首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nitric oxide (NO) is a membrane-permeant signaling molecule which activates soluble guanylyl cyclase and leads to the formation of cyclic GMP (cGMP). The NO/cGMP signaling system is thought to play essential roles during the development of vertebrate and invertebrate animals. Here, we analyzed the cellular expression of this signaling pathway during the development of the Drosophila melanogaster nervous system. Using NADPH diaphorase histochemistry as a marker for NO synthase, we identified several neuronal and glial cell types as potential NO donor cells. To label NO-responsive target cells, we used the detection of cGMP by an immunocytochemical technique. Incubation of tissue in an NO donor induced cGMP immunoreactivity (cGMP-IR) in individual motoneurons, sensory neurons, and groups of interneurons of the brain and ventral nerve cord. A dynamic pattern of the cellular expression of NADPHd staining and cGMP-IR was observed during embryonic, larval, and prepupal phases. The expression of NADPH diaphorase and cGMP-IR in distinct neuronal populations of the larval central nervous system (CNS) indicates a role of NO in transcellular signaling within the CNS and as potential retrograde messenger across the neuromuscular junction. In addition, the presence of NADPH diaphorase-positive imaginal discs containing NO-responsive sensory neurons suggests that a transcellular NO/cGMP messenger system can operate between cells of epithelial and neuronal phenotype. The discrete cellular resolution of donor and NO-responsive target cells in identifiable cell types will facilitate the genetic, pharmacological, and physiological analysis of NO/cGMP signal transduction in the developing nervous system of Drosophila.  相似文献   

2.
 Recent reports indicate that neuronal elements develop in early larval stages of some Gastropoda from the Pulmonata and Opisthobranchia prior to the appearance of any ganglia of the future adult central nervous system (CNS). The present study describes similar early neuronal elements in Crepidula fornicata. A posterior FMRFamide-like immunoreactive (LIR) cell with anteriorly projected fibers was observed in the trochophore stage. Additional FMRFamide-LIR and serotonin-LIR cells and fibers were found in the apical organ in the trochophore and early veliger stages. FMRFamide-LIR and serotonin-LIR projections to the velum and foot were also detected at this time. As the veliger developed, peripheral FMRFamide-LIR and later catecholaminergic cells were located in the foot region. Also during this stage, catecholaminergic cells and processes were observed near the mouth. In addition, this study tentatively identified the first serotonin- and FMRFamide-LIR cells and fibers within the developing ganglia of the adult CNS, which appeared in close proximity to the earlier developing elements. These observations are consistent with the hypothesis that, in addition to its presumed role in the control of larval behaviors, the larval nervous system guides the development of the adult CNS. Larvae from the class Bivalvia and other invertebrate phyla also have neuronal elements marked by the presence of FMRFamide, serotonin, and catecholamines, and, therefore, this study may provide additional insights into phylogenetic relationships of the Gastropoda with other representatives of the Mollusca and different invertebrate phyla. Accepted: 10 February 1999  相似文献   

3.
The expression of the neural adhesion molecules L1 and N-CAM has been studied in the embryonic and early postnatal olfactory system of the mouse in order to gain insight into the function of these molecules during development of a neural structure which retains neuronal turnover capacities throughout adulthood. N-CAM was slightly expressed and L1 was not significantly expressed in the olfactory placode on Embryonic Day 9, the earliest stage tested. Rather, N-CAM was strongly expressed in the mesenchyme underlying the olfactory placode. In the developing nasal pit, L1 and N-CAM were detectable in the developing olfactory epithelium, but not in regions developing into the respiratory epithelium. At early developmental stages, expression of the so-called embryonic form of N-CAM (E-N-CAM) coincides with the expression of N-CAM, whereas at later developmental stages and in the adult it is restricted to a smaller number of sensory cell bodies and axons, suggesting that the less adhesive embryonic form is characteristic of morphogenetically dynamic neuronal structures. Moreover, E-N-CAM is highly expressed at contact sites between olfactory axons and their target cells in the glomeruli of the olfactory bulb. L1 and N-CAM 180, the component of N-CAM that accumulates at cell contacts by interaction with the cytoskeleton are detectable as early as the first axons extend toward the primordial olfactory bulb. L1 remains prominent throughout development on axonal processes, both at contacts with other axons and with ensheathing cells. Contrary to N-CAM 180 which remains detectable on differentiating sensory neuronal cell bodies, L1 is only transiently expressed on these and is no longer detectable on primary olfactory neuronal cell bodies in the adult. Furthermore, whereas throughout development L1 has a molecular form similar to that seen in other parts of the developing and adult central nervous systems, N-CAM and, in particular, N-CAM 180 retain their highly sialylated form at least partially throughout all ages studied. These observations suggest that E-N-CAM and N-CAM 180 are characteristic of developmentally active structures and L1 may not only be involved in neurite outgrowth, but also in stabilization of contacts among fasciculating axons and between axons and ensheathing cells, as it has previously been found in the developing peripheral nervous system.  相似文献   

