首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated interspecific variation in leaf lifespan (persistence) and consequent differences in leaf biochemistry, anatomy, morphology, patterns of whole-tree carbon allocation and stand productivity. We tested the hypothesis that a species with short-lived foliage, Pinus radiata D. Don (mean leaf lifespan 2.5 years), grows faster than P. pinaster Ait., a species with more persistent foliage (leaf lifespan 5.6 years), and that the faster growth rate of P. radiata is associated with a greater allocation of nitrogen and carbon to photosynthetic tissues across a range of scales. In fully sunlit foliage, the proportion of leaf N in the major photosynthetic enzyme Rubisco (ribulose-1, 5-bisphosphate carboxylase) was greater in P. radiata than in P. pinaster, and, in mid-canopy foliage, the proportion of leaf N in thylakoid proteins was greater in P. radiata. A lesser proportion of needle cross-sectional area was occupied by structural tissue in P. radiata compared to P. pinaster. Foliage mass in stands of P. radiata was 9.7 t ha–1 compared with 18.2 t ha–1 in P. pinaster while leaf area index of both species was similar at 4.6 m2 m–2, owing to the compensating effect of differences in specific leaf area. Hence trade-offs between persistence and productivity were apparent as interspecific differences in patterns of whole-tree carbon allocation, needle morphology, anatomy and biochemistry. However, these interspecific differences did not translate into differences at the stand scale since rates of biomass accumulation were similar in both species (P. radiata 6.9±0.9 kg year–1 tree–1; P. pinaster 7.4±0.9 kg year–1 tree–1). The similarities in performance at larger scales suggest that leaf area index (and radiation interception) determines growth and productivity. Received: 13 July 1999 / Accepted: 31 January 2000  相似文献   

2.
Nitrogen and sulphur, both vital structural elements, are especially needed for the synthesis of proteins and oils. Investigations revealed the required application of sulphur is one half to one third the amount of nitrogen, and the ratio becomes narrower in mustard (Brassica juncea L.), followed by wheat and rice. The efficiency of an increased level of nitrogen required a proportionately higher amount of sulphur. A critical investigation on the effective utilization of applied vis-à-vis absorbed nitrogen in wheat and mustard envisaged accumulation of NO3-N in vegetative parts when sulphur remained proportionately low. Application of sulphur hastened the chemical reduction of absorbed NO3- for its effective utilization. The effect was more pronounced in mustard than in wheat. Easily available forms of sulphur, like ammonium sulphate and gypsum, as compared to pyrite or elemental sulphur, maintained adequate N to S ratio in rice, resulting in a reduction in the percent of unfilled grain, a major consideration in rice yield. A narrow N to S ratio, with both at higher levels, increased the oil content but raised the saponification value of the oil, a measure of free fatty acids. Whereas, a proportionately narrow N to S ratio at moderate dose resulted in adequately higher seed and oil yield with relatively low saponification value, associated with increased iodine value of the oil, indicating respectively low free fatty acids and higher proportion of unsaturated fatty acids, an index for better quality of the oil.  相似文献   

3.
The proportion of total sulphur lost during combustion (600 °C) of Douglas-fir (Pseudotsuga menziesii) foliage is reduced from> 90% to 65–70% as the SO4-S concentration increases from 10% to 45–50% of the total S content. Foliar SO4-S content is decreased by improvement of plant nitrogen status, suggesting that alterations to soil N availability may influence S transfer to the atmosphere during biomass burning.  相似文献   

