首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The unfolding and denaturation curves of potato carboxypeptidase inhibitor (PCI) were investigated using the technique of disulfide scrambling. In the presence of denaturant and thiol initiator, the native PCI denatures by shuffling its native disulfide bonds and converts to form a mixture of scrambled PCI that consists of 9 out of a possible 14 isomers. The denaturation curve is determined by the fraction of native PCI converted to scrambled isomers under increasing concentrations of denaturant. The concentration of guanidine thiocyanate, guanidine hydrochloride, and urea required to denature 50% of the native PCI was found to be 0.7, 1.45, and 8 m, respectively. The PCI unfolding curve was constructed through the analysis of structures of scrambled isomers that were denatured under increasing concentrations of denaturant. These results reveal the existence of structurally defined unfolding intermediates and a progressive expansion of the polypeptide chain. The yield of the beads-form isomer (Cys(8)-Cys(12), Cys(18)-Cys(24), and Cys(27)-Cys(34)) as a fraction of total denatured PCI was shown to be directly proportional to the strength of the denaturing condition. Furthermore, the PCI sequence was unable to fold quantitatively into a single native structure. Under physiological conditions, the scrambled isomers of PCI that constitute about 4% of the protein were in equilibrium with native PCI.  相似文献   

2.
Chang JY  Li L 《Biochemistry》2002,41(26):8405-8413
The pathway of oxidative folding of alpha-lactalbumin (alpha LA) (four disulfide bonds) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. In the absence of calcium, oxidative folding of alpha LA proceeds through highly heterogeneous species of one-, two-, three-, and four-disulfide (scrambled) intermediates to reach the native structure. In the presence of calcium, the folding intermediates of alpha LA comprise two predominant isomers (alpha LA-IIA and alpha LA-IIIA) adopting exclusively native disulfide bonds, including the two disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) located within the beta-sheet calcium binding domain. alpha LA-IIA is a two-disulfide species consisting of Cys(61)-Cys(77) and Cys(73)-Cys(91) disulfide bonds. alpha LA-IIIA contains Cys(61)-Cys(77), Cys(73)-Cys(91), and Cys(28)-Cys(111) disulfide bonds. The underlying mechanism of the contrasting folding pathways of calcium-bound and calcium-depleted alpha LA is congruent with the cause of diversity of disulfide folding pathways observed among many well-characterized three-disulfide proteins, including bovine pancreatic trypsin inhibitor and hirudin. Our study also reveals novel aspects of the folding mechanism of alpha LA that have not been described previously.  相似文献   

3.
Chang J  Ballatore A 《FEBS letters》2000,473(2):183-187
In the presence of denaturant and thiol initiator, the native bovine pancreatic trypsin inhibitor (BPTI) denatures by shuffling its native disulfide bonds and converts to a mixture of scrambled isomers. The extent of denaturation is evaluated by the relative yields of the scrambled and native species of BPTI. BPTI is an exceedingly stable molecule and can be effectively denatured only by guanidine thiocyanate (GdmSCN) at concentrations higher than 3-4 M. The denatured BPTI consists of at least eight fractions of scrambled isomers. Their composition varies under increasing concentrations of GdmSCN. In the presence of 6 M GdmSCN, the most predominant fraction of scrambled BPTI accounts for 56% of the total structure of denatured BPTI. Structural analysis reveals that this predominant fraction contains the bead-form isomer of scrambled BPTI, bridged by three pairs of neighboring cysteines, Cys5-Cys14, Cys30-Cys38 and Cys51-Cys55. The extreme conformational stability of BPTI has important implications in its distinctive folding pathway.  相似文献   

