首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 703 毫秒
1.
韩超  徐晓立 《西北植物学报》2016,36(8):1594-1599
以巨尾桉‘GL9’、尾巨桉‘DH32-29’和尾边桉‘XF35’3种桉树无性系组培生根苗为材料,采用常规石蜡切片技术,对石蜡切片制作过程中的固定环节进行了优化,观察了桉树不定根的发育过程。结果表明:(1)采用FAA固定液固定材料,可获得染色清晰,组织完整的桉树根系切片。(2)‘GL9’和‘DH32-29’在生根诱导8d后生出不定根,生根类型为皮部生根;‘XF35’在生根诱导12d后生出不定根,生根类型为愈伤组织生根;‘GL9’不定根的根尖和根基处均有细胞旺盛分裂,‘DH32-29’不定根只在根尖有细胞旺盛分裂,‘XF35’不定根则只在其根基处有大量旺盛分裂的细胞。  相似文献   

2.
欧美杂种山杨微扦插不定根发生过程的解剖学研究   总被引:1,自引:0,他引:1  
采用石蜡切片技术,以欧美杂种山杨插穗基部茎段为实验材料,连续解剖观察插穗不定根发生发育过程,分析根原基发生部位与扦插生根的关系。结果显示:欧美杂种山杨插穗不定根的发生过程分为4个时期,为根原基诱导期,不定根起始期、表达期和伸长生长期。根原基诱导期维管形成层产生具有分生组织特点的薄壁细胞;不定根起始期,维管形成层及附近的薄壁细胞脱分化,形成不定根原基发端细胞;不定根表达期,根原基发端细胞不断分裂成具有方向性的根原基,根原基穿过韧皮射线和皮层,向皮孔方向发展;不定根伸长生长期,根原基从皮孔伸出,其内部的维管系统开始发育,形成不定根。研究认为,欧美杂种山杨为皮部诱导生根类型,不定根原基起源于维管形成层区,起源部位单一,扦插难生根。  相似文献   

3.
四合木茎插穗生根的解剖学研究   总被引:1,自引:0,他引:1  
采用石蜡制片法对四合木茎插穗不定根的形成进行了解剖学研究,探讨四合木生根类型、生根部位、愈伤组织与生根的关系以及不定根的形成过程。结果显示:(1)四合木具有典型的木本植物茎结构,茎皮层内未发现厚壁组织。(2)四合木茎薄壁组织含有丰富的淀粉粒和蛋白质。(3)四合木茎插穗内无潜伏根原基,不定根由诱生根原基发育形成,诱生根原基是由愈伤组织自身的薄壁细胞反分化形成。研究表明,愈伤组织是孕育不定根的前提,四合木扦插生根属于愈伤组织生根类型。  相似文献   

4.
核桃试管不定根的组织学研究   总被引:9,自引:2,他引:7  
以核桃品种‘新早丰’试管嫩茎为试材,采用二步生根法诱导生根,对其试管苗不定根发生发育过程进行了解剖学研究。结果表明:核桃试管嫩茎内未发现潜伏根原基;诱导生根后,不定根原基起源于形成层,特别是髓射线正对的形成层部分,属于诱生根原基型;不定根上的侧根起源于中柱鞘细胞。核桃试管嫩茎不定根的发育过程可分为4个阶段:(1)形成层细胞分裂;(2)转变为分生组织细胞群(即根原始细胞);(3)细胞群发育成可见的根原基; (4)根原基内细胞继续分裂分化形成根尖的外形,其内发育出维管束,并向外生长,穿过皮层,突破茎表皮。在组织培养条件下长出的不定根内部解剖构造为典型的初生构造,移栽后68 d出现次生构造。另外,试管苗根毛出现与否及其发育状况受基质理化性质的影响,即生态条件可以改变组织发生及其形状。  相似文献   