4.
Variation in the photosynthetic function ofAbies amabilis foliage within a canopy was examined and related to three different processes that affect foliage function: foliage aging, sun-shade acclimation that occurred while foliage was expanding, and reacclimation after expansion was complete. Foliage produced in the sun had higher photosynthesis at light saturation (A max, mol·m-2·s-1), dark respiration (mol·m-2·s-1), nitrogen content (g·m-2), chlorophyll content (g·m-2), and chlorophylla:b ratio, and a lower chlorophyll to nitrogen ratio (chl:N), than foliage produced in the shade. As sun foliage becomes shaded, it becomes physiologically similar to shade foliage, even though it still retains a sun morphology. Shaded sun foliage exhibited lowerA max, dark respiration, nitrogen content, and chlorophylla:b ratio, and a higher chl:N ratio than sun foliage of the same age remaining in the open. However, shaded sun foliage had a higher chlorophyll content than sun foliage remaining in the open, even though true shade foliage had a lower chlorophyll content than sun foliage. This anomaly arises because as sun foliage becomes shaded, it retains a higher nitrogen content than shade foliage in a similar light environment, but the two forms have similar chl:N ratios. Within the canopy, most physiological indicators were more strongly correlated with the current light environment than with foliage age or leaf thickness, with the exception of chlorophyll content.A max decreased significantly with both decreasing current light environment of the foliage and increasing foliage age. The same trend with current light and age was found for the chlorophylla:b ratio. Foliage nitrogen content also decreased with a decrease in current light environment, but no distinct pattern was found with foliage age. Leaf thickness was also important for predicting leaf nitrogen content: thicker leaves had more nitrogen than thinner leaves regardless of light environment or age. The chl:N ratio had a strong negative correlation with the current light environment, and, as with nitrogen content, no distinct pattern was found with foliage age. Chlorophyll content of the foliage was not well correlated with any of the three predictor variables: current light environment, foliage age or leaf thickness. On the other hand, chlorophyll content was positively correlated with the amount of nitrogen in a leaf, and once nitrogen was considered, the current light environment was also highly significant in explaining the variation in chlorophyll content. It has been suggested that the redistribution of nitrogen both within and between leaves is a mechanism for photosynthetic acclimation to the current light environment. Within theseA. amabilis canopies, both leaf nitrogen and the chl:N ratio were strongly correlated with the current light environment, but only weakly with leaf age, supporting the idea that changing light is the driving force for the redistribution of nitrogen both within and between leaves. Thus, our results support previous theories on nitrogen distribution and partitioning. However,A max was significantly affected by both foliage age and the current light environment, indicating that changes in light alone are not enough to explain changes inA max with time.  相似文献   

5.
Foliage from six youngPinus radiata trees on a phosphorus limited site were chemically analysed annually for ten years. Nutrient differences were found between trees and between years. The pre-sampling period rainfall (last month of summer plus all autumn) accounted for 68% of variance of annual phosphorus concentrations and pre-sampling rainfall and age together accounted for 83%. The figures for calcium and nitrogen were 65% and 56% respectively. Testing the relationships in older stands of the same forest indicated age was only critical in stands which were less than about 16 years of age. When the information was used in conjunction with a site survey which showed Site Index to be related to phosphorus status, it was shown that the required concentrations of phosphorus needed to be modified according to rainfall. These relationships are discussed in relation to the use of foliage analysis for determining fertilizer requirements.  相似文献   

6.
Summary Distribution of different nitrogen and sulphur fractions and N:S ratios in alfalfa (Medicago sativa L. Pers.) without and with S fertilization has been studied with a green house experiment. With increasing rates of applied S, the concentrations of total N, protein N, total S, protein S and total soluble S in the plant increased but those of non-protein N fractions (total soluble N, amino acid N, amide N, nitrate N) decreased. Thus the adequate supply of S in alfalfa increases the protein synthesis by accelerating protein metabolism. Sulphur application narrowed total N:total S ratios and widened protein N:protein S ratios. The data indicate that one part sulphur was required for every 11 to 12 parts of nitrogen to insure maximum production of protein. re]19750305  相似文献   

7.
Yves Basset 《Oecologia》1991,87(3):388-393
Summary The spatial distribution of insect herbivores associated with the Australian rainforest treeArgyrodendron actinophyllum (Sterculiaceae) was investigated by restricted canopy fogging. The foliage of this species was low in nitrogen and water content, and high in fibre content. Herbivore abundance was positively correlated with the amount of young foliage present within the samples and in adjacent samples, and with the nitrogen content of young leaves. In particular, the occurrence of phloem-feeders was correlated with the magnitude of translocation within the samples. The influence of leaf water content upon herbivore distribution was marginal, presumably because this factor is not limiting in rain-forest environments during the wet season, which usually coincides with the season of leaf-flush. Specific leaf weight, leaf size and foliage compactness had little or no apparent effect on herbivore distribution. Since the magnitude of leaf turnover affected both the quantity and the quality, as exemplified by translocation effects, of young foliage available, this factor may be critical to herbivores associated with evergreen rainforest trees which are particularly low in foliar nutrients, such asA. actinophyllum.  相似文献   

