首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Characteristics of the vacuolar-type (V-type) H+-ATPase fromguard cell protoplasts of Commelina communis L. were investigatedusing a linked enzyme assay and nitrate inhibition as a diagnosticindicator of the enzyme activity. ATPase activity was completelyinhibited by about 50 mol m–3 nitrate and activity wasoptimal near pH 8.0. The temperature optimum for activity wasabout 37 C and an Arrhenius plot indicated changes in activationenergy for the ATPase at 15C and possibly at about 30 C. Theenzyme was stimulated by Cl while Ca2+ inhibited activity(l50 = 1.5 mol m–3). The apparent Km (MgATP) was 0.62mol m–3. Incubation of guard cell protoplasts for up to 5 h in 50 µMabscisic acid (ABA) or 25µM fusicoccin (FC) did not affectsubsequent ATPase activity. In vitro assays with FC or ABA alsodid not affect enzyme activity. Activity was not affected bylight or potassium ferricyanide, two factors which are knownto influence stomatal activity. Beticoline was a potent inhibitorof activity (l50 = 50 µM) while DCCD was less effective(l50 = 90µM). On chlorophyll, protein and protoplast bases, V-type ATPaseactivity was greater in guard cell protoplasts than mesophyllcell protoplasts by 66, 13.9 and 1.9, respectively. On atonoplast surface area basis the enzyme activity was 5.6 timeshigher in guard cell protoplasts than in mesophyll cell protoplasts Thus, although the characteristics of the V-type, H +-ATPaseof GCP are very similar to those found in other cell types,rates of activity and probably tonoplast enzyme density aremuch greater in guard cell protoplasts than mesophyll cell protoplastsof C. communis which corresponds with the large and rapid ionfluxes across the tonoplast associated with stomatal movements Key words: Guard cell protoplasts, stomata, V-type H +-ATPase  相似文献   

2.
Reconstituted proteoliposomes of tonoplast ATPase are formedon solubilization of tonoplast membranes from mung bean (Vignaradiata L.) with deoxycholate (DOC) in the presence of a mixtureof soybean phospholipids (asolectin), after removal of DOC bypassage through a PD-10 column (Pharmacia). This method is idealbecause of its simplicity and rapidity. Selective insertionof sets of tonoplast H+-ATPase polypeptides (68 kDa, 60 kDa,16 kDa and several minor polypeptides) into liposomes usingthis method was confirmed by SDS-PAGE and immuno-blotting withantibodies raised against 68-kDa and 60-kDa polypeptides. Pumping of protons across the membranes of the proteoliposomeswas demonstrated by quinacrine-fluorescence quenching in thepresence of ATP-Mg2+. ATP-Mg2+ was shown to be the preferredsubstrate in both reconstituted and native tonoplast vesicles,and its optimum concentration was 0.75 to 3.0 mM. Quenchingwas completely abolished by a channel-forming ionophore, gramicidinD, and an inhibitor of tonoplast H+-ATPase, KNO3. Antibodiesto 68-kDa and 60-kDa peptides partially inhibited the pumpingof protons. The rate of pumping of protons increased with thenumber of proteoliposomes, the maximal concentration of whichwas equivalent to 250 µg of protein per reaction mixture.The optimum pH for pumping was 6.5 when inside of proteoliposomeswere loaded pH at 7.2. The rate of pumping of protons was reducedwhen proteoliposomes were made using asolectin and cholesterolat 3 : 1 (w/w), as compared with those made with asolectin alone. The ATPase activity in reconstituted proteoliposomes was inhibitedby KNO3, with half-maximal inhibition at approximately 7 mM.The enzyme actively hydrolyzed ATP in preference to GTP, CTP,UTP, and ADP, but it did not hydrolyze pNPP or AMP. Antibodiesagainst the 60-kDa polypeptide strongly inhibited ATPase activityas compared to antibodies against the 68-kDa polypeptide. Theresults obtained in this study demonstrate directly that functionaltonoplast H+-ATPase can be inserted selectively into liposomes. (Received August 31, 1990; Accepted April 18, 1991)  相似文献   