5.
对适宜于铁线莲品种 'Multi-Blue'(Clematis 'Multi-Blue')不定芽生根培养的基本培养基进行了筛选,并采用L9(32)正交实验设计对生根培养基中NAA和IBA质量浓度进行了比较分析,对不定根形成过程中解剖结构的变化也进行了观察.接种在1/2MS培养基上的铁线莲品种'Multi-Blue'不定芽的生根率极显著高于改良1/2MS、MS和WPM培养基(P<0.01),生根率达66.97%;在1/2MS培养基中添加 0.05 mg·L-1 NAA,不定芽的生根效果最好,生根率达69.34%,极显著高于其他处理组(P<0.01).研究结果表明,添加0.05 mg·L-1 NAA的1/2MS培养基(含30 g·L-1蔗糖和8 g·L-1琼脂,pH 5.8)为铁线莲品种'Multi-Blue'不定芽生根培养的最佳培养基.在不定芽的茎横切面上未见潜伏根原基存在;而在接种约1周后,不定芽茎基部皮层的薄壁细胞逐渐恢复分生能力,出现胞质变浓、核质增加、液泡缩小及细胞排列紧密等变化,细胞开始分裂并形成分生细胞团;接种后约2周,根原基发端细胞不断分裂并逐渐形成体积较小、染色较深的一群分生细胞,并出现明显的分层结构;接种后约3周,细胞继续进行平周分裂和垂周分裂,并分化出球形或楔形的不定根根原基;根原基在皮层中常发生弯曲或分支,且皮层处的不定根加粗生长,最终突破皮孔并形成独立的不定根.观察结果表明,铁线莲品种'Multi-Blue'不定芽基部形成的不定根根原基为诱生根原基.  相似文献   

6.
该研究以侧柏一年生硬枝插穗为实验材料,利用连续组织切片技术观察插穗不定根发生发育过程中的组织结构变化,分析插穗外部形态变化、不定根原基起源和不定根的形成过程,探讨侧柏插穗不定根发生模式和不定根的组织学起源。结果显示:侧柏扦插后可由愈伤组织、皮部诱导产生不定根,出现皮部生根、愈伤组织生根、愈伤组织兼具皮部生根3种类型;侧柏插穗中存在少量潜伏根原基,但插穗生根类型以诱导生根为主;不定根原基诱导产生于愈伤组织、木质部、形成层及次生韧皮部等部位。研究认为侧柏扦插生根属于多位点发生模式,不定根原基的组织学起源是愈伤组织、髓射线、射线原始细胞、尚未分化成熟的木质部细胞,通过人工诱导同时激活这些不定根起源位点能够显著提高生根率和生根质量。  相似文献   

7.
野葛地下器官的解剖学研究   总被引:3,自引:0,他引:3  
野葛(Puerari9a lobata(willd.)Ohwi.)的地下器官包括初生根、块根、不定根和根状茎4部分。初生根为四原型,内皮层明显,可见到凯氏带。块根的次生木质部发达,民管周转存在额外形成层。成熟块根中积累丰富的淀粉。不定根为三原型,具次生结构。根状茎作为营养繁殖器官,产生不定根,其中不定根可发展成蓼根。无论初生根、收缩不定根或根状茎的细胞中均示发现淀粉积累,这可能与贮藏器官块根的发达  相似文献   

8.
桤木插穗不定根发生与发育的解剖学观察   总被引:1,自引:0,他引:1  
采用常规石蜡切片法对桤木插穗进行解剖观察,研究茎的次生结构及不定根的起源和发生发育过程,探讨影响不定根发生的因素。结果表明:桤木茎的次生构造从外至内由周皮、皮层和次生维管组织3部分组成。皮孔有2种类型。不定根的发育过程可分为4个阶段:(1)维管形成层与髓射线交叉处的细胞活动,产生具有典型分生组织特点的薄壁细胞团;(2)薄壁细胞不断分裂,形成不定根原基发端细胞;(3)分裂分化形成的不定根沿着韧皮射线向皮层延伸;(4)随着不定根内部的维管系统的发育,不定根从皮孔或下切口伸出。  相似文献   

9.
杂种鹅掌楸插穗不定根发生与发育的解剖学观察   总被引:20,自引:2,他引:18  
从解剖学角度着手,对杂种鹅掌楸〔Liriodendronchinense(Hemsl.)Sarg.×L.tulipiferaL.〕扦插过程中不定根的发生发育进行了研究。结果表明:杂种鹅掌楸插穗内未发现潜伏根原基。扦插后,不定根原基起源于维管形成层区,属于诱导生根类型。维管形成层恢复活动后,在不定根发生的部位附近形成1个明显的多薄壁细胞区域,在此区域不定根较容易发生。愈伤组织内没有发现根原基,愈伤组织在发育的过程中,内部细胞部分分化,并形成不规则的输导组织。大量的愈伤组织对不定根的发生有较强的抑制作用。杂种鹅掌楸插穗上不定根的发生可分为4个阶段:(1)维管形成层恢复活动,分裂出多层薄壁细胞;(2)维管形成层及附近的薄壁细胞脱分化,形成不定根原基发端细胞;(3)根原基发端细胞不断分裂成具有方向性的根原基,根原基穿过韧皮射线和皮层,向皮孔或下切口方向发展;(4)不定根从皮孔或下切口伸出,其内部的维管系统开始发育。  相似文献   