8.
Seed‐borne pathogenic fungi can cause serious damage to soybean crops by reducing the germination, vigour and emergence of the seeds. Special attention should be paid to pathogen detection in seeds to prevent its introduction in disease‐free areas. Considering the importance of rapid and successful diagnosis of seed‐borne pathogenic fungi in soybeans, this study evaluated a method to detect Sclerotinia sclerotiorum and Phomopsis spp. in seeds using quantitative polymerase chain reaction (qPCR). Naturally infested samples were subjected to detection using qPCR and blotter test, and the findings were compared. Using soybean seeds soaked in water, both pathogens were detected at an infestation level up a 0.0625% (one infected seed out of 1,599 healthy seeds) by qPCR. This technique allowed the detection of 300 fg of S. sclerotiorum and 30 fg of Phomopsis spp. DNA in the seed samples. Phomopsis spp. was detected in 40.7% of the evaluated seed batches (81 batches) and S. sclerotiorum was detected in 32.1% of the evaluated batches, although most of the seeds had low infestation levels. It was up to 28.5 times more efficient to use qPCR rather than blotter test to detect pathogens with a low incidence of occurrence in soybean seeds. If routinely used to test healthy seeds, qPCR would contribute to reducing soybean losses due to diseases as well as decreasing the costs required to control those diseases.  相似文献   

9.
胡星云  孙志高  张党玉  孙文广  祝贺  任鹏 《生态学报》2017,37(24):8499-8510
2014年4-11月,选择黄河入海口北部滨岸高潮滩的碱蓬湿地为研究对象,基于野外原位氮负荷增强模拟试验(N0,无额外氮输入;N1,低氮输入;N2,中氮输入;N3,高氮输入),获取相应的不同氮基质种子(S0,S1,S2和S3),以研究其发芽率以及幼苗生长状况对不同盐分胁迫和氮浓度交互作用的响应。结果表明,不同氮负荷影响下碱蓬成熟种子中的氮含量整体表现为S2S0S1S3,中氮输入更利于种子中氮养分的累积。盐分和氮交互作用下4种氮基质种子的发芽率总体表现为S2S1S0S3(P0.05),S2在不同盐分胁迫下的发芽率最高,幼苗的生长状况也最好。随着盐分的增加,4种氮基质种子的发芽率及幼苗生长状况均受到一定程度的抑制,但较低的盐分有助于其幼苗长度的增长,且随着氮输入量的增加这种抑制作用可得到一定程度缓解。盐分胁迫、氮浓度和种子类型作为单独因素出现时对碱蓬的发芽率、幼苗长度、鲜重和干重均产生显著影响,除幼苗长度受氮浓度和盐分胁迫交互作用的影响达到显著水平外(P0.05),其他因子交互作用对诸生态指标的影响并不明显。研究发现,不同氮输入处理不仅改变了原生环境碱蓬种子的氮含量,而且也使这些具备不同氮基质的种子对不同盐分胁迫与氮浓度环境具有不同的生态适应对策,中氮输入下的碱蓬种子(S2)无论在萌发率还是在幼苗生长状况上均优于其他氮基质的种子。未来,随着黄河口新生湿地氮养分供给的不断增加,当湿地氮养分达到中氮水平时,将更有利于碱蓬种子的萌发以及幼苗的生长,当氮养分达到更高水平时,碱蓬种子的萌发以及幼苗生长可能会受到一定程度的抑制。  相似文献   

10.
Acclimation responses of mature Abies amabilis sun foliage to shading   总被引:2,自引:0,他引:2  
This paper addresses two main questions. First, can evergreen foliage that has been structurally determined as sun foliage acclimate physiologically when it is shaded? Second, is this acclimation independent of the foliage ageing process and source-sink relations? To investigate these questions, a shading and debudding experiment was established using paired branches on opengrown Abies amabilis trees. For each tree, one branch was either shaded, debudded, or both, from before budbreak until the end of summer, while the other branch functioned as a control. Foliage samples were measured both prior to and during treatment for photosynthesis at light saturation (A max), dark respiration, nitrogen content, chlorophyll content, chlorophyll-to-nitrogen ratio and chlorophyll a:b ratio. All age classes of foliage responded similarly during the treatment, although pre-treatment values differed between age classes. Within 1 month after the treatment began, A max was lower in shaded foliage and remained lower throughout the treatment period. For debudded branches, A max was lower than the controls only during active shoot elongation. At the end of the treatments in September, A max in shade-treated sun foliage matched the rates in the true shade-formed foliage, but nitrogen remained significantly higher. By 1.5 months after treatment, chlorophyll content in shaded foliage was higher than in controls, and the chlorophyll a:b ratio was lower for the shaded foliage. On debudded branches, chlorophyll content and chlorophyll a:b ratio were similar to the values in control samples. Shading lowered the rate of nitrogen accumulation within a branch, while removing debudding decreased the amount of sequestered N that was exported from the older foliage to supply new growth. By September, chlorophyll content in shade-treated foliage was higher than that in the control sun foliage or in true shade foliage. The chlorophyll increase as a result of shading was unexpected. However, the chlorophyll-to-nitrogen ratio was identical for the shade-treated sun foliage and the true shade foliage while being significantly lower than the control sun foliage. It appears that acclimation to shading in mature foliage involves a reallocation of nitrogen within the leaf into thylakoid proteins. A redistribution of resources (nitrogen) among leaves is secondary and appears to function on a slower time scale than reallocation within the leaf. Thus, A. amabilis foliage that is structurally determined as sun foliage can acclimate to shade within a few months; this process is most likely independent of ageing and is only slightly affected by source-sink relations within a branch.  相似文献   

