.8 +/- 19.8%. Chlorpheniramine (10 mg/kg) prevented small airway changes and attenuated those in intermediate airways. Chlorpheniramine prevented histamine-induced constriction of small (23.6 +/- 15.7%) and intermediate (17.6 +/- 15.0%) airways. Lung wet-to-dry wt ratios were unchanged. Changes in resistance and compliance during rabbit IgE anaphylaxis are not due to changes in tidal volume or frequency. Histamine, via H1 receptors, is the principal mediator of pulmonary resistance increases but not dynamic compliance reductions. Chlorpheniramine-sensitive increases in resistance are caused by constrictions of intermediate and small airways, whereas the chlorpheniramine-resistant decrease in compliance is not caused directly by constriction of the smallest measurable airways (0.25 mm) or changes in lung water.  相似文献   

9.
The effect of deep inspiration (DI) on airway responsiveness differs in asthmatic and normal human subjects. The mechanism for the effects of DI on airway responsiveness in vivo has not been identified. To elucidate potential mechanisms, we compared the effects of DI imposed before or during induced bronchoconstriction on the airway response to methacholine (MCh) in rabbits. The changes in airway resistance in response to intravenous MCh were continuously monitored. DI depressed the maximum response to MCh when imposed before or during the MCh challenge; however, the inhibitory effect of DI was greater when imposed during bronchoconstriction. Because immature rabbits have greater airway reactivity than mature rabbits, we compared the effects of DI on their airway responses. No differences were observed. Our results suggest that the mechanisms by which DI inhibits airway responsiveness do not depend on prior activation of airway smooth muscle (ASM). These results are consistent with the possibility that reorganization of the contractile apparatus caused by stretch of ASM during DI contributes to depression of the airway response.  相似文献   

10.
Autonomic response characteristics of porcine airway smooth muscle in vivo   总被引:1,自引:0,他引:1  
We studied the autonomic response characteristics of airways in 65 swine in vivo. Tracheal smooth muscle response was measured isometrically in situ; bronchial response was measured simultaneously as change in airway resistance and dynamic compliance. To determine the optimal resting length at which maximal tracheal contraction was obtained, length-tension studies were generated in four animals using maximal electrical stimulation of the vagus nerves determined from stimulus-response characteristics in eight other swine. Pharmacological studies were performed in 25 animals to determine the relative potency and intrinsic activity of agonists (acetylcholine greater than histamine much greater than norepinephrine) causing contraction of trachea and bronchial airways. In 13 swine, the effects of autonomic stimulation were studied by intravenous administration of dimethylphenylpiperazinium (DMPP) after muscarinic blockade with 1.5 mg/kg iv atropine. Tracheal contraction caused by topical application of 3.4 X 10(-4) mol histamine (13.4 +/- 1.54 g/cm) was 96 +/- 7.2% blocked by 25 micrograms/kg iv DMPP in adrenal-intact animals; minimal relaxation was demonstrated in adrenalectomized animals, indicating absence of substantial sympathetic innervation to porcine trachea. Nonadrenergic innervation was not demonstrated. After beta-adrenergic blockade, sympathetic stimulation caused alpha-adrenergic contraction in bronchial airways but not in trachea. These data define the unique response characteristics of the airways of swine and demonstrate their utility for acute experimental study of airway responses in vivo.  相似文献   

11.
To more precisely measure the mechanical properties of the lung periphery in asthma, we have developed a forced oscillation technique that applies a broad-band flow signal through a wedged bronchoscope. We interpreted the data from four healthy and eight mildly asthmatic subjects in terms of an anatomically accurate computer model of the wedged segment. There was substantial overlap in impedance between the two groups, with resistance (R) showing minimal frequency dependence and elastance (E) showing positive and negative frequency dependence across subjects. After direct instillation of methacholine, R rose in both groups, but compared with healthy subjects, the asthmatic subjects displayed upward, parallel shifts in their dose-response curves. The baseline frequency-response patterns of E were enhanced after methacholine. Frequency dependencies of R and E were well reproduced in two normal subjects by a computational model that employed rigid airways connected to constant-phase tissue units but were better reproduced in the other two normal and three asthmatic subjects when the model employed heterogeneous, peripheral airway narrowing and compliant airways. To capture the frequency dependencies of R and E in the remaining five asthmatic subjects, the model was modified by increasing airway wall stiffness. These results indicate that the lung periphery of mildly asthmatic subjects is not well distinguished from that of healthy subjects by measurement of mechanical impedance at baseline, but group differences are seen after challenge with methacholine. Modeling of the response suggests that variable contributions of airway narrowing and wall compliance are operative in determining overall mechanical impedance of the lung periphery in humans with asthma, likely reflecting the functional consequences of airway inflammation and remodeling.  相似文献   

