首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two gene constructs (pROK.TG1L and pROK.TG1LK) were utilized to achieve accumulation of maize γ-zein to high levels in tobacco (Nicotiana tabacum L.) leaves. Both the chimaeric genes contained the γ-zein-coding region preceded by the 5′untranslated leader from the coat protein mRNA of TMV, but one of them (pROK.TG1LK) was modified in its protein-coding region by the addition of the ER retention signal KDEL. The accumulation of γ-zein and γ-zein:KDEL in leaves was compared with heterologous protein accumulation in tobacco plants previously transformed with a γ-zein cDNA harbouring a native 5′UTR. Replacement of γ-zein 5′UTR with the TMV leader dramatically increased γ-zein production. Furthermore, γ-zein:KDEL-expressing plants, on average, accumulated twice as much foreign protein in their leaves as pROK.TG1L plants. The two-fold increase in the level of γ-zein:KDEL can probably be attributed to an improvement in the mechanism for ER retention of zeins in the transgenic cells. Transformants also showed increased production of BiP, though to a lesser extent in γ-zein:KDEL-expressing plants compared with pROK.TG1L plants. It is therefore likely that γ-zein:KDEL retention is made less dependent on the chaperone assistance of BiP by the presence of the KDEL signal on the γ-zein mutant. Received: 15 October 1999 / Accepted: 28 February 2000  相似文献   

2.
The effects of subcellular localization on single-chain antibody (scFv) expression levels in transgenic tobacco was evaluated using an scFv construct of a model antibody possessing different targeting signals. For translocation into the secretory pathway a secretory signal sequence preceded the scFv gene (scFv-S). For cytosolic expression the scFv antibody gene lacked such a signal sequence (scFv-C). Also, both constructs were provided with the endoplasmic reticulum (ER) retention signal KDEL (scFv-SK and scFv-CK, respectively). The expression of the different scFv constructs in transgenic tobacco plants was controlled by a CaMV 35S promoter with double enhancer. The scFv-S and scFv-SK antibody genes reached expression levels of 0.01% and 1% of the total soluble protein, respectively. Surprisingly, scFv-CK transformants showed considerable expression of up to 0.2% whereas scFv-C transformants did not show any accumulation of the scFv antibody. The differences in protein expression levels could not be explained by the steady-state levels of the mRNAs. Transient expression assays with leaf protoplasts confirmed these expression levels observed in transgenic plants, although the expression level of the scFv-S construct was higher. Furthermore, these assays showed that both the secretory signal and the ER retention signal were recognized in the plant cells. The scFv-CK protein was located intracellularly, presumably in the cytosol. The increase in scFv protein stability in the presence of the KDEL retention signal is discussed.  相似文献   

3.
通过体外操作,对豇豆胰蛋白酶抑制剂(cpti)基因进行修饰,获得了一个融合蛋白基因(sck).该基因是在cpti基因的基础上,在其5'端添加了信号肽编码序列,在3'端添加了内质网滞留信号编码序列,旨在引导基因转译产物进入细胞内质网,并最终滞留在内质网及其衍生的蛋白体内.用sck基因转化烟草(Nicotiana tabacum L.),对获得的转基因植株进行ELISA检测.结果表明,含有修饰基因的转基因烟草CpTI蛋白含量有明显提高,比转未修饰cpti基因烟草平均高出2倍,最高单株可达4倍以上,同时转基因植株的抗虫性也有了显著的提高.结果表明,采用外源蛋白靶向定位的策略,可大幅度提高外源蛋白在转基因植物细胞内的积累量,在植物基因工程研究中具有广泛的借鉴意义.  相似文献   

4.
通过体外操作,对豇豆胰蛋白酶抑制剂(cpti)基因进行修饰,获得了一个融合蛋白基因(sck)。该基因是在cpti基因的基础上,在其5’端添加了信号肽编码序列,在3’端添加了内质网滞留信号编码序列,旨在引导基因转译产物进入细胞内质网,并最终滞留在内质网及其衍生的蛋白体内。用sck基因转化烟草(Nicotiana tabacum L.),对获得的转基因植株进行ELISA检测。结果表明,含有修饰基因的转基因烟草CpTI蛋白含量有明显提高,比转末修饰cpti基因烟草平均高出2倍,最高单株可达4倍以上,同时转基因植株的抗虫性也有了显著的提高。结果表明,采用外源蛋白靶向定位的策略,可大幅度提高外源蛋白在转基因植物细胞内的积累量,在植物基因工程研究中具有广泛的借鉴意义。  相似文献   