4.
Disulfide bonds between the side chains of cysteine residues are the only common crosslinks in proteins. Bovine pancreatic ribonuclease A (RNase A) is a 124-residue enzyme that contains four interweaving disulfide bonds (Cys26-Cys84, Cys40-Cys95, Cys58-Cys110, and Cys65-Cys72) and catalyzes the cleavage of RNA. The contribution of each disulfide bond to the conformational stability and catalytic activity of RNase A has been determined by using variants in which each cystine is replaced independently with a pair of alanine residues. Thermal unfolding experiments monitored by ultraviolet spectroscopy and differential scanning calorimetry reveal that wild-type RNase A and each disulfide variant unfold in a two-state process and that each disulfide bond contributes substantially to conformational stability. The two terminal disulfide bonds in the amino-acid sequence (Cys26-Cys84 and Cys58-Cys110) enhance stability more than do the two embedded ones (Cys40-Cys95 and Cys65-Cys72). Removing either one of the terminal disulfide bonds liberates a similar number of residues and has a similar effect on conformational stability, decreasing the midpoint of the thermal transition by almost 40 degrees C. The disulfide variants catalyze the cleavage of poly(cytidylic acid) with values of kcat/Km that are 2- to 40-fold less than that of wild-type RNase A. The two embedded disulfide bonds, which are least important to conformational stability, are most important to catalytic activity. These embedded disulfide bonds likely contribute to the proper alignment of residues (such as Lys41 and Lys66) that are necessary for efficient catalysis of RNA cleavage.  相似文献   

5.
Yang YS  Mitta G  Chavanieu A  Calas B  Sanchez JF  Roch P  Aumelas A 《Biochemistry》2000,39(47):14436-14447
MGD-1 is a 39-residue defensin-like peptide isolated from the edible Mediterranean mussel, Mytilus galloprovincialis. This peptide is characterized by the presence of four disulfide bonds. We report here its solid-phase synthesis and an easy way to improve the yield of the four native disulfide bonds. Synthetic and native MGD-1 display similar antibacterial activity, suggesting that the hydroxylation of Trp28 observed in native MGD-1 is not involved in the antimicrobial effect. The three-dimensional solution structure of MGD-1 has been established using (1)H NMR and mainly consists of a helical part (Asn7-Ser16) and two antiparallel beta-strands (Arg20-Cys25 and Cys33-Arg37), together giving rise to the common cystine-stabilized alpha-beta motif frequently observed in scorpion toxins. In MGD-1, the cystine-stabilized alpha-beta motif is stabilized by four disulfide bonds (Cys4-Cys25, Cys10-Cys33, Cys14-Cys35, and Cys21-Cys38), instead of by the three disulfide bonds commonly found in arthropod defensins. Except for the Cys21-Cys38 disulfide bond which is solvent-exposed, the three others belong to the particularly hydrophobic core of the highly constrained structure. Moreover, the C4-P5 amide bond in the cis conformation characterizes the MGD-1 structure. MGD-1 and insect defensin A possess similar bactericidal anti-Gram-positive activity, suggesting that the fourth disulfide bond of MGD-1 is not essential for the biological activity. In agreement with the general features of antibacterial peptides, the MGD-1 and defensin A structures display a typical distribution of positively charged and hydrophobic side chains. The positively charged residues of MGD-1 are located in three clusters. For these two defensin peptides isolated from insects and mollusks, it appears that the rather well conserved location of certain positively charged residues and of the large hydrophobic cluster are enough to generate the bactericidal potency and the Gram-positive specificity.  相似文献   

6.
Chang JY 《Biochemistry》2004,43(15):4522-4529
The pathways of oxidative folding of disulfide proteins exhibit a high degree of diversity, which is illustrated by the varied extent of (a) the heterogeneity of folding intermediates, (b) the predominance of intermediates containing native disulfide bonds, and (c) the level of accumulation of fully oxidized scrambled isomers as intermediates. BPTI and hirudin exemplify two extreme cases of such divergent folding pathways. We previously proposed that the underlying cause of this diversity is associated with the degree of stability of protein subdomains. Here we present compelling evidence that substantiates this hypothesis by studying the folding pathway of alphaLA-IIA. alphaLA-IIA is a partially folded intermediate of alpha-lactalbumin (alphaLA). It comprises a structured beta-sheet (calcium-binding) domain linked by two native disulfide bonds (Cys(61)-Cys(77) and Cys(73)-Cys(91)) and a disordered alpha-helical domain with four free cysteines (Cys(6), Cys(28), Cys(111), and Cys(120)). Purified alphaLA-IIA was allowed to refold without and with stabilization of its structured beta-sheet domain by calcium. In the absence of calcium, the folding pathway of alphaLA-IIA resembles that of hirudin, displaying a highly heterogeneous population of folding intermediates, including fully oxidized scrambled species. Upon stabilization of its beta-sheet domain by bound calcium, oxidative folding of alphaLA-IIA undergoes a pathway conspicuously similar to that of BPTI, exhibiting limited species of folding intermediates containing mostly native disulfide bonds.  相似文献   