3.
Maize (Zea mays L.) root plasma membranes purified by the aqueouspolymer two-phase technique have previously been shown to bevery low in tonoplast H+ -ATPase and H+ -PPase activities. Westernblots of a similar preparation showed that, compared to a microsomalfraction, there was practically no reaction with antibodiesto the tonoplast enzymes, but a strong reaction with an antibodyto the plasma membrane H+ -ATPase. Freeze/thaw treatment ofthe plasma membrane vesicles increased the proportion with aninsideout orientation to about 40%. This preparation was usedto demonstrate that substitution of KCl for K2S04 resulted ina 14-fold stimulation of H+ transport, but an increase in ATPaseactivity of less than 10%. In contrast to its effect on tonoplastvesicles, Cl had only a small effect on the membranepotential of plasma membrane vesicles, assayed by oxonol V fluorescencequench recovery. To account for the apparent variability inthe H+/ATP coupling ratio, it may be necessary to devise a modelthat takes into consideration the possibility of non-linearbehaviour with respect to the membrane potential of the protonleak and/or of slip in the ATPase. Key words: ATPase, plasma membrane, anion stimulation, proton transport  相似文献   

4.
Plasma membranes were isolated using the aqueous polymer two-phasepartition method from the algae Chara corallina and Chara longifolia,algae which differ in their ability to grow in saline environments.Enrichment of plasma membrane and depletion of tonoplast relativeto the microsomal fraction was monitored using phosphohydrolaseassays and crossreactions to antibodies raised against higherplant transporters. Antibodies to the vacuolar ATPase and pyrophosphatasecross-reacted with epitopes in the microsomal fraction, butshowed little affinity for the plasma membrane fraction. Pyrophosphataseactivity also declined in the plasma membrane fraction relativeto the microsomal fraction. The V-type H+ -ATPase activity,sensitive to nitrate or bafilomycin, was low in both fractions,though the cross-reaction to the antibody was reduced in theplasma membrane fraction. By contrast, the antibody recognitionof a P-type H+-ATPase amino acid sequence from Arabidopsis didnot occur strongly in the anticipated 90–100 kDa range.While there was enhanced recognition of a polypeptide at around140 kDa in the plasma membrane fraction, salt treatment of Charalongifolia resulted in plasma membrane fractions with reducedamounts of this epitope, but no change in vanadate-sensitiveATPase activity, suggesting that it does not represent the onlyP-type ATPase. Microsomal membranes from saltadapted C. longifoliahave higher reactivity with the antibody to the tonoplast ATPase. Key words: Chara, plasma membrane, salt tolerance, ATPase  相似文献   

5.
Plasma membrane H+-translocating ATPase was partially purifiedfrom mung bean (Phaseolus mungo L.) roots and reconstitutedinto soybean phospholipid (asolectin) liposomes by the n-octylglucosidedilution method. The resulting proteoliposomes were mainly unilamellarvesicles ranging in size from 0.05 to 0.2 µm. The existenceof ATP-drived H+-pumping across the proteoliposomes was demonstratedby the quenching of quinacrine fluorescence in the presenceof Mg2+. The quenching could be abolished by an uncoupler, FCCP,and an inhibitor of H+-translocating ATPase, vanadate. The reconstitutedATPase consisted of three major polypeptides of 105 KDa, 67KDa and 57 KDa. Its pH optimum, divalent cation stimulationand vanadate sensitivity were similar to those of partiallypurified ATPase. However, the specificity toward ATP was muchgreater following reconstitution. Also reconstitution reducedthe degree of inhibition by DCCD. Local anesthetics (e.g. dibucaine)had no effect on H+-pumping activity but increased the ATPaseactivity when proteoliposomes were reconstituted in their presence. (Received May 2, 1986; Accepted October 17, 1986)  相似文献   

6.
Achim Hager  Christa Lanz 《Planta》1989,180(1):116-122
Functional properties and the localization of essential SH-groups of the tonoplast H+-ATPase fromZea mays L. were studied. In contrast to the pyrophosphate-dependent H+-translocation activity of the tonoplast, the H+-ATPase activity was inhibited by SH-blocking agents, such as N-ethylmaleimide and iodoacetic acid. In the case ofp-hydroxymercuribenzoate, HgCl2 and oxidized glutathione, the inhibition could be reversed by adding reduced glutathione or dithiothreitol. Incubation of tonoplast vesicles with oxidized glutathione or N-ethylmaleimide in the presence of Mg·ADP—a competitive inhibitor of the ATP-dependent H+ pump—avoided the inhibition of the H+-pumping activity. This effect is an indication for the occurrence of essential SH-groups at the catalytic site of the H+-ATPase. In order to characterize the active center these thiols were specifically labeled with maleimidobutyrylbiocytin. Subsequently, the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to an immobilizing membrane. The maleimidobutyrylbiocytin-labeled active-center protein was detected by a biotin-streptavidin-peroxidase staining system and was shown to be a 70-kDa subunit of the tonoplast H+-ATPase. It is suggested that the oxidation state of the critical sulfhydryl groups within the active center of the enzyme and their reversible blocking by endogenous compounds might be of great importance for the regulation of the enzyme activity in vivo.  相似文献   