12.
The scheme of Horsfield et al. for describing the pulmonary airway tree (J Appl Physiol 52: 21-26, 1982) catalogs each airway according to its order and the difference in order of its two daughters (denoted Delta). Although this scheme captures the natural asymmetry in the airway tree, it is still deterministic, because it assumes that all airways of a given order are the same; yet such variability is extremely important in determining the overall behavior of the lungs. We therefore analyzed complete lung lobes from three mature and two immature rabbits and determined the Horsfield order and Delta of every airway down to the terminal bronchioles. We also measured the diameter of each airway. This allowed us to determine the average structure of the rabbit airway tree, the variation about this average, and also how the structures of mature and immature airway trees compare. We found some variation in branching asymmetry and airway diameter at a given order between animals but no evidence of systematic differences in structure between mature and immature lungs. We found evidence of a difference in the branching structure of the peripheral vs. the central part of the airway tree (the break point being around order 20). We also determined the nature of the variation in Delta and diameter as a function of order, which should be valuable for the development of computer models seeking to encapsulate the naturally occurring regional variation in airway geometry in the normal rabbit lung.  相似文献   

13.
We do not yet have a good quantitative understanding of how the force-velocity properties of airway smooth muscle interact with the opposing loads of parenchymal tethering and airway wall stiffness to produce the dynamics of bronchoconstriction. We therefore developed a two-dimensional computational model of a dynamically narrowing airway embedded in uniformly elastic lung parenchyma and compared the predictions of the model to published measurements of airway resistance made in rats and rabbits during the development of bronchoconstriction following a bolus injection of methacholine. The model accurately reproduced the experimental time-courses of airway resistance as a function of both lung inflation pressure and tidal volume. The model also showed that the stiffness of the airway wall is similar in rats and rabbits, and significantly greater than that of the lung parenchyma. Our results indicate that the main features of the dynamical nature of bronchoconstriction in vivo can be understood in terms of the classic Hill force-velocity relationship operating against elastic loads provided by the surrounding lung parenchyma and an airway wall that is stiffer than the parenchyma.  相似文献   

14.
The computational model for forced expiratory flow from human lungs of Lambert and associates (J. Appl. Physiol.: Respirat. Environ. Exercise Physiol. 52: 44-56, 1982) was used to investigate the sensitivity of maximal expiratory flow to lung properties. It was found that maximal flow is very sensitive to recoil pressure and airway areas but not very sensitive to lung volume, airway compliance, and airway length. Linear programming was used to show that a given air flow-pressure curves was compatible with a fairly wide range of airway properties. Additional data for maximal flow with a He-O2 mixture narrowed the range somewhat. It was shown that the flow-pressure curve contains more information about central than peripheral airways and that information about the latter is obtainable only from flows at recoils less than 2 cmH2O. Parameter ranges compatible with individual flow-pressure curves showed differences that demonstrated that such curves give some indication of individual central airway properties.  相似文献   

15.
Active, nonanesthetized, tracheotomized rabbits were subjected to continuous positive airway pressure (CPAP) for 4 days to determine the effects of chronic mechanical strain on lung and airway function. Rabbits were maintained for 4 days at a CPAP of 6 cmH(2)O (high CPAP), at a CPAP of 0 cmH(2)O (low CPAP), or without tracheostomy (no CPAP). After treatment with CPAP, changes in respiratory resistance in response to increasing concentrations of inhaled ACh were measured during mechanical ventilation to evaluate respiratory system responsiveness in vivo. Intraparenchymal bronchial segments were isolated from the lungs of all animals to evaluate airway smooth muscle responsiveness and bronchial compliance in vitro. Rabbits maintained for 4 days at high CPAP demonstrated significantly lower responsiveness to ACh compared with rabbits that were maintained at low CPAP or with no CPAP. Airways isolated from the lungs of animals subjected to the chronic application of high CPAP were also less responsive to ACh in vitro than the airways isolated from animals subjected to low CPAP or no CPAP. The persistence of the decreased responsiveness in the excised airway tissues suggests that the decreased respiratory system responsiveness observed in vivo results primarily from direct effects on the airways. The results demonstrate that the application of prolonged mechanical strain in vivo can reduce airway reactivity.  相似文献   

16.
The exact site of airway narrowing in asthma and chronic obstructive pulmonary disease is unknown. High-resolution computed tomography (HRCT) is a sensitive noninvasive imaging technique that can be used to measure airway dimensions. After determining the optimal computed tomographic parameters using a phantom, we measured lobe volume and airway dimensions of isolated canine lung lobes at a transpulmonary pressure of 25 cmH2O. These measurements were repeated after deflation and administration of aerosolized saline and carbachol (256 mg/ml). Lobe volume decreased with all treatments. The maximal lobar volume change was 26% at 6 cmH2O after carbachol. Average airway lumen area decreased with all treatments. After carbachol, at transpulmonary pressures of 25, 15, 10, 8, and 6 cmH2O, lumen area decreased by 7.3 +/- 4.1, 62.0 +/- 4.9, 77.5 +/- 3.0, 31.9 +/- 9.0, and 95.2 +/- 1.0% (SE), respectively. When the airways were divided into four categories on the basis of initial lumen diameter (less than 2, 2-4, 4-6, and greater than 6 mm), the greatest decreases in luminal area after carbachol were seen in intermediate-sized airways (2-4 mm, 56 +/- 4%; 4-6 mm, 59 +/- 3%). HRCT can be used to make accurate measurements of airway dimensions and airway narrowing in excised lungs. HRCT may allow measurement of airway wall thickness and determination of the site of airway narrowing in asthma.  相似文献   