7.
Human lysozyme is made up of 130 amino acid residues and has four disulfide bonds at Cys6-Cys128, Cys30-Cys116, Cys65-Cys81, and Cys77-Cys95. Our previous results using the Saccharomyces cerevisiae secretion system indicate that the individual disulfide bonds of human lysozyme have different functions in the correct in vivo folding and enzymatic activity of the protein (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). In this paper, we report the results of experiments that were focused on the roles of Cys65 and Cys81 in the folding of human lysozyme protein in yeast. A mutant protein (C81A), in which Cys81 was replaced with Ala, had almost the same enzymatic activity and conformation as those of the native enzyme. On the other hand, another mutant (C65A), in which Cys65 was replaced with Ala, was not found to fold correctly. These results indicate that Cys81 is not a requisite for both correct folding and activity, whereas Cys65 is indispensable. The mutant protein C81A is seen to contain a new, non-native disulfide bond at Cys65-Cys77. The possible occurrence of disulfide bond interchange during our mapping experiments cannot be ruled out by the experimental techniques presently available, but characterization of other mutant proteins and computer analysis suggest that the intramolecular exchange of disulfide bonds is present in the folding pathway of human lysozyme in vivo.  相似文献   

8.
Kaerner A  Rabenstein DL 《Biochemistry》1999,38(17):5459-5470
alpha-Conotoxin GI is a 13 residue snail toxin peptide cross-linked by Cys2-Cys7 and Cys3-Cys13 disulfide bridges. The formation of the two disulfide bonds by thiol/disulfide exchange with oxidized glutathione (GSSG) has been characterized. To characterize formation of the first disulfide bond in each of the two pathways by which the two disulfide bonds can form, two model peptides were synthesized in which Cys3 and Cys13 (Cono-1) or Cys2 and Cys7 (Cono-2) were replaced by alanines. Equilibrium constants were determined for formation of the single disulfide bonds of Cono-1 and Cono-2, and an overall equilibrium constant was measured for formation of the two disulfide bonds of alpha-conotoxin GI in pH 7.00 buffer and in pH 7. 00 buffer plus 8 M urea using concentrations obtained by HPLC analysis of equilibrium thiol/disulfide exchange reaction mixtures. The results indicate a modest amount of cooperativity in the formation of the second disulfide bond in both of the two-step pathways by which alpha-conotoxin GI folds into its native structure at pH 7.00. However, when considered in terms of the reactive thiolate species, the results indicate substantial cooperativity in formation of the second disulfide bond. The solution conformational and structural properties of Cono-1, Cono-2, and alpha-conotoxin GI were studied by 1H NMR to identify structural features which might facilitate formation of the disulfide bonds or are induced by formation of the disulfide bonds. The NMR data indicate that both Cono-1 and Cono-2 have some secondary structure in solution, including some of the same secondary structure as alpha-conotoxin GI, which facilitates formation of the second disulfide bond by thiol/disulfide exchange. However, both Cono-1 and Cono-2 are considerably less structured than alpha-conotoxin GI, which indicates that formation of the second disulfide bond to give the Cys2-Cys7, Cys3-Cys13 pairing induces considerable structure into the backbone of the peptide.  相似文献   

