首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitric oxide (NO) regulates differentiation, survival, and cyclooxygenase (COX)-2 expression in articular chondrocytes. NO-induced apoptosis and dedifferentiation are mediated by p38 kinase activity and p38 kinase-independent and -dependent inhibition of protein kinase C (PKC)alpha and zeta. Because p38 kinase also activates NF-kappa B, we investigated the functional relationship between PKC and NF-kappa B signaling and the role of NF-kappa B in apoptosis, dedifferentiation, and COX-2 expression. We found that NO-stimulated NF-kappa B activation was inhibited by ectopic PKC alpha and zeta expression, whereas NO-stimulated inhibition of PKC alpha and zeta activity was not affected by NF-kappa B inhibition. Inhibition of NO-induced NF-kappa B activity did not affect inhibition of type II collagen expression but did abrogate COX-2 expression and apoptosis. Taken together, our results indicate that NO-induced inhibition of PKC alpha and zeta activity is required for the NF-kappa B activity that regulates apoptosis and COX-2 expression but not dedifferentiation in articular chondrocytes.  相似文献   

2.
In articular chondrocytes, nitric oxide (NO) production triggers dedifferentiation and apoptotic cell death that is regulated by the converse functions of two mitogen-activated protein kinase subtypes, extracellular signal-regulated kinase (ERK) and p38 kinase. Since protein kinase C (PKC) transduces signals that influence differentiation, survival, and apoptosis of various cell types, we investigated the roles and underlying molecular mechanisms of action of PKC isoforms in NO-induced dedifferentiation and apoptosis of articular chondrocytes. We report here that among the expressed isoforms, activities of PKCalpha and -zeta were reduced during NO-induced dedifferentiation and apoptosis. Inhibition of PKCalpha activity was independent of NO-induced activation of ERK or p38 kinase and occurred due to blockage of expression. On the other hand, PKCzeta activity was inhibited as a result of NO-induced p38 kinase activation and was observed prior to proteolytic cleavage by a caspase-mediated process to generate enzymatically inactive fragments. Inhibition of PKCalpha or -zeta activities potentiated NO-induced apoptosis, whereas ectopic expression of these isoforms significantly reduced the number of apoptotic cells and blocked dedifferentiation. Ectopic expression of PKCalpha or -zeta did not affect p38 kinase or ERK but inhibited the p53 accumulation and caspase-3 activation that are required for NO-induced apoptosis of chondrocytes. Therefore, our results collectively indicate that p38 kinase-independent and -dependent inhibition of PKCalpha and -zeta, respectively, regulates NO-induced apoptosis and dedifferentiation of articular chondrocytes.  相似文献   

3.
Nitric oxide (NO) causes apoptosis and dedifferentiation of articular chondrocytes by the modulation of extracellular signal-regulated kinase (ERK), p38 kinase, and protein kinase C (PKC) alpha and -zeta. In this study, we investigated the effects and mechanisms of non-steroidal anti-inflammatory drugs (NSAIDs), such as indomethacin, ketoprofen, ibuprofen, sulindac sulfide, and flurbiprofen, in NO-induced apoptosis and dedifferentiation of articular chondrocytes. We found that all of the examined NSAIDs inhibited apoptosis and dedifferentiation. NO production in chondrocytes caused activation of ERK-1/2 and p38 kinase, which oppositely regulate apoptosis and dedifferentiation. NO production also caused inhibition of PKCalpha and -zeta independent of and dependent on, respectively, p38 kinase, which is required for apoptosis and dedifferentiation. Among the signaling molecules modulated by NO, NSAIDs blocked NO-induced activation of p38 kinase, potentiated ERK activation, and blocked inhibition of PKCalpha and -zeta. NSAIDs also inhibited some of the apoptotic signaling that is downstream of p38 kinase and PKC, such as NFkappaB activation, p53 accumulation, and caspase-3 activation. The inhibitory effects of NSAIDs on apoptosis and dedifferentiation were independent of the inhibition of cyclooxygenase (COX)-2 and prostaglandin E(2) (PGE(2)) production, as evidenced by the observation that specific inhibition of COX-2 activity and PGE(2) production or exogenous PGE(2) did not affect NO-induced apoptosis and dedifferentiation. Taken together, our results indicate that NSAIDs block NO-induced apoptosis and dedifferentiation of articular chondrocytes by the modulation of ERK, p38 kinase, and PKCalpha and -zeta in a manner independent of their ability to inhibit COX-2 and PGE(2) production.  相似文献   