11.
Bienertia cycloptera (Chenopodiaceae) produces two types of leaf foliage colour (reddish and yellowish). In order to determine the role of leaf colour variation in regulating the germination characteristics and salinity tolerance during germination, a study was conducted on seeds collected from plants of both colours. Seeds with and without pulp were germinated under two illumination conditions (12‐h light photoperiod and continuous dark), three alternating temperature regimes (15/25°C, 20/30°C and 25/35°C), and several salinity levels at 20/30°C. Germination percentage was significantly higher for seeds without pulp as compared to the seeds with pulp. The response of B. cycloptera seeds to salinity depended on the leaf colour. Thus, the seeds collected from reddish coloured plants were able to tolerate higher salinity compared to those of yellowish coloured plant. The germination recovery results indicate that the seeds from both coloured plants could remain viable in saline condition and they will be able to germinate once the salinity level are decreased by rain. The production of different foliage colours by B. cycloptera seems to be an adaptative strategy which increases the possibility for establishment in unpredictable environments by producing seeds with different germination requirements and salinity tolerance.  相似文献   

12.
In order to study the relative growth of the pearl oyster Pinctada radiata in Tunisia, a total of 330 individuals of this species were collected from six sites along the Tunisian coastline. Quantitative measurements of collected oysters were conducted for shell height, shell length, shell width, hinge length, height and width of the nacreous part and wet weight. The size structure of the sampled populations was described and the relative growth between different morphometric characteristics was estimated as allometric growth lines for the six P. radiata samples. It appeared that the majority of examined samples were dominated by large individuals that exceed a shell height of 42 mm. The maximum size (100.5 mm), recorded in Bizerta lagoon, is bigger than that recorded elsewhere in particular in the Red Sea. Size distribution analysis also showed that the majority of P. radiata samples were dominated by two or more size groups. Differences of allometric regression were found between the examined samples for the tested relationships. Moreover, the Factorial Discriminant Analysis, coupled with Ascending Hierarchic Classification, classified the sub-populations according to geographic locations.  相似文献   

13.
Nearly 1500 foliage samples were collected from a total of 156 plant species, distributed at 16 study sites representing a wide range of forests and woodlands in south-eastern Australia. Samples were collected in all months. Invertebrates present in samples were counted, sorted into 13 categories, and the number present (> 3 mm in length) converted into density estimates. Densities of all invertebrates combined and invertebrate diversity were also calculated. Despite high variability there were some obvious distributional patterns for most categories. Three major dichotomies affected abundance and distribution of invertebrates: these were presence or absence of flowers, whether the plant species was Eucalyptus or other, and if Eucalyptus, whether the plant species was Symphyomyrtus or Monocalyptus. The presence of flowers in foliage samples increased the abundance of most invertebrate taxa. Compared to foliage of non-Eucalyptus species, Eucalyptus foliage had more lerp-forming psyllids and miscellaneous larvae, but fewer Arachnida, Coleoptera, Psocoptera, Hemiptera (other), Thysanoptera, Diptera, and total arthropods. Foliage of Symphyomyrtus species had higher densities of most categories (and particularly lerp-forming psyllids) than that of Monocalyptus. There were seasonal variations in abundance in most invertebrate taxa, but these patterns were different for Eucalyptus and non-Eucalyptus species. For most sites abundance of all arthropods combined was lowest in winter, but this decline was not especially pronounced, and was reversed at more xeric sites. For most categories there were significant differences between study sites in abundance and for some this was related to position of sites on a moisture gradient. In general total arthropod densities were highest at intermediate and xeric sites. There were some significant differences in arthropod communities for the same plant species at different study sites. Sample height, plant height, and the ratio of these were relatively unimportant variables. Likewise, the ratio of leaf width: leaf length was not significantly correlated with abundance for any invertebrate category across 128 plant species, but mean leaf size was negatively correlated with densities of Arachnida and total invertebrates. The distributions of some invertebrate categories were inter-correlated.  相似文献   