9.
Zhang Z  Boyle PC  Lu BY  Chang JY  Wriggers W 《Biochemistry》2006,45(51):15269-15278
Epidermal growth factor (EGF) regulates cell proliferation and differentiation by binding to the EGF receptor (EGFR) extra-cellular domains. Human EGF is a small, single-chain protein comprising three distinct loops (A, B, and C), which are connected by three disulfide bridges (Cys6-Cys20, Cys14-Cys31, and Cys33-Cys42). These disulfide bridges are essential for structural stability and biological activity. EGF was extensively studied by disulfide scrambling, an experimental technique for the conformational entrapment of intermediate states, which allows us to study the folding pathway of proteins containing disulfide bonds. The experimental results showed that there is a major 2-disulfide intermediate (denoted EGF-II) and that the native disulfide bonding pattern is less prevalent in one of the mutants. In this article, we investigated for the first time the solution conformations of wild-type EGF, EGF-II, and the mutant S9C through extensive molecular dynamics (MD) simulations in water using both the standard MD technique and a recently developed amplified-collective-motion (ACM) sampling method. Compared to standard MD simulations, we achieved a much more enhanced sampling by the ACM simulations, and the structures were sufficiently relaxed to estimate configurational entropies. The simulation results suggest a predominantly entropic folding pathway governed by the disorder of three functional loop regions. Although EGF-II exhibits two native disulfide bonds (Cys14-Cys31 and Cys33- Cys42), its large configurational entropy inhibits a direct transition to the native structure in the folding process. When Ser9 is mutated into Cys, a non-native disulfide bridge Cys9- Cys20 is slightly more favorable than the native Cys6-Cys20 because a less constrained N-terminus affords larger entropy. Isomers that are functionally less active also exhibit a more localized dynamics of the functional loop regions, which may suggest a possible mechanism for the modulation of EGF activity.  相似文献   

10.
Human alpha-thrombin is a very important plasma serine protease, which is involved in physiologically vital processes like hemostasis, thrombosis, and activation of platelets. Knowledge regarding the structural stability of alpha-thrombin is essential for understanding its biological regulation. Here, we investigated the structural and conformational stability of alpha-thrombin using the techniques of disulfide reduction and disulfide scrambling. alpha-Thrombin is composed of a light A-chain (36 residues) and a heavy B-chain (259 residues) linked covalently by an inter-chain disulfide bond (Cys(1)-Cys(122)). The B-chain is stabilized by three intra-chain disulfide bonds (Cys(42)-Cys(58), Cys(168)-Cys(182), and Cys(191)-Cys(220)) (Chymotrypsinogen nomenclature). Upon reduction with dithiothreitol (DTT), alpha-thrombin unfolded in a 'sequential' manner with sequential reduction of Cys(168)-Cys(182) within the B-chain followed by the inter-chain disulfide, generating two distinct partially reduced intermediates, I-1 and I-2, respectively. Conformational stability of alpha-thrombin was investigated by the technique of disulfide scrambling. alpha-Thrombin denatures by scrambling its native disulfide bonds in the presence of denaturant [urea, guanidine hydrochloride (GdmCl) or guanidine thiocyanate (GdmSCN)] and a thiol initiator. During the process, cleavage of the inter-chain disulfide bond and release of the A-chain from B-chain was the foremost event. The three disulfides in the B-chain subsequently scrambled to form three major isomers (designated as X-Ba, X-Bb, and X-Bc). Complete denaturation of alpha-thrombin was observed at low concentrations of denaturants (0.5 M GdmSCN, 1.5 M GdmCl, or 3 M urea) indicating low conformational stability of the protease.  相似文献   

11.
F Li  S Liang 《Peptides》1999,20(9):1027-1034
The positions of the disulfide bonds of Selenocosmia huwena lectin-I (SHL-I) from the venom of the Chinese bird spider S. huwena have been determined. The existence of three disulfide bonds in the native SHL-I was proved by matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis. To map the disulfide bonds, native SHL-I was proteolytically digested. The resulting peptides were separated by reverse phase high-performance liquid chromatography. Matrix-assisted laser desorption ionization time-of-flight mass spectroscopic analysis indicated the presence of one disulfide bond Cys7-Cys19. The partially reduced peptides by using Tris-(2-carboxyethyl)-phosphine at pH 3.0 were purified by reverse phase high-performance liquid chromatography. Four M Guanidine-HCl was found to increase the yields of partially reduced peptides prominently. The free thiols were carboxamidomethlate by iodoacetamide. The specific location of another disulfide bond Cys2-Cys14 was proved by comparing N-terminal sequencing analysis of the partially reduced and alkylated SHL-I with that of the intact peptide. Finally, the three disulfide linkage of SHL-I could be assigned as Cys2-Cys14, Cys7-Cys19, Cys13-Cys26.  相似文献   