4.
5.
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.  相似文献   

6.
Cytokine-induced apoptosis inhibitor-1 (CIAPIN-1, formally named anamorsin) is a well-known regulator of apoptosis in many different cell types. Recently, it has been reported that some anti-apoptotic proteins are involved with the regulation of cell differentiation. However, relatively little is known about the role of CIAPIN-1 on rabbit articular chondrocytes differentiation. In this study, we investigated the effects of CIAPIN-1 in chondrocytes, focusing on extracellular signal-regulated kinase (ERK)-1/2 and p38 kinase signaling. CIAPIN-1 caused dedifferentiation, as determined by the inhibition of type II collagen expression and sulfated-proteoglycan synthesis. CIAPIN-1 activated ERK-1/2 and inactivated p38 kinase, as determined by the phosphorylation level of each protein. CIAPIN-1-induced ERK phosphorylation was abolished by the MEK inhibitor, PD98059, which also prevented the CIAPIN-1-induced loss of type II collagen expression. Inhibition of p38 kinase with SB203580 enhanced the decrease in type II collagen expression. Our findings collectively suggest that ERK-1/2 and p38 kinase regulate CIAPIN-1-induced dedifferentiation in rabbit articular chondrocytes.  相似文献   

7.
8.
This study investigated the molecular mechanisms underlying inhibition of protein kinase C (PKC) zeta by p38 kinase during nitric oxide (NO)-induced apoptosis of chondrocytes. Coimmunoprecipitation experiments showed that activation of p38 kinase following addition of an NO donor resulted in a physical association between PKCzeta and p38 kinase. Direct interaction of p38 kinase with PKCzeta was confirmed in vitro using p38 kinase and PKCzeta recombinant proteins. p38 kinase interacts with the regulatory domain of PKCzeta and its association blocked PKCzeta autophosphorylation. Micro LC-MS/MS analysis using recombinant proteins indicated that the interaction of p38 kinase with PKCzeta blocked autophosphorylation of PKCzeta on Thr-560, which is required for PKCzeta activation. Collectively, our results demonstrate a novel mechanism of PKCzeta regulation: following activation by the production of NO, p38 kinase binds directly to the PKCzeta regulatory domain, preventing PKCzeta autophosphorylation on Thr-560, thereby inhibiting PKCzeta activation.  相似文献   

9.
10.
To define the signaling pathways during NO-induced apoptotic events and their possible modulation by two protein kinase systems, we explored the involvement of three structurally related mitogen-activated protein kinase subfamilies. Exposure of HL-60 cells to sodium nitroprusside (SNP) strongly activated p38 kinase, but did not activate c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK). In addition, SNP-induced apoptosis was markedly blocked by the selective p38 kinase inhibitor (SB203580) but not by MEK1 kinase inhibitor (PD098059), indicating that p38 kinase serves as a mediator of NO-induced apoptosis. In contrast, treatment of cells with phorbol 12-myristate 13-acetate (PMA) strongly activated not only JNK but also ERK, while not affecting p38 kinase. However, although SNP by itself weakly activated CPP32-like protease, SNP in combination with PMA markedly increased the extent of CPP32-like protease activation. Interestingly, N6,O2-dibutylyl cAMP (DB-cAMP) significantly blocked SNP- or SNP plus PMA-induced activation of CPP32-like protease and the resulting induction of apoptosis. DB-cAMP also blocked PMA-induced JNK activation. Collectively, these findings demonstrate the presence of specific up- or down-modulatory mechanisms of cell death pathway by NO in which (1) p38 kinase serves as a mediator of NO-induced apoptosis, (2) PKC acts at the point and/or upstream of JNK and provides signals to potentiate NO-induced CPP32-like protease activation, and (3) PKA lies upstream of either JNK or CPP32-like protease to protect NO- or NO plus PMA-induced apoptotic cell death in HL-60 cells.  相似文献   