5.
We are examining various plant-based systems to produce enzymes for the treatment of human lysosomal storage disorders. Constitutive expression of the gene encoding the human lysosomal enzyme, alpha-L-iduronidase (IDUA; EC 3.2.1.76) in leaves of transgenic tobacco plants resulted in low-enzyme activity, and the protein appeared to be subject to proteolysis. Toward enhancing production of this recombinant enzyme in vegetative tissues, transgenic tobacco plants were generated to co-express a CaMV35S:Chamaecyparis nootkatensis Abscisic Acid Insensitive3 (CnABI3) gene construct, along with the human gene construct. The latter contained regulatory sequences of the Phaseolus vulgaris arcelin 5-I gene (5'-flanking, signal-peptide-encoding, and 3'-flanking regions). Ectopic synthesis of the CnABI3 protein led to the transactivation of the arcelin promoter and accordingly high activity (e.g., 25,000 pmol/min/mg total soluble protein) and levels of recombinant IDUA mRNA and protein were induced in leaves of transgenic tobacco, particularly in the presence of 150-200 microM S-(+)-ABA. Synthesis of human IDUA containing a carboxy-terminal ER retention (SEKDEL) sequence was also inducible by ABA in leaves co-transformed with the CnABI3 gene. As compared to the natural S-(+)-ABA, two persistent ABA analogues, (+)-8' acetylene ABA and (+)-8'methylene ABA, led to greater levels of beta-glucuronidase (GUS) reporter activities in leaves co-expressing the CnABI3 gene and a vicilin:GUS chimeric gene. In contrast, (+)-8' acetylene ABA and natural ABA appeared to be equally effective in stimulating the CnABI3-induced expression of an arcelin:GUS gene, and of the human IDUA gene, the latter also driven by arcelin-gene-regulatory sequences. Various stress-related treatments, particularly high concentrations of NaCl, had an even greater effect than ABA in promoting accumulation of human IDUA in co-transformed tobacco leaves. This strategy provides the means of enhancing the yields of recombinant proteins in transgenic plant vegetative tissues and potentially in cultured plant cells. The human recombinant protein can be readily induced in the presence of chemicals such as NaCl that can be added to cell cultures or even whole plants without a significant increase in production costs.  相似文献   

6.
Proteins are co-translationally transferred into the endo-plasmic reticulum (ER) and then either retained or transported to different intracellular compartments or to the extracellular space. Various molecular signals necessary for retention in the ER or targeting to different compartments have been identified. In particular, the HDEL and KDEL signals used for retention of proteins in yeast and animal ER have also been described at the C-terminal end of soluble ER processing enzymes in plants. The fusion of a KDEL extension to vacuolar proteins is sufficient for their retention in the ER of transgenic plant cells. However, recent results obtained using the same strategy indicate that HDEL does not contain sufficient information for full retention of phaseolin expressed in tobacco. In the present study, an HDEL C-terminal extension was fused to the vacuolar or extracellular (Δpro) forms of sporamin. The resulting SpoHDEL or ΔproHDEL, as well as Spo and Δpro, were expressed at high levels in transgenic tobacco cells ( Nicotiana tabacum cv BY2). The intracellular location of these different forms of recombinant sporamin was studied by subcellular fractionation. The results clearly indicate that addition of an HDEL extension to either Spo or Δpro induces accumulation of these sporamin forms in a compartment that co-purifies with the ER markers NADH cytochrome C reductase, binding protein (BiP) and calnexin. In addition, a significant SpoHDEL or ΔproHDEL fraction that escapes the ER retention machinery is transported to the vacuole. From these results, it may be proposed that, in addition to its function as an ER retention signal, HDEL could also act in quality control by targeting chaperones or chaperone-bound proteins that escape the ER to the plant lysosomal compartment for degradation.  相似文献   