4.
5.
Nicotinamide-adenine-dinucleotide-phosphate-diaphorase (NADPH-d) histochemistry has been applied in the present study to determine the distribution of putative nitric oxide (nitric oxide synthase)-producing cells during embryonic and early postembryonic development in the pond snail, Lymnaea stagnalis L., with special reference to the nervous system. The first NADPH-d-positive structures appear as early as 18% of development (E18, trochophore stage) and correspond to the pair of protonephridia. These structures later show disintegration, although after metamorphosis (E26=75%) staining of their individually spreading cells can be observed until hatching. Peripheral sensory neurons in the foot, mantle edge and lips, and their afferents projecting to the central nervous system reveal NADPH-d activity in the postmetamorphosis period (E25–E27=E60%–E80%) of embryogenesis. After hatching (P1–P3), a number of stained sensory cells appear in the pharynx and esophagus. Some NADPH-d positive neuronal perikarya occur in the pedal and pleural ganglia, and a few weakly stained cells in the cerebral and buccal ganglia of juvenile snails. At the same time, a continuous bundle of reactive fibers is formed in the neuropil both through and through around the circumesophageal ganglion ring. The localization of NADPH-d activity in the developing nervous system of Lymnaea suggests that nitric oxide participates mainly in sensory processes. However, its role in specific intraganglionic integrative events cannot be excluded following embryonic metamorphosis.  相似文献   

6.
While the central ganglia of gastropod molluscs have been studied extensively, relatively little is known about the organization and functions of the peripheral nervous system in these animals. In the present study, we used immunohistochemical procedures to examine the innervation of the rhinophores, oral tentacles and region around the mouth of the aeolid nudibranch, Phestilla sibogae. Serotonin-like immunoreactivity was found in an extensive network of efferent projections apparently originating from central neurons, but was not detected within any peripheral cell bodies. In contrast, large numbers of peripheral, and presumably sensory, somata exhibited reactivity to an antibody raised against tyrosine hydroxylase (the enzyme catalyzing the initial step in the conversion of tyrosine into the catecholamines). Additional tyrosine hydroxylase-like immunoreactivity was detected in afferent fibers of the peripheral cells and in several cells within the rhinophoral ganglia. The presence of serotonin, dopamine and norepinephrine in the rhinophores, tentacles and central ganglia was confirmed using high-performance liquid chromatography. Finally, FMRFamide-like immunoreactivity was detected in cells and tangles of fibers found within the rhinophore, possibly revealing glomerulus-like structures along olfactory pathways. FMRFamide-like immunoreactivity was also found in somata of the rhinophoral ganglia, in a small number of cells located in the body wall lateral to the tentacles and in what appeared to be varicose terminals of efferent projections to the periphery. Together, these results indicate several new features of the gastropod peripheral nervous system and suggest future experiments that will elucidate the function of the novel cells and innervation patterns described here.This research was supported by Natural Sciences and Research Council of Canada Grant #OPG38863 to R.P.C. and Office of Naval Research Grant #N00014-94-1-0524 to M.G.H.  相似文献   