12.
Lin CC  Chang JY 《Biochemistry》2007,46(12):3925-3932
Bovine alpha-interferon (BoINF-alpha) is a single polypeptide protein containing 166 amino acids, two disulfide bonds (Cys1-Cys99 and Cys29-Cys138), and five stretches of alpha-helical structure. The pathway of oxidative folding of BoINF-alpha has been investigated here. Of the eight possible one- and two-disulfide isomers, only two nativelike one-disulfide isomers, BoINF-alpha (Cys1-Cys99) and BoINF-alpha (Cys29-Cys138), predominate as intermediates along the folding pathway. More strikingly, alpha-helical structures formed almost quantitatively before any detectable formation of a disulfide bond. This is demonstrated by the observation that fully reduced BoINF-alpha (starting material of oxidative folding) and reduced carboxymethylated BoINF-alpha both exhibit alpha-helical structure content indistinguishable form that of native BoINF-alpha. The folding mechanism of BoINF-alpha appears to be compatible with the framework model, in which secondary structures fold first, followed by docking (compaction) of preformed secondary structural elements yielding the native structure.  相似文献   

13.
The oxidative folding pathway of leech carboxypeptidase inhibitor (LCI; four disulfide bonds) proceeds through the formation of two major intermediates (III-A and III-B) that contain three native disulfide bonds and act as strong kinetic traps in the folding process. The III-B intermediate lacks the Cys19-Cys43 disulfide bond that links the beta-sheet core with the alpha-helix in wild-type LCI. Here, an analog of this intermediate was constructed by replacing Cys19 and Cys43 with alanine residues. Its oxidative folding follows a rapid sequential flow through one, two, and three disulfide species to reach the native form; the low accumulation of two disulfide intermediates and three disulfide (scrambled) isomers accounts for a highly efficient reaction. The three-dimensional structure of this analog, alone and in complex with carboxypeptidase A (CPA), was determined by X-ray crystallography at 2.2A resolution. Its overall structure is very similar to that of wild-type LCI, although the residues in the region adjacent to the mutation sites show an increased flexibility, which is strongly reduced upon binding to CPA. The structure of the complex also demonstrates that the analog and the wild-type LCI bind to the enzyme in the same manner, as expected by their inhibitory capabilities, which were similar for all enzymes tested. Equilibrium unfolding experiments showed that this mutant is destabilized by approximately 1.5 kcal mol(-1) (40%) relative to the wild-type protein. Together, the data indicate that the fourth disulfide bond provides LCI with both high stability and structural specificity.  相似文献   

14.
Human acid sphingomyelinase (haSMase, EC 3.1.4.12) catalyzes the lysosomal degradation of sphingomyelin to ceramide and phosphorylcholine. An inherited haSMase deficiency leads to Niemann-Pick disease, a severe sphingolipid storage disorder. The enzyme was purified and cloned over 10 years ago. Since then, only a few structural properties of haSMase have been elucidated. For understanding of its complex functions including its role in certain signaling and apoptosis events, complete structural information about the enzyme is necessary. Here, the identification of the disulfide bond pattern of haSMase is reported for the first time. Functional recombinant enzyme expressed in SF21 cells using the baculovirus expression system was purified and digested by trypsin. MALDI-MS analysis of the resulting peptides revealed the four disulfide bonds Cys120-Cys131, Cys385-Cys431, Cys584-Cys588 and Cys594-Cys607. Two additional disulfide bonds (Cys221-Cys226 and Cys227-Cys250) which were not directly accessible by tryptic cleavage, were identified by a combination of a method of partial reduction and MALDI-PSD analysis. In the sphingolipid activator protein (SAP)-homologous N-terminal domain of haSMase, one disulfide bond was assigned as Cys120-Cys131. The existence of two additional disulfide bridges in this region was proved, as was expected for the known disulfide bond pattern of SAP-type domains. These results support the hypothesis that haSMase possesses an intramolecular SAP-type activator domain as predicted by sequence comparison [Ponting, C.P. (1994) Protein Sci., 3, 359-361]. An additional analysis of haSMase isolated from human placenta shows that the recombinant and the native human protein possess an identical disulfide structure.  相似文献   