7.
8.
Transgenic plants are attractive biological systems for the large-scale production of pharmaceutical proteins. In particular, seeds offer special advantages, such as ease of handling and long-term stable storage. Nevertheless, most of the studies of the expression of antibodies in plants have been performed in leaves. We report the expression of a secreted (sec-Ab) or KDEL-tagged (Ab-KDEL) mutant of the 14D9 monoclonal antibody in transgenic tobacco leaves and seeds. Although the KDEL sequence has little effect on the accumulation of the antibody in leaves, it leads to a higher antibody yield in seeds. sec-Ab(Leaf) purified from leaf contains complex N-glycans, including Lewis(a) epitopes, as typically found in extracellular glycoproteins. In contrast, Ab-KDEL(Leaf) bears only high-mannose-type oligosaccharides (mostly Man 7 and 8) consistent with an efficient endoplasmic reticulum (ER) retention/cis-Golgi retrieval of the antibody. sec-Ab and Ab-KDEL gamma chains purified from seeds are cleaved by proteases and contain complex N-glycans indicating maturation in the late Golgi compartments. Consistent with glycosylation of the protein, Ab-KDEL(Seed) was partially secreted and sorted to protein storage vacuoles (PSVs) in seeds and not found in the ER. This dual targeting may be due to KDEL-mediated targeting to the PSV and to a partial saturation of the vacuolar sorting machinery. Taken together, our results reveal important differences in the ER retention and vacuolar sorting machinery between leaves and seeds. In addition, we demonstrate that a plant-made antibody with triantennary high-mannose-type N-glycans has similar Fab functionality to its counterpart with biantennary complex N-glycans, but the former antibody interacts with protein A in a stronger manner and is more immunogenic than the latter. Such differences could be related to a variable immunoglobulin G (IgG)-Fc folding that would depend on the size of the N-glycan.  相似文献   

9.
Plants are potential hosts for the expression of recombinant glycoproteins intended for therapeutic purposes. However, N-glycans of mammalian glycoproteins produced in transgenic plants differ from their natural counterparts. The use of the endoplasmic reticulum (ER)-retention signal has been proposed to restrict glycosylation of plantibodies to only high-mannose-type N-glycans. Furthermore, little is known about the influence of plant development and growth conditions on N-linked glycosylation. Here, we report a detailed N-glycosylation profiling study of CB.Hep1, a mouse IgG2b monoclonal antibody (mAb) against hepatitis B surface antigen (HBsAg) currently expressed in tobacco plants (Nicotiana tabacum L.). The KDEL ER-retention signal was fused to the C-terminal of both light and heavy chains. The structures of the N-linked glycans of this mAb produced in transgenic tobacco plants at various growth stages were analysed by high-performance liquid chromatography (HPLC) profiling techniques and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and compared with those of murine origin. The high-mannose-type oligosaccharides accounted for more than 80% of the total N-glycans, with Man7GlcNAc2 being the most abundant species. Some complex N-glycans bearing xylose and small amounts of oligosaccharides with both xylose and fucose were identified. No appreciable differences were detected when comparing glycosylation at different leaf ages, e.g. from seedling leaves up to 8 weeks old and top or basal leaves of mature plants, or between leaves, stems and whole plants. A strict retention of glycoproteins to ER by the use of the tetrapeptide KDEL was not sufficient, even though the majority of the resulting N-glycosylation was of the high-mannose type. It is highly likely to be dependent on other factors, which are most probably protein specific.  相似文献   

10.
Conrad  Udo  Fiedler  Ulrike 《Plant molecular biology》1998,38(1-2):101-109
Expression and stability of immunoglobulins in transgenic plants have been investigated and optimized by accumulation in different cellular compartments as cytosol, apoplastic space and endoplasmic reticulum (ER) as will be discussed in this review. In several cases described the highest accumulation of complete active antibodies was achieved by targeting into the apoplastic space. High-level expression of active recombinant single-chain Fv antibodies (scFv's) was obtained by retention of these proteins in the lumen of the endoplasmic reticulum. This has been shown for leaves and seeds of transgenic tobacco as well as for potato tubers. Transgenic tobacco seeds, potato tubers and tobacco leaves can facilitate stable storage of scFv's accumulated in the ER over an extended (seeds, tubers) or a short (leaves) period of time. The expression of specific scFv's in different plant species, plant organs and cellular compartments offers the possibility of blocking regulatory factors or pathogens specifically. Examples are scFv's expressed in the cytosol and the apoplastic space of transgenic plant cells modulating the infection process of plant viruses and a cytosolically expressed scFv that influenced the activity of phytochrome A protein. The immunomodulation approach has been shown to be also applicable for investigating the action of the phyto-hormone abscisic acid (ABA). High-level accumulation of specific anti-ABA scFv's in the ER of all leaf cells has been used to block the influence of ABA on the stomatal functions. Seed-specific expression of high amounts of anti-ABA-scFv's at a defined time of seed-development induced a developmental switch from seed ripening to vegetative growth. It has been demonstrated that ER retention is essential for the accumulation of sufficient scFv to bind high concentrations of ABA in the transgenic seeds.  相似文献   