10.
红皮云杉茎的解剖结构与插条不定根形成的研究   总被引:8,自引:0,他引:8  
姜静  翁玉辉 《植物研究》1994,14(4):448-452
1992年7-8月定时固定红皮云杉插条基部材料于FAA液中,石蜡制片法室内解剖研究不定根的发生。结果表明:红皮云杉插条诱发根原基的来源有两种途径。一种是愈伤组织生根型,在愈伤组织的再生形成层处,或茎的维管形成层诱发根原基;另一种是非愈伤组织生根型,在插条切口处的维管形成层、皮层或初生木质部与次生木质部间的薄壁组织较深的部位,直接产生纵向不定根原始体,有的在距离切口0.1-0.5cm以上茎的维管形成层,维管形成层与木射线的交界处及叶隙等薄壁组织产生径向不定根。不同个体间产生的不定根数量及发育的早晚差异较大。  相似文献   

11.
玉吊钟气生不定根根尖区域的部分表皮细胞经分裂可形成多细胞根毛。根毛长0.03mm左右,具单列细胞、双列细胞和叉状分枝类型,由基细胞和毛体细胞二部分组成。电镜显示,基细胞内部结构与表皮细胞相似。组成毛体的细胞都有分泌功能。在分泌活动期,细胞内形成大量内质网,并膨大成囊泡状或溢出囊泡,分泌停止,内质网即消失;其细胞结构的变化及主要由内质网参与分泌活动与蜜腺细胞在分泌活动中的结构变化类似。故推测多细胞根  相似文献   

12.
Autophagy is an important mechanism for recycling cell materials upon encountering stress conditions. Our previous studies had shown that TMV infection could lead to systemic PCD in the distal uninfected tissues, including root tip and shoot tip tissues. But it is not clear whether there is autophagy in the distal apical meristem of TMV-induced plants. To better understand the autophagy process during systemic PCD, here we investigated the formation and type of autophagy in the root meristem cells occurring PCD. Transmission electron microscopy assay revealed that the autophagic structures formed by the fusion of vesicles, containing the sequestered cytoplasm, multilamellar bodies, and degraded mitochondria. In the PCD progress, many mitochondria appeared degradation with blurred inner membrane structure. And the endoplasmic reticulum was broke into small fragments. Finally, the damaged mitochodria were engulfed and degraded by the autophagosomes. These results indicated that during the systemic PCD process of root tip cells, the classical macroautophagy occurred, and the cell contents and damaged organelles (mitochondria) would be self-digested by autophagy.  相似文献   

13.
To study the interrelationships of endoplasmic reticulum, mitochondria, intermediate filaments, and microtubules, we have developed a quadruple fluorescence labeling procedure to visualize all four structures in the same cell. We applied this approach to study cellular organization in control cells and in cells treated with the microtubule drugs vinblastine or taxol. Endoplasmic reticulum was visualized by staining glutaraldehyde-fixed cells with the dye 3,3'-dihexyloxacarbocyanine iodide. After detergent permeabilization, triple immunofluorescence was carried out to specifically visualize mitochondria, vimentin intermediate filaments, and microtubules. Mitochondria in human fibroblasts were found to be highly elongated tubular structures (lengths up to greater than 50 microns), which in many cases were apparently fused to each other. Mitochondria were always observed to be associated with endoplasmic reticulum, although endoplasmic reticulum also existed independently. Intermediate filament distribution could not completely account for endoplasmic reticulum or mitochondrial distributions. Microtubules, however, always codistributed with these organelles. Microtubule depolymerization in vinblastine treated cells resulted in coaggregation of endoplasmic reticulum and mitochondria, and in the collapse of intermediate filaments. The spatial distributions of organelles compared with intermediate filaments were not identical, indicating that attachment of organelles to intermediate filaments was not responsible for organelle aggregation. Mitochondrial associations with endoplasmic reticulum, on the other hand, were retained, indicating this association was stable regardless of endoplasmic reticulum form or microtubules. In taxol-treated cells, endoplasmic reticulum, mitochondria, and intermediate filaments were all associated with taxol-stabilized microtubule bundles.  相似文献   