15.
Our previous results using the Saccharomyces cerevisiae secretion system suggest that intramolecular exchange of disulfide bonds occurs in the folding pathway of human lysozyme in vivo (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 265, 7570-7575). Here we report on the results of introducing an artificial disulfide bond in mutants with 2 cysteine residues substituting for Ala83 and Asp91. The mutant (C83/91) protein was not detected in the culture medium of the yeast, probably because of incorrect folding. Thereupon, 2 cysteine residues Cys77 and Cys95 were replaced with Ala in the mutant C83/91, because a native disulfide bond Cys77-Cys95 was found not necessary for correct folding in vivo (Taniyama, Y., Yamamoto, Y., Nakao, M., Kikuchi, M., and Ikehara, M. (1988) Biochem. Biophys. Res. Commun. 152, 962-967). The resultant mutant (AC83/91) was secreted as two proteins (AC83/91-a and AC83/91-b) with different specific activities. Amino acid and peptide mapping analyses showed that two glutathiones appeared to be attached to the thiol groups of the cysteine residues introduced into AC83/91-a and that four disulfide bonds including an artificial disulfide bond existed in the AC83/91-b molecule. The presence of cysteine residues modified with glutathione may indicate that the non-native disulfide bond Cys83-Cys91 is not so easily formed as a native disulfide bond. These results suggest that the introduction of Cys83 and Cys91 may act to suppress the process of native disulfide bond formation through disulfide bond interchange in the folding of human lysozyme.  相似文献   

16.
Energetics of structural domains in alpha-lactalbumin.   总被引:3,自引:3,他引:0       下载免费PDF全文
alpha-Lactalbumin is a small, globular protein that is stabilized by four disulfide bonds and contains two structural domains. One of these domains is rich in alpha-helix (the alpha-domain) and has Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds. The other domain is rich in beta-sheet (the beta-domain), has Cys 61-Cys 77 and Cys 73-Cys 91 disulfide bonds, and includes one calcium binding site. To investigate the interaction between domains, we studied derivatives of bovine alpha-lactalbumin differing in the number of disulfide bonds, using calorimetry and CD at different temperatures and solvent conditions. The three-disulfide form, having a reduced Cys 6-Cys 120 disulfide bond with carboxymethylated cysteines, is similar to intact alpha-lactalbumin in secondary and tertiary structure as judged by its ellipticity in the near and far UV. the two-disulfide form of alpha-lactalbumin, having reduced Cys 6-Cys 120 and Cys 28-Cys 111 disulfide bonds with carboxymethylated cysteines, retains about half the secondary and tertiary structure of the intact alpha-lactalbumin. The remaining structure is able to bind calcium and unfolds cooperatively upon heating, although at lower temperature and with significantly lower enthalpy and entropy. We conclude that, in the two disulfide form, alpha-lactalbumin retains its calcium-binding beta-domain, whereas the alpha-domain is unfolded. It appears that the beta-domain does not require alpha-domain to fold, but its structure is stabilized significantly by the presence of the adjacent folded alpha-domain.  相似文献   

17.
Methionine sulfoxide reductases (Msr) reduce methionine sulfoxide (MetSO)-containing proteins, back to methionine (Met). MsrAs are stereospecific for the S epimer whereas MsrBs reduce the R epimer of MetSO. Although structurally unrelated, the Msrs characterized so far display a similar catalytic mechanism with formation of a sulfenic intermediate on the catalytic cysteine and a concomitant release of Met, followed by formation of at least one intramolecular disulfide bond (between the catalytic and a recycling cysteine), which is then reduced by thioredoxin. In the case of the MsrA from Escherichia coli, two disulfide bonds are formed, i.e. first between the catalytic Cys51 and the recycling Cys198 and then between Cys198 and the second recycling Cys206. Three crystal structures including E. coli and Mycobacterium tuberculosis MsrAs, which, for the latter, possesses only the unique recycling Cys198, have been solved so far. In these structures, the distances between the cysteine residues involved in the catalytic mechanism are too large to allow formation of the intramolecular disulfide bonds. Here structural and dynamical NMR studies of the reduced wild-type and the oxidized (Cys51-Cys198) forms of C86S/C206S MsrA from E. coli have been carried out. The mapping of MetSO substrate-bound C51A MsrA has also been performed. The data support (1) a conformational switch occurring subsequently to sulfenic acid formation and/or Met release that would be a prerequisite to form the Cys51-Cys198 bond and, (2) a high mobility of the C-terminal part of the Cys51-Cys198 oxidized form that would favor formation of the second Cys198-Cys206 disulfide bond.  相似文献   