7.
H+-translocating ATPase and pyrophosphatase (PPase) associatedwith the tonoplast of Chara corallina were isolated with theaid of a perfusion technique, and the effects of ions on theiractivities were studied. All the alkali metal cations testedstimulated the ATPase and ATPdependent H+ pumping activitiesonly by 10 to 40%. Anions, on the other hand, strongly affectedthe activities. Potassium salts of Cl- and Br- stimulated them,while F- and NO3- inhibited them. By contrast, the H+-translocatingPPase was insensitive to anions but sensitive to cations. Theorder of cation stimulation was Rb+=K+>Cs+>Na+=Li+>choline+.NO3- (50 mil), thought to be a specific inhibitor of the tonoplast-typeH+-ATPase, inhibited the ATPdependent H+ pumping almost completelybut the ATPase activity by only about 50%. Na+ inhibited thePP1-dependent H+ pumping (I5O=5OmM) in the presence of 50 mMKCl but not the ATP-dependent one. The PPase was more sensitiveto F- (I50=400µM) than the ATPase. Both the H+-ATPaseand the H+-PPase required Mg2+ for their activities, althoughan excess was inhibitory to both. The different sensitivitiesof the PP1-dependent and the ATP-dependent H+- pumping enzymesto ions correspond to the tonoplast enzymes of higher plantsand may be used as "markers" to distinguish between these enzymesin characean cells (Received October 2, 1987; Accepted May 18, 1988)  相似文献   

8.
When microsomal membranes from maize (Zea mays L. cv. Clipper)coleoptiles were separated by isopyc-nic centrifugation on acontinuous 10–45% sucrose gradient, bafilomycin A1-inhibitedATPase activity co-localized with the activities of the tonoplastmarker-enzymes, nitrate-Inhibited ATPase and K+-dependent pyrophosphatase.Thus, bafilomycin A1 is a specific inhibitor of the vacuolarH+-ATPase of maize coleoptiles. Inhibition of the vacuolar H+-ATPaseby bafilomycin A1 was strictly dependent upon the concentrationof the enzyme present in the assay medium, suggesting a stoichiometricassociation between bafilomycin A1 and the vacuolar H+-ATPase.In tonoplast-enriched preparations, half-maximal inhibitionwas obtained at 43 pmol bafilomycin A1 mg–1 protein. BafilomycinA1 inhibited the vacuolar H+-ATPase in a simple non-competitivemanner: increasing bafilomycin A1 concentrations reduced theVmax, of the H+ -ATPase, but had no effect on its Km towardsATP. Key words: Bafilomycin A1, coleoptile, H+-ATPase (vacuolar), maize, Zea mays L  相似文献   

9.
Tonoplast vesicles were isolated from 7- to 26-day-old pumpkincotyledons by an improved floating method, and the activitiesof pyrophosphatase (PPase) and adenosine triphosphatase (ATPase)in tonoplast vesicles, as well as rates of PPase- and ATPase-dependentpumping of protons across tonoplast vesicles, were measured.PPase activity and the rate of pyrophosphate-dependentproton-pumpingdecreased more rapidly than loss of chlorophyll from cotyledons,and the pumping on day 14 was only 10% of that on day 7, whilePPase activity was still more than 30% of that on day 7. Bycontrast, ATPase activity and the rate of ATP-dependent proton-pumpingincreased until day 14. In this latter case, the changes inboth activity and pumping were not major and were parallel toone another until day 21. However, a rapid decrease was observedonly in the rate of pumping on day 26, at which time an apparentloss of fresh weight was observed in cotyledons. The relationshipbetween the aging of pumpkin cotyledons and functional changesin vacuoles is discussed in terms of ATP- and pyrophosphate-dependentproton-pumping across the tonoplast. The two proton pumps inthe tonoplast, H+-ATPase and H+-pyrophosphatase, appear to playdifferent roles during the growth and senescence of pumpkincotyledons. 1Plant EcoPhysiology Laboratory, Tohoku National AgriculturalExperiment Station, Shimo-Kuriyagawa, Morioka, Iwate, 020-01Japan.  相似文献   