14.
Various morphological features of the Schwann cells of myelinated fibres in the lizard thoracic spinal roots were studied, and, when possible, quantified using morphometric methods. About 0.8% of the Schwann cells are binucleate and some display clusters of microvilli along the internodes. The percentages of the cytoplasmic area of the Schwann cell occupied by the following cytoplasmic components were determined: mitochondria, Golgi apparatus, granular endoplasmic reticulum, smooth endoplasmic reticulum, multivesicular bodies, dense bodies, autophagic vacuoles, peroxisome-like bodies, lipofuscin granules and lipid droplets. Linear relationships were found between the sectional areas of the mitochondria and granular endoplasmic reticulum of the Schwann cell and both the length of the profile of the Schwann cell plasma membrane and the size of the related axon. The results obtained are compatible both with the hypothesis that the mitochondria and granular endoplasmic reticulum of the Schwann cell are involved in the production and storage of proteins for the plasma membrane of this cell, and with the hypothesis that these organelles are involved in the production and storage of protein metabolites which are subsequently transferred to the related axons.  相似文献   

15.
Insulin and follicle-stimulating hormone (FSH) have been shown to facilitate granulosa cell differentiation in vitro. To gain insight into this process, we evaluated the effects of these hormones, alone and in combination, upon the biochemical parameters of luteinizing hormone/human chorionic gonadotropin (LH/hCG) receptor induction and progesterone secretion concomitantly with morphometric analysis of granulosa cell ultrastructure and LH/hCG receptor distribution by quantitative autoradiography under light microscopy. Granulosa cells isolated from small antral follicles (controls) cultured in the absence of exogenous hormones exhibited few microvilli and gap junctions; the mitochondria, endoplasmic reticulum, and Golgi complex were all poorly developed. Progesterone secretion was negligible and the cells bound little [125I]iodo-hCG. Insulin treatment increased gap junction formation, and the extent of smooth and rough endoplasmic reticulum and Golgi complex development (all p less than 0.05) but did not affect mitochondrial ultrastructure or volume. Insulin treatment modestly but significantly increased [125I]iodo-hCG binding and progesterone secretion relative to controls (p less than 0.001). FSH treatment had a similar effect to insulin on cell ultrastructure and additionally enhanced development of the mitochondria and smooth endoplasmic reticulum as well as formation of the microvilli (p less than 0.05). FSH significantly increased [125I]iodo-hCG binding and progesterone secretion relative to insulin-treated samples (p less than 0.001). Combined treatment with insulin and FSH markedly increased gap junction and microvilli formation and enhanced the development of the smooth endoplasmic reticulum and the Golgi complex relative to treatment with either hormone alone (p less than 0.05). Additionally, the combined treatment produced larger mitochondria with tubular christae. Consistent with the morphological development, the combined treatment of insulin and FSH significantly increased progesterone secretion and [125I]iodo-hCG binding (p less than 0.001). Autoradiographic analysis showed that aggregated cells in general exhibited higher LH/hCG receptor density than nonaggregated cells, and a significantly higher overall receptor density compared to nonaggregated cells or to cells treated either with insulin or FSH alone. Our results indicate that insulin and FSH facilitate morphological differentiation of the granulosa cell in a synergistic manner, stimulating gap junctions and microvilli formation and enhancing development of the mitochondria, endoplasmic reticulum, and Golgi complex.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The spatial organization of the endoplasmic reticulum has been studied in two renal cell lines, MDCK and LLC-PK1, which originate from the distal and proximal portions of the mammalian nephron, respectively, and which form a polarized epithelium when they reach confluence in tissue culture. The two renal cell lines, grown to confluence on either solid or permeable supports, were investigated by fluorescence microscopy, confocal microscopy, and transmission electron microscopy. Fluorescence labeling of the endoplasmic reticulum was achieved using the cationic fluorescent dye DIOC6 (3). In order to differentiate fluorescent labeling of the endoplasmic reticulum from that of the mitochondria, cells were also labeled with rhodamine 123. For electron microscopy, the spatial organization of the endoplasmic reticulum was examined in thick sections using the long-duration osmium impregnation technique or the ferrocyanide/osmium technique. In both cell lines, the endoplasmic reticulum formed an abundant tubular network of canaliculi that frequently abutted the basolateral domain of the plasma membrane and occasionally the apical membrane. Elements of the endoplasmic reticulum were also found in close proximity to mitochondria that, as in the nephron, formed branched structures. Canaliculi appeared circular or flattened and had an inner diameter of 10–70 nm for MDCK cells and 20–90 nm for LLC-PK1 cells. Such a three-dimensional organization might facilitate the translocation of defined lipid species between the endoplasmic reticulum and the plasma membrane, and between the endoplasmic reticulum and mitochondria.  相似文献   