17.
Lung compliance is generally considered to represent a blend of surface and tissue forces, and changes in compliance in vivo are commonly used to indicate changes in surface forces. There are, however, theoretical arguments that would allow contraction of airway smooth muscle to affect substantially the elasticity of the lung. In the present study we evaluated the role of conducting airway contraction on lung compliance in vivo by infusing methacholine (MCh) at a constant rate into the bronchial circulation. With a steady-state MCh infusion of 2.4 micrograms/min into the bronchial perfusate (perfusate concentration = 0.7 microM), there was an approximate doubling of lung resistance and a 50% fall in dynamic compliance. There were also significant decreases in chord compliance measured from the quasi-static pressure-volume curves and in total lung capacity and residual volume. When the same infusion rate was administered into the pulmonary artery, no changes in lung mechanics were observed. These results indicate that the conducting airways may have a major role in regulating lung elasticity. This linkage between airway contraction and lung compliance may account for the common observation that pharmacological challenges given to the lung usually result in similar changes in lung compliance and airway conductance. Our results also suggest the possibility that the lung tissue resistance, which dominates the measurement of lung resistance in many species, might in fact reflect the physical properties of conducting airways.  相似文献   

18.
Altered perfusion of the bronchial mucosal plexus relative to the adventitial plexus may contribute to geometric changes in the airway wall and lumen. We studied bronchial perfusion distribution in sheep by using fluorescent microspheres at baseline and during intrabronchial artery challenge with methacholine chloride (MCh; n = 7). Additionally, we measured airway resistance (Raw) during MCh with control or increased perfusion (n = 9). Raw with MCh was significantly greater for high than control flow. Microspheres in histological sections lodged predominantly in the mucosa (60%), and this was not altered by MCh. However, more microspheres lodged in airways >1-mm in diameter during MCh and increased perfusion than MCh and control flow. In airways < or =1 mm in diameter, fewer microspheres lodged during control than increased flow. If the number of microspheres represents regional agonist access to airway smooth muscle, then the differences observed in Raw can be explained by the distribution of agonist. During challenge, there was greater MCh delivery to larger airways during increased flow and less delivery to smaller airways during control flow. The results demonstrate the effects of axial perfusion distribution on Raw.  相似文献   

19.
The late asthmatic response is defined as airway obstruction that occurs hours after antigen exposure in some atopic asthmatics. The importance of this reaction is that the airway obstruction may be severe, prolonged, and difficult to control unless corticosteroids are employed. In addition, this response may lead to an increase in airway reactivity. To investigate the immunopathogenesis of this disorder, an animal model in rabbits was developed. In this model, antigen-specific IgE was associated with the late asthmatic response and antigen-specific IgG was associated with blunting of the reaction. Antigen challenge of immune rabbits led to edema within the large airways shortly after antigen exposure, with infiltration of inflammatory cells (neutrophils and eosinophils) into the large and small airways during the late response. The infiltrates became more mononuclear with time and resolved over 10 days. As in humans, the late response was associated with an increase in airway reactivity and correlated temporally with infiltration of the airways with neutrophils and eosinophils. The contribution of granulocytic cells to the airway responses to antigen was studied by granulocyte depletion, which prevented both the late response and the heightened airway reactivity. In addition, transfusion of a neutrophil-rich population of white cells into granulocytopenic immune rabbits restored both responses. Thus, in this animal model, the antigen-induced late asthmatic response and subsequent increase in airway reactivity were dependent on the presence of granulocytes at the time of exposure to antigen.  相似文献   

20.
We studied the effect of increasing airway resistance on equilibration of airway and alveolar pressure during passive expiratory airflow interruption. In 10 anesthetized and paralyzed rabbits, airway and alveolar pressures were compared before and after airway resistance was increased with methacholine. In all studies, airway pressure rose to equilibrate with alveolar pressure immediately after the interruption (delta Pinit) regardless of increases in airway resistance. The pressures then remained equal during the interruption while gradually increasing to plateau (delta Pdiff). Before methacholine exposure, delta Pdiff was small (0.6 +/- 0.3 cmH2O). Steady-state resistance calculated from the sum of delta Pinit and delta Pdiff was similar to airway resistance calculated from delta Pinit alone. After methacholine, increased airway resistance was accompanied by increased delta Pdiff (2.0 +/- 0.5 cmH2O), causing disproportionate increase in steady-state resistance. delta Pdiff increases were equal in the airway and alveoli, implying resistive changes distal to the sampled alveoli. Thus increasing airway resistance did not delay pressure equilibration across airways. However, increases in airway resistance were accompanied by tissue resistive changes that were greater than the increases in airway resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号