10.
Two membrane fractions were obtained from 16%/26% and 34%/40%interfaces following discontinuous sucrose density gradientcentrifugation of a 10,000–80,000xg pellet from mung bean(Phaseolus mungo L.) roots. The ATPases in the fractions differedfrom each other in their sensitivity toward various inhibitors,activation with salts, dependence of activity on pH, and Kmfor ATP.Mg2+. Judging from their sensitivity toward inhibitors,the ATPases in the low and high density membranes are consideredmainly of tonoplast and plasma membrane origin, respectively.Both ATPases were activated by gramicidin D and nigericin. ATP-inducedquenching of quinacrine fluorescence in both fractions requiredMg2+ and permeant anions such as Cl and quenching wascollapsed by carbonylcyanide p-trifluoromethoxyphenyl hydrazone.The sensitivities of quenching to the inhibitors were essentiallythe same as those of ATPase activity in the membranes. Thesefindings suggest the involvement of ATPases in H+-pumping acrossa plasma membrane and tonoplast. (Received April 12, 1985; Accepted October 11, 1985)  相似文献   

11.
The introduction of the thaumatin gene into potato plants was accompanied by a decrease in the activity of H+-ATPase in the plasmalemma (PL) of tuber cells. When tubers were released from dormancy, the enzyme was activated in the tuber cells of both the original and transgenic plants. Experiments performed in vitro demonstrated that sensitivities to ambiol (AM) and jasmonic acid (JA) of H+-ATPase in the PL of tubers from the original plants were lower after the release from a period of deep dormancy. In preparations from the tubers of transgenic plants, the situation was reversed. The differences between the activities of H+-ATPase in the PL preparations produced from the original and transgenic tubers that sprouted under the action of AM and JA were detected. Thus, the overexpression of the thaumatin gene in potato plants changed the properties of H+-ATPase from PL.  相似文献   

12.
Plasmalemma ATPase from Jerusalem artichoke tubers was studiedin relation to the dormancy of tubers. After partial purification,one peptide of 110 kDa appeared on SDS PAGE electrophoresisfrom dormant and non-dormant materials. ATPase specific activitywas twice higher on dormant material in the crude and solubilizedfractions, but was the same in both materials after partialpurification. Immunolabeling of this enzyme was made using aspecific antibody raised against the C terminal portion of theH+-ATPase from Arabidopsis thaliana. Immunolabeling was morepronounced in dormant material, in vitro and in situ. Severalworks had shown that the C terminal part of the enzyme couldbe involved in its regulation. The results presented are discussedin relation to the hypothesis according to which an internaleffector could modulated the plasmalemma ATPase activity, duringdormancy breaking. (Received October 25, 1993; Accepted September 6, 1994)  相似文献   

13.
The activity of solubilized plasma membrane ATPase is affectedby the nature of exogenously added molecular species of phospholipids.To examine the role of the polar head group and of the molecularspecies of phospholipids in H+-pumping, the ATPase solubilizedfrom plasma membranes of mung bean (Vigna radiata L.) hypocotylswas reconstituted in liposomes prepared with a variety of phospholipids. The extent of activation of solubilized plasma membrane ATPasedue to the addition of 1-palmitoyl 2-oleoyl-phospholipids (PO-phospholipids)and asolectin decreased in the following order: POPS POPC asolectin POPG > POPE > POPA (see List of Abbreviations). H+-pumpinginto proteoliposomes reconstituted with asolectin and plasmamembrane ATPase was demonstrated by quinacrine fluorescencequenching in the presence of ATP-MgSO4. H+-pumping was inhibitedby VO4 and gramicidin D. When plasma membrane ATPase was reconstitutedin liposomes prepared with various PO-phospholipids, the abilityof PO-phospholipids to support H+-pumping into the proteoliposomesdecreased in the following order: POPG POPS > asolectin POPC. POPE and POPA failed to support any H+-pumping. A remarkablyhigh rate of H+-pumping was observed in proteoliposomes preparedwith 1-saturated 2-unsaturated fatty acids, such as POPC, butH+-pumping could hardly be detected in proteoliposomes preparedwith 1-, 2-unsaturated or 1-, 2-saturated fatty acids, suchas PSPC or DLPC. ATPase activity in proteoliposomes was dependenton the species of PO-phospholipids used for reconstitution anddecreased in the following order: POPS > POPG > POPC asolectin > POPA > POPE. DLPC (see List of Abbreviations)which includes a 1-, 2-unsaturated fatty acid supported onlymarkedly depressed activity. Both H+-pumping and the hydrolysis of ATP by the plasma membraneATPase are strongly affected by the polar head group and compositionof the fatty acyl chain of phospholipids used to prepare liposomesfor reconstitution of the ATPase. (Received May 31, 1991; Accepted September 18, 1991)  相似文献   