11.
Nitric oxide (NO) induces apoptotic cell death in murine RAW 264.7 macrophages. To elucidate the inhibitory effects of protein kinase C (PKC) on NO-induced apoptosis, we generated clones of RAW 264.7 cells that overexpress one of the PKC isoforms and explored the possible interactions between PKC and three structurally related mitogen-activated protein (MAP) kinases in NO actions. Treatment of RAW 264.7 cells with sodium nitroprusside (SNP), a NO-generating agent, activated both c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase, but did not activate extracellular signal-regulated kinase (ERK)-1 and ERK-2. In addition, SNP-induced apoptosis was slightly blocked by the selective p38 kinase inhibitor (SB203580) but not by the MAP/ERK1 kinase inhibitor (PD098059). PKC transfectants (PKC-beta II, -delta, and -eta) showed substantial protection from cell death induced by the exposure to NO donors such as SNP and S-nitrosoglutathione (GSNO). In contrast, in RAW 264.7 parent or in empty vector-transformed cells, these NO donors induced internucleosomal DNA cleavage. Moreover, overexpression of PKC isoforms significantly suppressed SNP-induced JNK/SAPK and p38 kinase activation, but did not affect ERK-1 and -2. We also explored the involvement of CPP32-like protease in the NO-induced apoptosis. Inhibition of CPP32-like protease prevented apoptosis in RAW 264.7 parent cells. In addition, SNP dramatically activated CPP32 in the parent or in empty vector-transformed cells, while slightly activated CPP32 in PKC transfectants. Therefore, we conclude that PKC protects NO-induced apoptotic cell death, presumably nullifying the NO-mediated activation of JNK/SAPK, p38 kinase, and CPP32-like protease in RAW 264.7 macrophages.  相似文献   

12.
Although nitric oxide (NO) plays key signaling roles in the nervous systems, excess NO leads to cell death. In this study, the involvement of p38 mitogen-activated protein kinase (p38 MAPK) and apoptosis signal-regulating kinase-1 (ASK1) in NO-induced cell death was investigated in PC12 cells. NO donor transiently activated p38 MAPK in the wild type parental PC12 cells, whereas the p38 MAPK activation was abolished in NO-resistant PC12 cells (PC12-NO-R). p38 MAPK inhibitors protected the cells against NO-induced death, whereas the inhibitors were not significantly protective against the cytotoxicity of reactive oxygen species. Stable transfection with dominant negative p38 MAPK mutant reduced NO-induced cell death. Stable transfection with dominant negative mutant of ASK1 attenuated NO-stimulated activation of p38 MAPK and decreased NO-induced cell death. These results suggest that p38 MAPK and its upstream regulator ASK1 are involved in NO-induced PC12 cell death.  相似文献   

13.
14.
15.
16.
A sequence of intermittent interruptions of oxygen supply (i.e., postconditioning, Postcon) at reoxygenation reduces oxidant-induced cardiomyocyte loss. This study tested the hypothesis that prevention of cardiomyocyte apoptosis by Postcon is mediated by mitogen-activated protein kinases pathways. Primary cultured neonatal rat cardiomyocytes were exposed to 3 h hypoxia followed by 6 h of reoxygenation. Cardiomyocytes were postconditioned by three cycles each of 5 min reoxygenation and 5 min hypoxia after prolonged hypoxia. Relative to hypoxia alone, reoxygenation stimulated expression of JNKs and p38 kinases, corresponding to increased activity of JNKs (phospho-c-Jun) and p38 (phospho-ATF2). The level of TNFα in cell lysates, activity of cytosolic caspases-8, -3, expression of Bax and the number of apoptotic cardiomyocytes were increased while expression of Bcl-2 was decreased with reoxygenation. Consistent with an attenuation in generation of superoxide anions detected by lucigenin-enhanced chemiluminescence at early period of reoxygenation, treatment of cardiomyocytes with Postcon further reduced expression and activity of JNKs and p38 kinases, level of TNFα, the frequency of apoptotic cells and expression of Bax. However, the inhibitory effects of Postcon on these changes were lost when its application was delayed by 5 min after the start of reoxygenation. Addition of a JNK/p38 stimulator, anisomycin into cardiomyocytes at the beginning of reoxygenation eliminated protection by Postcon. These data suggest that 1) hypoxia/reoxygenation elicits cardiomyocyte apoptosis in conjunction with expression and activation of JNK and p38 kinases, release of TNFα, activation of caspases, and an increase in imbalance of pro-/anti-apoptotic proteins; 2) Postcon attenuates cardiomyocyte apoptosis, potentially mediated by inhibiting JNKs/p-38 signaling pathways and reducing TNFα release and caspase expression.  相似文献   