18.
Tissue factor (TF) is a transmembrane glycoprotein that plays distinct roles in the initiation of extrinsic coagulation cascade and thrombosis. TF contains two disulfide bonds, one each in the N-terminal and C-terminal extracellular domains. The C-domain disulfide, Cys186-Cys209, has a ?RHStaple configuration in crystal structures, suggesting that this disulfide carries high pre-stress. The redox state of this disulfide has been proposed to regulate TF encryption/decryption. Ablating the N-domain Cys49-Cys57 disulfide bond was found to increase the redox potential of the Cys186-Cys209 bond, implying an allosteric communication between the domains. Using molecular dynamics simulations, we observed that the Cys186-Cys209 disulfide bond retained the ?RHStaple configuration, whereas the Cys49-Cys57 disulfide bond fluctuated widely. The Cys186-Cys209 bond featured the typical ?RHStaple disulfide properties, such as a longer S-S bond length, larger C-S-S angles, and higher bonded prestress, in comparison to the Cys49-Cys57 bond. Force distribution analysis was used to sense the subtle structural changes upon ablating the disulfide bonds, and allowed us to identify a one-way allosteric communication mechanism from the N-terminal to the C-terminal domain. We propose a force propagation pathway using a shortest-pathway algorithm, which we suggest is a useful method for searching allosteric signal transduction pathways in proteins. As a possible explanation for the pathway being one-way, we identified a pronounced lower degree of conformational fluctuation, or effectively higher stiffness, in the N-terminal domain. Thus, the changes of the rigid domain (N-terminal domain) can induce mechanical force propagation to the soft domain (C-terminal domain), but not vice versa.  相似文献   

19.
Feng YH  Saad Y  Karnik SS 《FEBS letters》2000,484(2):133-138
Dithiothreitol (DTT) treatment of angiotensin II (Ang II) type 2 (AT(2)) receptor potentiates ligand binding, but the underlying mechanism is not known. Two disulfide bonds proposed in the extracellular domain were examined in this report. Based on the analysis of ligand affinity of cysteine (Cys, C) to alanine (Ala, A) substitution mutants, we provide evidence that Cys(35)-Cys(290) and Cys(117)-Cys(195) disulfide bonds are formed in the wild-type AT(2) receptor. Disruption of the highly conserved Cys(117)-Cys(195) disulfide bond linking the second and third extracellular segments leads to inactivation of the receptor. The Cys(35)-Cys(290) bond is highly sensitive to DTT. Its breakage results in an increased binding affinity for both Ang II and the AT(2) receptor-specific antagonist PD123319. Surprisingly, in the single Cys mutants, C35A and C290A, a labile population of receptors is produced which can be re-folded to high-affinity state by DTT treatment. These results suggest that the free -SH group of Cys(35) or Cys(290) competes with the disulfide bond formation between Cys(117) and Cys(195). This Cys-disulfide bond exchange results in production of the inactive population of the mutant receptors through formation of a non-native disulfide bond.  相似文献   

20.
The folding pathway of human epidermal growth factor (EGF) has been characterized by structural and kinetic analysis of the acid-trapped folding intermediates. Oxidative folding of the fully reduced EGF proceeds through 1-disulfide intermediates and accumulates rapidly as a single stable 2-disulfide intermediate (designated as EGF-II), which represents up to more than 85% of the total protein along the folding pathway. Among the five 1-disulfide intermediates that have been structurally characterized, only one is native, and nearly all of them are bridges by neighboring cysteines. Extensive accumulation of EGF-II indicates that it accounts for the major kinetic trap of EGF folding. EGF-II contains two of the three native disulfide bonds of EGF, Cys(14)-Cys(31) and Cys(33)-Cys(42). However, formation of the third native disulfide (Cys(6)-Cys(20)) for EGF-II is slow and does not occur directly. Kinetic analysis reveals that an important route for EGF-II to reach the native structure is via rearrangement pathway through 3-disulfide scrambled isomers. The pathway of EGF-II to attain the native structure differs from that of three major 2-disulfide intermediates of bovine pancreatic trypsin inhibitor (BPTI). The dissimilarities of folding mechanism(s) between EGF, BPTI, and hirudin are discussed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号