11.
Spider dragline silk is a unique biomaterial and represents nature's strongest known fibre. As it is almost as strong as many commercial synthetic fibres, it is suitable for use in many industrial and medical applications. The prerequisite for such a widespread use is the cost-effective production in sufficient quantities for commercial fibre manufacturing. Agricultural biotechnology and the production of recombinant dragline silk proteins in transgenic plants offer the potential for low-cost, large-scale production. The purpose of this work was to examine the feasibility of producing the two protein components of dragline silk (MaSp1 and MaSp2) from Nephila clavipes in transgenic tobacco. Two different promoters, the enhanced CaMV 35S promoter (Kay et al., 1987) and a new tobacco cryptic constitutive promoter, tCUP (Foster et al., 1999) were used, in conjunction with a plant secretory signal (PR1b), a translational enhancer (alfalfa mosaic virus, AMV) and an endoplasmic reticulum (ER) retention signal (KDEL), to express the MaSp1 and MaSp2 genes in the leaves of transgenic plants. Both genes expressed successfully and recombinant protein accumulated in transgenic plants grown in both greenhouse and field trials.  相似文献   

12.
Transgenic plants offer advantages for biomolecule production because plants can be grown on a large scale and the recombinant macromolecules can be easily harvested and extracted. We introduced an Aspergillus phytase gene into canola (Brassica napus) (line 9412 with low erucic acid and low glucosinolates) by Agrobacterium-mediated transformation. Phytase expression in transgenic plant was enhanced with a synthetic phytase gene according to the Brassica codon usage and an endoplasmic reticulum (ER) retention signal KDEL that confers an ER accumulation of the recombinant phytase. Secretion of the phytase to the extracellular fluid was also established by the use of the tobacco PR-S signal peptide. Phytase accumulation in mature seed accounted for 2.6% of the total soluble proteins. The enzyme can be glycosylated in the seeds of transgenic plants and retain a high stability during storage. These results suggest a commercial feasibility of producing a stable recombinant phytase in canola at a high level for animal feed supplement and for reducing phosphorus eutrophication problems.  相似文献   

13.
Vicilin, a 7S globulin of Pisum sativum L. seed, accumulates in protein-storage vacuoles (protein bodies) of cotyledonary storage-parenchyma cells. The synthesis and proteolytic processing of various genetically engineered proteins within the leaf and seed of a heterologous (tobacco, Nicotiana tabacum L.) host was examined. A modified vicilin gene, in which the DNA sequence corresponding to the signal peptide was removed, resulted in a polypeptide of 50 kDa in the tobacco leaf and seed; none of the normal proteolytic cleavage products characteristic of expression of an unmodified vicilin gene were obtained. Likewise, no vacuolar accumulation of this mutant vicilin occurred in leaf protoplasts, which is also supportive of the predicted cytosolic localization for this protein. In-frame deletions were made within the region of the vicilin gene encoding the mature protein, to eliminate the N-terminal 28 and 121 amino acids and the C-terminal 69 residues, while maintaining an intact signal peptide. All of these mature deletion-mutant proteins were accumulated to only low levels in the host, but exhibited the predicted molecular weight and underwent some normal proteolytic processing in the seed. Mutant vicilin proteins having deletions in either the N-terminus (NT 121) or C-terminus (CT 69) were not found in appreciable amounts within the vacuolar fraction of transgenic tobacco leaf protoplasts, perhaps due to protein degradation in this compartment. Compared with the intact vicilin, oligomer assembly of the C-terminal deletion-mutant protein was disrupted in leaf cells, which may have further affected protein stability. The deletions of mature vicilin protein led to a much less dramatic reduction in protein accumulation in transgenic tobacco seed. Further, the same mutant proteins expressed within transgenic tobacco seed exhibited correct and highly specific proteolytic processing.Abbreviations CaMV cauliflower mosaic virus - Mr relative molecular mass We gratefully acknowledge the technical assistance from Maria J. Still and help from M.R.I. Khan. Part of this research was supported by Natural Sciences and Engineering Research Council of Canada (NSERC) Operating and Equipment Grants to A.R.K.  相似文献   