17.
Articular cartilage is an avascular tissue with poor regenerative capacity following injury, a contributing factor to joint degenerative disease. Cell‐based therapies for cartilage tissue regeneration have rapidly advanced; however, expansion of autologous chondrocytes in vitro using standard methods causes ‘dedifferentiation’ into fibroblastic cells. Mitogen‐activated protein kinase (MAPK) signalling is crucial for chondrocyte metabolism and matrix production, and changes in MAPK signals can affect the phenotype of cultured cells. We investigated the effects of inhibition of MAPK signalling on chondrocyte dedifferentiation during monolayer culture. Blockade of extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) signalling caused a significant increase in cartilage gene expression, however, also caused up‐regulation of fibrotic gene expression. Inhibition of p38 MAPK (p38) caused a significant up‐regulation of collagen type II while suppressing collagen type I expression. P38 inhibition also resulted in consistently more organized secretion of collagen type II protein deposits on cell culture surfaces. Follow‐on pellet culture of treated cells revealed that MAPK inhibition reduced cell migration from the pellet. ERK and JNK inhibition caused more collagen type I accumulation in pellets versus controls while p38 inhibition strongly promoted collagen type II accumulation with no effect on collagen type I. Blockade of all three MAPKs caused increased GAG content in pellets. These results indicate a role for MAPK signalling in chondrocyte phenotype loss during monolayer culture, with a strong contribution from p38 signalling. Thus, blockade of p38 enhances chondrocyte phenotype in monolayer culture and may promote more efficient cartilage tissue regeneration for cell‐based therapies.  相似文献   

18.
19.
Nitric oxide (NO) and prostaglandins are produced as a result of the stimulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2, respectively, in response to cytokines or lipopolysaccharide (LPS). We demonstrate that the activity of integrin-linked kinase (ILK) is stimulated by LPS activation in J774 macrophages. Inhibition of ILK activity by dominant-negative ILK or a highly selective small molecule ILK inhibitor, in epithelial cells or LPS-stimulated J774 cells and murine macrophages, resulted in inhibition of iNOS expression and NO synthesis. LPS stimulates the phosphorylation of IkappaB on Ser-32 and promotes its degradation. Inhibition of ILK suppressed this LPS-stimulated IkappaB phosphorylation and degradation. Similarly, ILK inhibition suppressed the LPS-stimulated iNOS promoter activity. Mutation of the NF-kappaB sites in the iNOS promoter abolished LPS- and ILK-mediated regulation of iNOS promoter activity. Overexpression of ILK-stimulated NF-kappaB activity and inhibition of ILK or protein kinase B (PKB/Akt) suppressed this activation. We conclude that ILK can regulate NO production in macrophages by regulating iNOS expression through a pathway involving PKB/Akt and NF-kappaB. Furthermore, we also demonstrate that ILK activity is required for LPS stimulated cyclooxygenase-2 expression in murine and human macrophages. These findings implicate ILK as a potential target for anti-inflammatory applications.  相似文献   

20.
COX-2 is rapidly expressed by various stimuli and plays a key role in conversion of free arachidonic acid to prostaglandins (PGs). 4-Hydroxy-2-nonenal (HNE), one of the lipid peroxidation end-products, has been recently identified as a potent COX-2 inducer in rat epithelial cell RL34 cells (Kumagai et al. (2000) Biochem. Biophys. Res. Commun. 273, 437-441). Here we investigated the molecular mechanism underlying the COX-2 induction by HNE mainly focusing on the activation of p38 mitogen-activated protein kinase (MAPK) pathways. The observations that (i) HNE induced phosphorylation of p38 MAPK and MKK3/MKK6 within 5 min and that (ii) SB203580, a p38 MAPK-specific inhibitor, suppressed the HNE-induced COX-2 expression suggested that the p38 MAPK pathway was involved in the HNE-induced COX-2 expression. Overexpression of p38 MAPK enhanced the HNE-induced COX-2 expression, whereas the overexpression of dominant negative p38 MAPK suppressed it. Furthermore, we also found that HNE upregulated the COX-2 expression by the stabilization of COX-2 mRNA via the p38 MAPK pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号