14.
Extrusion of protons as a response to high-NaCl stress in intactmung bean roots was investigated at different external concentrationsof Ca2+ ions ([Ca2+]ex). The extrusion of protons was graduallyenhanced in the roots exposed to 100 mM NaCl, and high [Ca2+]exdiminished this enhancement of the extrusion. Vesicles of plasmalemmaand tonoplast were prepared from the roots and the H+-translocatingATPase (H+-ATPase) activities associated with the two typesof membrane and the H+-pyrophosphatase (H+-PPase) activity ofthe tonoplast were assayed. The plasmalemma ATPase was stimulatedin parallel with dramatic increases in the intracellular concentrationof Na+([Na+]in). High [Ca2+]ex prevented the increase in [Na+]inand diminished the stimulation of ATPase activity. The tonoplastATPase showed a rapid response to salt stress and was similarlystimulated even at high [Ca2+]M. The activities of both ATPaseswere, however, insensitive to concentrations of Na+ ions upto 100 HIM. By contrast, H+-PPase activity of the tonoplastwas severely inhibited with increasing [Na+]in under salt stressand recovered with high [Ca2+]ex. These findings suggest thathigh-NaCl stress increases the intracellular concentration ofNa+ ions in mung bean roots, which inhibits the tonoplast H+-PPase,and the activity of the plasmalemma H+-ATPase is thereby stimulatedand regulates the cytoplasmic pH. (Received March 26, 1991; Accepted December 13, 1991)  相似文献   

15.
H+-Transport activity of the vesicles prepared from barley rootswas studied at the early phase after application of NaCl stress.The activity reached maximal level at 3 days after the treatmentwith 200 mM NaCl which moderately reduced the growth. This activityincrease could be suppressed in the presence of cycloheximideand actinomycin D. The properties of the membrane vesicles associated with H+-transportactivity prepared from both control and NaCl-stressed rootssuggested that it was of tonoplast origin based on the followingfindings: optimal pH at 7.5, strong inhibition by nitrate butnot by vanadate, and stimulation by chloride. The density gradient centrifugation of vesicles with DextranT70 did not show any detectable difference in the distributionpatterns of H+-transport activities between control and NaClstressedroots. Furthermore, Km values for ATP of the H+-transport activityof vesicles prepared from control and NaCl-stressed roots werethe same. Therefore, H+-transport activity with properties similarto those of the control roots was increased by NaCl stress.The results are discussed in terms of an adaptive mechanismof barley against salt stress. 1Permanent address: Department of Horticulture, College of Agriculture,Chonnam National University, Chonnam 500, Korea. (Received April 18, 1988; Accepted July 20, 1988)  相似文献   

16.
The stimulation by K+ of the initial rate of H+-pumping by ATPase was studied in native plasmalemma (Zea mays L. var Mona) vesicles and in reconstituted vesicles with enzyme purified on a glycerol gradient. In reconstituted vesicles, a very high H+-pumping rate (200,000% quenching per minute per milligram protein) was obtained with 9-amino-6-chloro-2-methoxyacridine provided that the pump was short-circuited by K+-valinomycin. A constant ionic strength was used to prevent indirect stimulation by the electrostatic effects of K+ salts. Indirect stimulation of H+-pumping by the short-circuiting effect of internal K+, could be abolished by using the permeant anions NO3 and Br in native, but not in reconstituted vesicles. In both materials, half-stimulation of the H+-pumping by K+ was observed at about 5 millimolar. The same stimulation was obtained when K+ was present only in the external solution or when it was present both outside and inside the vesicles. It was concluded that the stimulating effect of K+ on the H+-pumping evidenced in these experiments on both native and reconstituted vesicles was due to a direct effect of the cation on the cytoplasmic face of the ATPase. These results are discussed within the context of the hypothesis of an active K+ transport driven by the ATPase through a direct H+/K+ exchange mechanism.  相似文献   