7.
Multiple roles of mouse Numb in tuning developmental cell fates.   总被引:8,自引:0,他引:8  
BACKGROUND: Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS: We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS: Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.  相似文献   

8.
We have used immunohistochemistry and immunoblotting to examine the expression of Bid and four other Bcl-2 family proteins (Bcl-2, Bcl-X, Bax and Bak) in the developing and adult murine central nervous system (CNS). Bid protein is widespread in embryonic and postnatal brain, and its expression is maintained at a high level late into the adulthood. Bid is expressed both in the germ disc, early neural tube, proliferating stem cells of ventricular zones, and in postmitotic, differentiated neurons of the developing central and peripheral nervous system. As the differentiation proceeds, the neurons express higher levels of Bid than the stem cells of the paraventricular zone. Both in embryonic and postnatal life, Bid protein is present in the most vital regions of brain, such as the limbic system, basal ganglia, mesencephalic tectum, Purkinje cells in cerebellum, and the ventral columns of spinal cord. The p15 cleaved form of Bid was detectable in the brain specimens at fetal stages of development, consistent with caspase-mediated activation of this pro-apoptotic Bcl-2 family protein. Among the Bcl-2 family proteins only Bid and Bcl-XL continue to be expressed at high levels in the adult brain.  相似文献   

9.
It has been demonstrated by us and other authors that first nervous cells in developing larvae from various trochozoan groups differentiate at the periphery. These pioneer neurons are distinguished by the set of characters. They are located outside the forming central ganglia; outgrowing fibers of central neurons use their processes as a “scaffolding” transmitter expression in these neurons is transient. On the one hand, pioneer neurons mark the “frame” of the adult nervous system and thus play a limiting role. On the other hand, pioneering navigation provides possible mechanisms for evolutional plasticity of the nervous system in adults. In addition, pioneer neurons can underlie functional adaptation of trochophore animals, which minimizes fitness decrease during the transition from the larval to the adult form during metamorphosis.  相似文献   

10.
We have sequenced a cDNA clone for the Drosophila melanogaster gene Dsrc28C, a homolog of the vertebrate gene c-src. The cDNA contains a single open reading frame encoding a protein of 66 kilodaltons which contains features highly conserved within the src family of tyrosine protein kinases. Novel structural features of the Dsrc28C protein include a basic pI and a polyglycine domain near the amino terminus. Cell-free translation of in vitro-transcribed RNA yielded a protein of the predicted size which could be immunoprecipitated by anti-v-src antisera. RNA blot hybridization revealed that the gene is expressed predominantly during embryogenesis, in imaginal disks of third-instar larvae, and in adult females. In situ hybridization showed that expression in adult females is largely confined to nurse cells and developing oocytes.  相似文献   

11.
Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is a monomeric, multifunctional serine/threonine protein kinase that is expressed in subanatomic regions of the central and peripheral nervous system, T lymphocytes, and male germ cells. It is frequently localized to the nucleus, where it serves as a mediator of Ca(2+)-dependent gene expression. Although CaMKIV expression in the adult rat central nervous system and thymus has been described, little is known about the embryonic expression of murine CaMKIV. Here we report a thorough embryonic expression study of CaMKIV mRNA from embryonic day 9.5 through postnatal day 1. Expression patterns during embryonic development are significantly different from those of adults, suggesting specific roles for CaMKIV during development. Regions of high CaMKIV mRNA expression include thymic and bone cartilage primordia as well as specific cranial nerve ganglia (trigeminal, vestibulocochlear, and glossopharyngeal), thalamus, and dorsal root ganglia. This pattern of expression is chronologically consistent with periods of extensive cellular differentiation, proliferation, or neuronal survival selection and shows a predilection for neural crest-derived cells. These trends, along with recent studies in the CaMKIV null mouse, suggest that CaMKIV may play an important physiological role in cellular differentiation during embryogenesis.  相似文献   