14.
The ER body is a novel compartment that is derived from endoplasmic reticulum (ER) in Arabidopsis. In contrast to whole seedlings which have a wide distribution of the ER bodies, rosette leaves have no ER bodies. Recently, we reported that wound stress induces the formation of many ER bodies in rosette leaves, suggesting that the ER body plays a role in the defense system of plants. ER bodies were visualized in transgenic plants (GFP-h) expressing green fluorescent protein (GFP) with an ER-retention signal, HDEL. These were concentrated in a 1000-g pellet (P1) of GFP-h plants. We isolated an Arabidopsis mutant, nai1, in which fluorescent ER bodies were hardly detected in whole plants. We found that a 65-kDa protein was specifically accumulated in the P1 fraction of GFP-h plants, but not in the P1 fraction of nai1 plants. N-terminal peptide sequencing revealed that the 65-kDa protein was a beta-glucosidase, PYK10, with an ER-retention signal, KDEL. Immunocytochemistry showed that PYK10 was localized in the ER bodies. Compared with the accumulation of GFP-HDEL, which was associated with both cisternal ER and ER bodies, the accumulation of PYK10 was much more specific to ER bodies. PYK10 was one of the major proteins in cotyledons, hypocotyls and roots of Arabidopsis seedlings, while PYK10 was not detected in rosette leaves that have no ER bodies. These findings indicated that PYK10 is the main component of ER bodies. It is possible that PYK10 produces defense compounds when plants are damaged by insects or wounding.  相似文献   

15.
A 7Crp peptide composed of seven major human T cell epitopes derived from the Japanese cedar pollen allergens Cry j 1 and Cry j 2 is an ideal tolerogen for peptide immunotherapy against Japanese cedar pollinosis. To maximize the accumulation level of the 7Crp peptide in transgenic rice seed, we tested endosperm specific promoters and intracellular localizations suitable for stable accumulation. A 7Crp peptide carrying the KDEL ER retention signal directed by the 2.3-kb promoter of the glutelin GluB-1, which contains a signal peptide, accumulated at the highest level of about 60 μg/grain. Notably, the 7Crp peptide predominantly accumulated in ER-derived protein bodies irrespective of the presence of various sorting signals or expression as a fusion protein with glutelin. We attribute this abnormal pattern of accumulation to the formation of disulfide bonds between the 7Crp peptide and cysteine-rich (Cys-rich) prolamin storage proteins. Furthermore, the formation of these aggregates induced the chaperone proteins BiP and PDI as an ER stress response.  相似文献   

16.
A 5.5 kb Eco RI fragment containing a vicilin gene was selected from a Pisum sativum genomic library, and the protein-coding region and adjacent 5 and 3 regions were sequenced. A DNA construction comprising this 5.5 kb fragment together with a gene for neomycin phosphotransferase II was stably introduced into tobacco using an Agrobacterium tumefaciens binary vector, and the fidelity of expression of the pea vicilin gene in its new host was studied. The seeds of eight transgenic tobacco plants showed a sixteen-fold range in the level of accumulated pea vicilin. The level of accumulation of vicilin protein and mRNA correlated with the number of integrated copies of the vicilin gene. Pea vicilin was confined to the seeds of transgenic tobacco. Using immunogold labelling, vicilin was detected in protein bodies of eight out of ten embryos (axes plus cotyledons) and, at a much lower level, in two out of eleven endosperms. Pea vicilin was synthesized early in tobacco seed development; some molecules were cleaved as is the case in pea seeds, yielding a major parental component of M r50000 together with a range of smaller polypeptides.  相似文献   