17.
The ultrastructure of the parathyroid chief cell in the woodchuck, Marmota monax, was studied during the four seasons of the year. Spring chief cells have stacks of granular endoplasmic reticulum, prominent multiple Golgi zones and many clumped mitochondria. Summer cells resemble those seen in the spring but the mitochondria are associated with stacks of granular endoplasmic reticulum. Multiple areas of stacked granular endoplasmic reticulum characterize the fall chief cells. Their Golgi zones are large and are associated with many dense core secretory granules. Lipoid vacuoles are frequently noted. Winter chief cells have secretory granules and phagolysosomes (dense bodies). Some of these cells contain stacked arrays of granular endoplasmic reticulum associated with mitochondria, others have only short segments. The above morphological findings are discussed in relation to those in other hibernators, the parafollicular (C) cell, and to the cyclic seasonal activities of the woodchuck.  相似文献   

18.
Summary Changes in the abundance and form of endoplasmic reticulum in the three major cell types of the maize root cap were investigated by stereological and stereometric techniques. Quantification from thin sections was by the modification and application of standard morphometric procedures. This revealed dramatic increases in both the volume fraction and surface densities of endoplasmic reticulum as the meristem cells differentiate into starch and secretory cells. A stereometric technique for analysing thick sections was used to assess changes in the types of endoplasmic reticulum as cells differentiate through the root cap. This procedure showed that the proportions of cisternal endoplasmic reticulum to tubular endoplasmic reticulum was highest in the peripheral secretory cells. Electron opacity of the endomembrane system was enhanced by selective staining with zinc iodide and osmium tetroxide (ZIO).  相似文献   

19.
内质网及其标志酶在离体培养脊髓神经元中的发育变化   总被引:2,自引:1,他引:1  
In an attempt to elucidate the relationship between synapse formation and cell development, the morphology and cytochemistry of the endoplasmic reticulum and its enzymic marker, glucose-6-phosphatase (G-6-Pase), in cultured mouse spinal neurons were investigated ultrastructurally. It was found that in the early period of the development, neurons were characterized by scarceness of organelles; only a few of granular or agranular endoplasmic reticulum and mitochondria were seen. The endoplasmic reticulum and nuclear envelope were packed specifically with G-6-Pase resection product but the product was weak. After a period of culture, most of the neurons had well-developed endoplasmic reticulum, Golgi apparatus, mitochondria and microtubules, etc. The Golgi apparatus was relatively large, having some cisternae associated with vesicles. Either concave of convex face of the saccules was labeled by thiamine pyrophosphatase (TPPase) specifically. GERL, labeled by cytidine monophosphatase (CMPase), was also seen close to the inner or outer face of some Golgi apparatus. The endoplasmic reticulum at this stage was distributed throughout the cytoplasm, including that in dendrites; its enzyme marker (G-6-Pase) localized consistently within the lumen of all endoplasmic reticulum, nuclear space and subsurface cisternae, and frequently in the concave saccules of the Golgi apparatus. After a long-term culture, some neurons became "aged". The endoplasmic reticulum cisternae enlarged and G-6-Pase reaction reduced. Along with the neuronal development, especially maturation of the endoplasmic reticulum and its enzymic marker, synapse formation was begun at the neuropile area. The axo-dendritic synapses always occurred between the axonal terminals and dendrites where the endoplasmic reticulum had showed positive G-6-Pase reactions. Considering the fact, it suggests that the appearance and change of these specific enzymes may be related to the maturation of the neurons in vitro, and also related to the synapse formation between neurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号