12.
Tissue and urokinase-type plasminogen activators are serine proteases with highly restricted specificity, their best characterised role being to release the broad specificity protease plasmin from inactive plasminogen. It has frequently been suggested that these, and similar proteases, are involved in axonal growth and tissue remodelling associated with neural development. To help define what this role might be, we have studied the expression of the plasminogen activators in developing rat nervous tissue. Urokinase-type plasminogen activator mRNA is strongly expressed by many classes of neurons in peripheral and central nervous system. We have analysed its appearance in spinal cord and sensory ganglia, and found the mRNA is detectable by in situ hybridisation very early in neuronal development (by embryonic day 12.5), at a stage compatible with it playing a role in axonal or dendritic growth. Tissue plasminogen activator mRNA, on the other hand, is expressed only by cells of the floor plate in the developing nervous system, from embryonic day 10.5 and thereafter. Immunohistochemical and enzymatic analysis showed that active tissue plasminogen activator is produced by, and retained within, the floor plate. A mechanism is suggested by which high levels of tissue plasminogen activator produced by the stationary cells of the floor plate could influence the direction of growth of commissural axons as they pass through this midline structure.  相似文献   

13.
Abstract. Antibodies against the echinoderm-specific neuropeptide S1 and against 5HT were used to examine the fate of the larval nervous system during metamorphosis in the ophiuroid Ophiactis resiliens . In contrast to most echinoderms, the onset of peptidergic and serotonergic expression was delayed to the advanced ophiopluteus stage, in particular for 5HT. In advanced ophioplutei, peptidergic immunoreactivity was located in simple fibres associated with the ciliated bands, a stomach nerve ring, and cells along the antero-lateral arms. 5HT immunoreactivity was concentrated in 2 oral ganglia in the adoral projections, located at the posterior rim of the mouth. Clusters of 5HT-positive cells were also found along the antero-lateral arms. The ophiopluteus lacked a serotonergic (or peptidergic) anterior ganglion. In echinoids, holothuroids, and crinoids, anterior ganglia are thought to have a sensory role in settlement and metamorphosis. Given that ophioplutei metamorphose in the plankton and that larval structures degenerate before settlement, the absence of apical ganglia correlates with the lack of a functional role for larval structures in substrate selection and settlement. Although most of the larval nervous system degenerated during metamorphosis, the adoral projections and associated oral ganglia appeared to be incorporated into the juvenile mouth, suggesting a potential role for larval neurons in contributing to oral neuronal structures in the adult. S1-positive neurons and fibres in the rudiment developed de novo and in parallel with development of the epineural canal. This structure gives rise to the primordia of the adult circumoral nerve ring and radial nerves, indicating that differentiation of the adult nervous system begins in the early stages of metamorphosis.  相似文献   

14.
We isolated a chick homologue of BM88 (cBM88), a cell-intrinsic nervous system-specific protein and examined the expression of BM88 mRNA and protein in the developing brain, spinal cord and peripheral nervous system of the chick embryo by in situ hybridization and immunohistochemistry. cBM88 is widely expressed in the developing central nervous system, both in the ventricular and mantle zones where precursor and differentiated cells lie, respectively. In the spinal cord, particularly strong cBM88 expression is detected ventrally in the motor neuron area. cBM88 is also expressed in the dorsal root ganglia and sympathetic ganglia. In the early neural tube, cBM88 is first detected at HH stage 15 and its expression increases with embryonic age. At early stages, cBM88 expression is weaker in the ventricular zone (VZ) and higher in the mantle zone. At later stages, when gliogenesis persists instead of neurogenesis, BM88 expression is abolished in the VZ and cBM88 is restricted in the neuron-containing mantle zone of the neural tube. Association of cBM88 expression with cells of the neuronal lineage in the chick spinal cord was demonstrated using a combination of markers characteristic of neuronal or glial precursors, as well as markers of differentiated neuronal, oligodendroglial and astroglial cells. In addition to the spinal cord, cBM88 is expressed in the HH stage 45 (embryonic day 19) brain, including the telencephalon, diencephalon, mesencephalon, optic tectum and cerebellum. BM88 is also widely expressed in the mouse embryonic CNS and PNS, in both nestin-positive neuroepithelial cells and post-mitotic betaIII-tubulin positive neurons.  相似文献   