17.
Soluble proteins that reside in the lumen of the endoplasmic reticulum are known to have at their carboxyterminus the tetrapeptides KDEL or HDEL. In yeast and mammalian cells, these tetrapeptides function as endoplasmic reticulum (ER)-retention signals. To determine the effect of an artificially-introduced KDEL sequence at the exact carboxyterminus of a plant secretory protein, we modified the gene of the vacuolar protein phytohemagglutinin-L (PHA) so that the amino-acid sequence would end in LNKDEL rather than LNKIL, and expressed the modified gene in transgenic tobacco with a seed-specific promoter. Analysis of the glycans of PHA showed that most of the control PHA had one endoglycosidase H-sensitive and one endoglycosidase H-resistant glycan, indicating that it had been processed in the Golgi complex. On the other hand, a substantial portion of the PHA-KDEL (about 75% at mid-maturation and 50% in mature seeds) had two endoglycosidase H-sensitive glycans. Phytohemagglutinin with two endoglycosidase H-sensitive glycans is normally found in the ER. Using immunocytochemistry we found that a substantial portion of the PHA-KDEL was present in the ER or accumulated in the nuclear envelope while the remainder was found in the protein storage vacuoles (protein bodies). We interpret these data to indicate that carboxyterminal KDEL functions as an ER retention-retardation signal and causes protein to accumulate in the nuclear envelope as well as in the ER. The incomplete ER retention of this protein which is modified at the exact carboxyterminus may indicate that structural features other than carboxyterminal KDEL are important if complete ER retention is to be achieved.Mention of trademark, proprietary product, or vendor, does not constitute a guarantee or warrenty of the product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products or vendors that may also be suitable.Abbreviations endoH endoglycosidase H - ER endoplasmic reticulum - Mr relative molecular mass - PHA phytohemagglutinin - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - TBST Tris-buffered saline containing Tween 20 We thank Debra Donaldson for her contribution to the PHA gene constructions. This work has been supported by grants from the National Science Foundation (Cell Biology) and the Department of Energy (DE-FG03-86ER13497) to Maarten J. Chrispeels. The assistance of the staff of the Electron Microscope Laboratory, USDA, Beltsville is gratefully acknowledged.  相似文献   

18.
We describe the expression of the bispecific antibody biscFv2429 in transgenic suspension culture cells and tobacco plants. biscFv2429 consists of two single-chain antibodies, scFv24 and scFv29, connected by the Trichoderma reesi cellobiohydrolase I linker. biscFv2429 binds two epitopes of tobacco mosaic virus (TMV): the scFv24 domain recognizes neotopes of intact virions, and the scFv29 domain recognizes a cryptotope of the TMV coat protein monomer. biscFv2429 was functionally expressed either in the cytosol (biscFv2429-cyt) or targeted to the apoplast using a murine leader peptide sequence (biscFv2429-apoplast). A third construct contained the C-terminal KDEL sequence for retention in the ER (biscFv2429-KDEL). Levels of cytoplasmic biscFv2429 expression levels were low. The highest levels of antibody expression were for apoplast-targeted biscFv2429-apoplast and ER-retained biscFv2429-KDEL that reached a maximum expression level of 1.65% total soluble protein in transgenic plants. Plant-expressed biscFv2429 retained both epitope specificities, and bispecificity and bivalency were confirmed by ELISA and surface plasmon resonance analysis. This study establishes plant cells as an expression system for bispecific single-chain antibodies for use in medical and biological applications.  相似文献   

19.
Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.  相似文献   

20.
Plant-based expression systems are attractive for the large-scale production of pharmaceutical proteins. However, glycoproteins require particular attention as inherent differences in the N-glycosylation pathways of plants and mammals result in the production of glycoproteins bearing core-xylose and core-alpha(1,3)-fucose glyco-epitopes. For treatments requiring large quantities of repeatedly administered glycoproteins, the immunological properties of these non-mammalian glycans are a concern. Recombinant glycoproteins could be retained within the endoplasmic reticulum (ER) to prevent such glycan modifications occurring in the late Golgi compartment. Therefore, we analysed cPIPP, a mouse/human chimeric IgG1 antibody binding to the beta-subunit of human chorionic gonadotropin (hCG), fused to a C-terminal KDEL sequence, to investigate the efficiency of ER retrieval and the consequences in terms of N-glycosylation. The KDEL-tagged cPIPP antibody was expressed in transgenic tobacco plants or Agrobacterium-infiltrated tobacco and winter cherry leaves. N-Glycan analysis showed that the resulting plantibodies contained only high-mannose (Man)-type Man-6 to Man-9 oligosaccharides. In contrast, the cPIPP antibody lacking the KDEL sequence was found to carry complex N-glycans containing core-xylose and core-alpha(1,3)-fucose, thereby demonstrating the secretion competence of the antibody. Furthermore, fusion of KDEL to the diabody derivative of PIPP, which contains an N-glycosylation site within the heavy chain variable domain, also resulted in a molecule lacking complex glycans. The complete absence of xylose and fucose residues clearly shows that the KDEL-mediated ER retrieval of cPIPP or its diabody derivative is efficient in preventing the formation of non-mammalian complex oligosaccharides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号