14.
Visual symptoms of stem deformity similar to those of Cu deficiency are common inP. radiata established on fertile sites previously used for agricultural production in south-eastern Australia. In this study, Cu fertiliser was applied at rates of 0, 2, 5, 10, 20 and 50 kg ha−1 to deformedP. radiata at ages 3 and 6 years. Available soil Cu and contents of Cu in the foliage increased significantly only in the younger plantation. Cu fertiliser did not affect growth nor did it improve stem form. Levels of N, Cu and Cu/N ratios in foliage of straight and deformed trees were similar. However, contents of Cu in apical buds were significantly lower in deformed trees. It was concluded that stem deformity inP. radiata as observed on these fertile pasture sites, cannot be corrected by application of Cu fertiliser. Differences in Cu levels in apical buds of straight and deformed trees suggest that Cu may still be involved in this syndrome. There was also no indication of other nutrient deficiencies that could be associated with the deformity.  相似文献   

15.
Some factors affecting the mineralization of organic sulphur in soils   总被引:6,自引:0,他引:6  
Summary Factors affecting the release of sulphate from a number of eastern Australian soils were studied.All of the soils released sulphate when dried. The amounts released were influenced by the manner in which the soil was dried. Air-drying in the laboratory at 20°C released least sulphate.Sulphate was mineralized in all soils by incubation at 30°C but the amounts mineralized could not be related to soil type or any single soil property. The ratio of nitrogen mineralized: sulphur mineralized varied widely between soils and was generally appreciably greater than the ratio of total nitrogen: organic sulphur in the soils.A rapid flush of mineralization of both sulphur and nitrogen took place when some of the soils were rewetted and incubated after they had been dried in the laboratory and stored for 4 to 5 months. Following this, the rate of mineralization was similar to that in the original undried soil. During this flush, the enhancement of sulphur mineralization was relatively greater than that of nitrogen so that the ratio of nitrogen mineralized: sulphur mineralized was considerably smaller than that during later phases of the incubation or that of the original moist soil. Soils collected after they had remained dry in the field for a similar period of time did not show this type of mineralization although they had initially done so when collected moist and air-dried in the laboratory.The effects of temperature, soil moisture, toluene and formaldehyde, and the addition of calcium carbonate to soils on the mineralization of sulphur were similar to their effects on the mineralization of nitrogen.  相似文献   

16.
Summary The digestion and metabolism ofEucalyptus radiata foliage was studied in a small (1–1.5 kg) arboreal marsupial, the greater glider (Petauroides volans). Mean dry matter intake was 44 g·kg–0.75·d–1 and mean cell wall digestibility was 34%; these values fall within the range of other marsupials fedEucalyptus foliage. Digestible energy content ofE. radiata was high compared to other eucalypts because of the high content and digestibility of essential oils. However, excretion of essential oils and their metabolites in the urine meant that greater gliders retained only 55% of their digestible energy intakes (0.61 MJ · kg–0.75· d–1) as metabolizable energy (ME). Low ME intakes were not offset by low standard metabolic rates (2.39 W · kg–0.75), but the efficiency with which ME substituted for tissue energy was high (94%), so that greater gliders were able to maintain energy balance and body mass onE. radiata foliage.Abbreviations ME metabolizable energy - DE digestible energy - RQ respiratory quotient - FHP fasting heat production  相似文献   

17.
In order to increase the concentration of the nutritionally essential sulphur amino acids in seed protein, a transgene encoding a methionine- and cysteine-rich protein, sunflower seed albumin (SSA), was transferred to chickpeas (Cicer arietinum L). Transgenic seeds that accumulated SSA contained more methionine and less oxidized sulphur than the controls, suggesting that additional demand for sulphur amino acids from the expression of the transgene stimulated sulphur assimilation. In addition, the activity of trypsin inhibitors, a known family of endogenous, sulphur-rich chickpea seed proteins, was diminished in transgenic, SSA-containing seeds compared with the non-transgenic controls. Together, these results indicate that the reduced sulphur sequestered into SSA was supplied partly by additional sulphur assimilation in the developing transgenic seeds, and partly by some diversion of sulphur amino acids from endogenous seed proteins. Growth of chickpeas on nutrient with a high sulphur-to-nitrogen ratio increased the total seed sulphur content and the accumulation of sulphur amino acids in the seeds, and partly mitigated the effect of SSA accumulation on the trypsin inhibitor amount. The results suggest that free methionine and O-acetylserine (OAS) acted as signals that modulated chickpea seed protein composition in response to the variation in sulphur demand, as well as in response to variation in the nitrogen and sulphur status of the plant.  相似文献   