15.
Organismal growth regulation requires the interaction of multiple metabolic, hormonal and neuronal pathways. While the molecular basis for many of these are well characterized, less is known about the developmental origins of growth regulatory structures and the mechanisms governing control of feeding and satiety. For these reasons, new tools and approaches are needed to link the specification and maturation of discrete cell populations with their subsequent regulatory roles. In this study, we characterize a rhomboid enhancer element that selectively labels four Drosophila embryonic neural precursors. These precursors give rise to the hypopharyngeal sensory organ of the peripheral nervous system and a subset of neurons in the deutocerebral region of the embryonic central nervous system. Post embryogenesis, the rhomboid enhancer is active in a subset of cells within the larval pharyngeal epithelium. Enhancer-targeted toxin expression alters the morphology of the sense organ and results in impaired larval growth, developmental delay, defective anterior spiracle eversion and lethality. Limiting the duration of toxin expression reveals differences in the critical periods for these effects. Embryonic expression causes developmental defects and partially penetrant pre-pupal lethality. Survivors of embryonic expression, however, ultimately become viable adults. In contrast, post-embryonic toxin expression results in fully penetrant lethality. To better define the larval growth defect, we used a variety of assays to demonstrate that toxin-targeted larvae are capable of locating, ingesting and clearing food and they exhibit normal food search behaviors. Strikingly, however, following food exposure these larvae show a rapid decrease in consumption suggesting a satiety-like phenomenon that correlates with the period of impaired larval growth. Together, these data suggest a critical role for these enhancer-defined lineages in regulating feeding, growth and viability.  相似文献   

16.
We found that the dorsal root ganglia (DRG) and trigeminal ganglia of mouse embryos express the E-cadherin cell-cell adhesion molecule and analyzed its expression profile. E-cadherin expression began around Embryonic Day 12 (E12) in these ganglia, thereafter increased, and persisted to the adult stage. This cadherin was expressed by 10 and 30% of DRG neurons in E17 and postnatal animals, respectively, as well as by satellite cells and some Schwann cells. E-cadherin-positive primary sensory fibers terminated only in a narrow region of the dorsal horn of the spinal cord, which was identified as part of lamina II by double-staining for E-cadherin and substance P or somatostatin. This E-cadherin expressing area of the spinal cord extended to part of the trigeminal nucleus in the medulla. These results showed that E-cadherin is expressed in a particular subset of primary sensory neurons which may have specific functional properties. We suggest that this adhesion molecule may play a role in the selective adhesion of sensory neuronal fibers.  相似文献   

17.
18.
The structure of the larval nervous system and the musculature of Phoronis pallida were studied, as well as the remodeling of these systems at metamorphosis. The serotonergic portion of the apical ganglion is a U-shaped field of cell bodies that send projections into a central neuropil. The majority of the serotonergic cells are (at least) bipolar sensory cells, and a few are nonsensory cells. Catecholaminergic cell bodies border the apical ganglion. The second (hood) sense organ develops at competence and is composed of bipolar sensory cells that send projections into a secondary neuropil. Musculature of the competent larva includes circular and longitudinal muscle fibers of the body wall, as well as elevators and depressors of the tentacles and hood. The juvenile nervous system and musculature are developed prior to metamorphosis and are integrated with those of the larva. Components of the juvenile nervous system include a diffuse neural net of serotonergic cell bodies and fibers and longitudinal catecholaminergic fibers. The juvenile body wall musculature consists of longitudinal fibers that overlie circular muscle fibers, except in the cincture regions, where this pattern is reversed. Metamorphosis is initiated by the larval neuromuscular system but is completed by the juvenile neuromuscular system. During metamorphosis, the larval nervous system and the musculature undergo cell death, and the larval tentacles and gut are remodeled into the juvenile arrangement. Although the phoronid nervous system has often been described as deuterostome-like, these data show that several cytological aspects of the larval and juvenile neuromuscular systems also have protostome (lophotrochozoan) characteristics.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号