17.
Abstract Mycochromone, a metabolite produced by Mycosphaerella rosigena, inhibits the ATP-dependent proton translocation and the ATP-generated electrical potential in pea stem tonoplast-enriched vesicles, without affecting the H+/K+ exchange induced by nigericin or an artificially imposed proton gradient. The inhibition is dependent on the time of pre-incubation and mycochromone concentration. In addition, mycochromone inhibits the ATP-dependent proton translocation in radish plasma membrane-enriched vesicles, though it does not alter ATPase activity (evaluated by hydrolysis of ATP) in either type of plant vesicle. Mycochromone seems to act on the H+ channels for proton translocation of the H+-pumping ATPase localized on plasmalemma and tonoplast, without affecting the catalytic site of ATP hydrolysis.  相似文献   

18.
We report the rapid and functional reconstitution of H+-pyrophosphatase(H+-PPase) from the tonoplast of cultured rice (Oryza sativaL.) cells to proteoliposomes. The CHAPS-solubilized H+-PPasewas incorporated into liposomes by gel-filtration. Both theactivities of PPi-hy-drolysis and H+-pumping were influencedby the lipid-pro-tein ratio and cholesterol. (Received June 10, 1996; Accepted January 9, 1997)  相似文献   

19.
In previousstudies, our laboratory has utilized a cell line derived from the ratinner medullary collecting duct (IMCD) as a model system for mammalianrenal epithelial cell acid secretion. We have provided evidence, from aphysiological perspective, that acute cellular acidification stimulatesapical exocytosis and elicits a rapid increase in proton secretion thatis mediated by an H+-ATPase. Thepurpose of these experiments was to examine the effect of acutecellular acidification on the distribution of the vacuolar H+-ATPase in IMCD cells in vitro.We utilized the 31-kDa subunit of theH+-ATPase as a marker of thecomplete enzyme. The distribution of this subunit of theH+-ATPase was evaluated byimmunohistochemical techniques (confocal and electron microscopy), andwe found that there is a redistribution of these pumps from vesicles tothe apical membrane. Immunoblot evaluation of isolated apical membranerevealed a 237 ± 34% (P < 0.05, n = 9) increase in the 31-kDa subunitpresent in the membrane fraction 20 min after the induction of cellularacidification. Thus our results demonstrate the presence of this pumpsubunit in the IMCD cell line in vitro and that cell acidificationregulates the shuttling of cytosolic vesicles containing the 31-kDasubunit into the apical membrane.  相似文献   

20.
ATP-induced sucrose efflux from red-beet tonoplast vesicles   总被引:2,自引:0,他引:2  
Echeverría E  Gonzalez PC 《Planta》2000,211(1):77-84
 Sucrose efflux from the vacuole of mobilizing red-beet (Beta vulgaris L.) hypocotyl cells was investigated using purified tonoplast vesicles. Tonoplast vesicle purity was assured by the immunoreactivity to antibodies raised against the vacuolar ATPase and by the strong inhibition exhibited by the H+-ATPase to bafilomycin-A and NO3 . Inhibition of the H+-ATPase by vanadate and azide was negligible. Sucrose was loaded into tonoplast vesicles by using the pH-jump method of energization. Addition of ATP to sucrose-loaded vesicles in the presence of bafilomycin-A resulted in efflux of a significant amount of sucrose. During ATP-induced sucrose efflux, bafilomycin-insensitive ATPase activity increased significantly with no increase in H+-translocating activity. The additional bafilomycin-A insensitive ATPase activity observed in sucrose-loaded vesicles was completely inhibited by vanadate as was the efflux of sucrose. Similar to vanadate, thapsigargin was also inhibitory to sucrose efflux and to the bafilomycin-A insensitive ATPase activity. The data indicate that vacuolar sucrose can be actively mobilized by a specific ATP-dependent efflux mechanism. Received: 12 October 1999 / Accepted: 18 November 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号