18.
In this study we assessed the inherent relative growth rate (RGR) under controlled environment conditions of 10 contrasting Acacia species from semi-arid and mesic environments. For several of the species, compound pinnate leaves produced early in the seedling stage, were gradually replaced by phyllodes (expanded petioles that form simple lamina). Other species either did not form phyllodes, or only did so to a minor degree by the end of the study. Phyllode production was dominant in the four slow-growing Acacia species from semi-arid environments (A. aneura, A. colei, A. coriacea and A. tetragonophylla), with leaf production being exclusive or dominant in five (A. dealbata, A. implexa, A. mearnsii, A. melanoxylon and A. irrorata) of the six faster-growing species from mesic environments. The exception was A. saligna which was fast growing but did produce phyllodes. From a carbon economy perspective, slow growth in the semi-arid species was not associated with lower net assimilation rates or less plant mass allocated to foliage. Rather, the primary factor associated with their slow growth was a smaller foliage area per unit foliage mass. This was true for comparisons based on the mean over all harvests or at set plant masses. The production of phyllodes by the semi-arid species substantially reduced foliage area per unit foliage mass, as this was lower for phyllodes than leaves in all species. To assess the impact that phyllode production had on ontogenetic changes in RGR, we modelled the situation where only leaves were formed. This analysis showed that changing from leaves to phyllodes substantially reduced the RGR. There was little difference in plant nitrogen concentration or the ratio of foliage nitrogen to plant nitrogen between the species. This resulted in foliage nitrogen productivity (dry mass gain per unit foliage nitrogen and time) being directly proportional to foliage area per unit foliage mass between species. We concluded that a smaller foliage area per unit foliage mass and phyllode production are the primary factors associated with lower RGR in contrasting Acacia species.  相似文献   

19.
Summary The S : N ratio of the current foliage of two commonly planted conifers, Sitka spruce (Picea sitchensis (Bong.) Carr.) and Scots pine (Pinus sylvestris L.) was determined for areas known to have unpolluted atmospheres. The mean values of the ratio (0.034 and 0.028 respectively) were used to compare similar foliage from a) an industrialised area, and b) a series of transects radiating from a brickworks chimney. The established ratios were used to predict foliar S concentrations and the greater amounts found were ascribed to foliar absorption of atmospheric S. The ‘excess’ S was negatively related to distance from the supposed source, and also to needle weight which itself was positively related to distance. It is concluded that this measure derived from the S : N ratio is theoretically and practically a more sensitive indicator of the accumulation of S in conifer foliage exposed to atmospheric pollution than the analysis for elemental S or the SO4-ion alone. re]19751115 Department of Forestry and Natural Resources University of Edinburgh  相似文献   

20.
The effects of exposure to SO2 (55 m–3) on the growthand sulphur nutrition of perennial ryegrass (Lolium perenneL.) cv. S23 were examined using a system of specially constructedgrowth chambers. The plants were grown in soil with two ratesof added nitrogen, either with or without added sulphate. Theywere harvested twice during the exposure period of 85 d. The high rate of added nitrogen gave a four-fold increase inthe yield of plants given added sulphate but resulted in sulphurdeficiency, with reduced yield and number of tillers, when nosulphate was given. Exposure to SO2 alleviated the effects ofdeficiency but was without effect on the yield of plants givensulphate. With the low rate of added nitrogen, the yield ofplants and the number of tillers were unaffected by the additionof sulphate to the soil or of SO2 to the air. The only indicationof possible injury through exposure of these plants to SO2 wasa small increase in the proportion of dead leaves at the secondharvest. Analysis of the leaves for total S and sulphate-S gave valuesconsistent with sulphur deficiency and its alleviation throughexposure to SO2; the contents of 0?045% S and 42 parts 10–6sulphate-S in deficient plants were raised to 0?102% and 153parts 10–6 respectively. The organic-S content of theleaves was always increased through exposure to SO2. There wasno evidence that exposure to SO2 increased the ‘transpirationcoefficient’ for plants having an adequate supply of sulphurfrom the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号