首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fluoroquinolones are an important class of wide‐spectrum antibacterial agents. The first quinolone described was nalidixic acid, which showed a narrow spectrum of activity. The evolution of quinolones to more potent molecules was based on changes at positions 1, 6, 7 and 8 of the chemical structure of nalidixic acid. Quinolones inhibit DNA gyrase and topoisomerase IV activities, two enzymes essential for bacteria viability. The acquisition of quinolone resistance is frequently related to (i) chromosomal mutations such as those in the genes encoding the A and B subunits of the protein targets (gyrA, gyrB, parC and parE), or mutations causing reduced drug accumulation, either by a decreased uptake or by an increased efflux, and (ii) quinolone resistance genes associated with plasmids have been also described, i.e. the qnr gene that encodes a pentapeptide, which blocks the action of quinolones on the DNA gyrase and topoisomerase IV; the aac(6)‐Ib‐cr gene that encodes an acetylase that modifies the amino group of the piperazin ring of the fluoroquinolones and efflux pump encoded by the qepA gene that decreases intracellular drug levels. These plasmid‐mediated mechanisms of resistance confer low levels of resistance but provide a favourable background in which selection of additional chromosomally encoded quinolone resistance mechanisms can occur.  相似文献   

2.
DNA gyrase, topoisomerase IV, and the 4-quinolones.   总被引:26,自引:2,他引:24       下载免费PDF全文
For many years, DNA gyrase was thought to be responsible both for unlinking replicated daughter chromosomes and for controlling negative superhelical tension in bacterial DNA. However, in 1990 a homolog of gyrase, topoisomerase IV, that had a potent decatenating activity was discovered. It is now clear that topoisomerase IV, rather than gyrase, is responsible for decatenation of interlinked chromosomes. Moreover, topoisomerase IV is a target of the 4-quinolones, antibacterial agents that had previously been thought to target only gyrase. The key event in quinolone action is reversible trapping of gyrase-DNA and topoisomerase IV-DNA complexes. Complex formation with gyrase is followed by a rapid, reversible inhibition of DNA synthesis, cessation of growth, and induction of the SOS response. At higher drug concentrations, cell death occurs as double-strand DNA breaks are released from trapped gyrase and/or topoisomerase IV complexes. Repair of quinolone-induced DNA damage occurs largely via recombination pathways. In many gram-negative bacteria, resistance to moderate levels of quinolone arises from mutation of the gyrase A protein and resistance to high levels of quinolone arises from mutation of a second gyrase and/or topoisomerase IV site. For some gram-positive bacteria, the situation is reversed: primary resistance occurs through changes in topoisomerase IV while gyrase changes give additional resistance. Gyrase is also trapped on DNA by lethal gene products of certain large, low-copy-number plasmids. Thus, quinolone-topoisomerase biology is providing a model for understanding aspects of host-parasite interactions and providing ways to investigate manipulation of the bacterial chromosome by topoisomerases.  相似文献   

3.
4.
DNA topoisomerase IV mediates chromosome segregation and is a potential target for antibacterial agents including new antipneumococcal fluoroquinolones. We have used hybridization to a Staphylococcus aureus gyrB probe in concert with chromosome walking to isolate the Streptococcus pneumoniae parE-parC locus, lying downstream of a putative new insertion sequence and encoding 647-residue ParE and 823-residue ParC subunits of DNA topoisomerase IV. These proteins exhibited greatest homology respectively to the GrlB (ParE) and GrlA (ParC) subunits of S. aureus DNA topoisomerase IV. When combined, whole-cell extracts of Escherichia coli strains expressing S. pneumoniae ParC or ParE proteins reconstituted a salt-insensitive ATP-dependent decatenase activity characteristic of DNA topoisomerase IV. A second gyrB homolog isolated from S. pneumoniae encoded a 648-residue protein which we identified as GyrB through its close homology both to counterparts in S. aureus and Bacillus subtilis and to the product of the S. pneumoniae nov-1 gene that confers novobiocin resistance. gyrB was not closely linked to gyrA. To examine the role of DNA topoisomerase IV in fluoroquinolone action and resistance in S. pneumoniae, we isolated mutant strains stepwise selected for resistance to increasing concentrations of ciprofloxacin. We analysed four low-level resistant mutants and showed that Ser-79 of ParC, equivalent to resistance hotspots Ser-80 of GrlA and Ser-84 of GyrA in S. aureus, was in each case substituted with Tyr. These results suggest that DNA topoisomerase IV is an important target for fluoroquinolones in S. pneumoniae and establish this organism as a useful gram-positive system for resistance studies.  相似文献   

5.
Background:  Fluoroquinolone-containing therapy is effective in eradicating Helicobacter pylori . However, the resistance rate of H. pylori to fluoroquinolones in Taiwan has not yet been reported. In this study, we aimed to investigate the susceptibility to antibiotics commonly used in eradication schedules and fluoroquinolones in H. pylori .
Methods:  A total of 210 clinical isolates of H. pylori were collected from April 1998 to September 2007 from patients in southern Taiwan. The in vitro activities of six antimicrobial agents were determined by the agar dilution method and Etest. The mutations in quinolone resistance-determining regions of gyrA and gyrB were investigated by direct sequencing.
Results:  Overall, 5.7% of the isolates were resistant to ciprofloxacin and levofloxacin. The resistance rate to amoxicillin, clarithromycin, metronidazole, and tetracycline was 1.0% (two of 210), 9.5% (20 of 210), 27.6% (58 of 210), and 0.5% (one of 210), respectively. The resistance rate to either ciprofloxacin or to levofloxacin increased from 2.8% (1998–2003) to 11.8% (2004–2007). The mutations in gyrA at N87 or D91 had an impact on primary fluoroquinolone resistance in H. pylori . Garenoxacin, but not moxifloxacin, had a good in vitro inhibitory effect against ciprofloxacin/levofloxacin-resistant strains compared with objective minimal inhibitory concentration values.
Conclusions:  Drug resistance to ciprofloxacin and levofloxacin in H. pylori collected from 2004 to 2007 increased significantly compared with resistance level observed during 1998–2003. The continuous surveillance of quinolone resistance among H. pylori is important in this area.  相似文献   

6.
Bacillus anthracis, the causative agent of anthrax, is considered a serious threat as a bioweapon. The drugs most commonly used to treat anthrax are quinolones, which act by increasing the levels of DNA cleavage mediated by topoisomerase IV and gyrase. Quinolone resistance most often is associated with specific serine mutations in these enzymes. Therefore, to determine the basis for quinolone action and resistance, we characterized wild-type B. anthracis topoisomerase IV, the GrlA(S81F) and GrlA(S81Y) quinolone-resistant mutants, and the effects of quinolones and a related quinazolinedione on these enzymes. Ser81 is believed to anchor a water-Mg(2+) bridge that coordinates quinolones to the enzyme through the C3/C4 keto acid. Consistent with this hypothesized bridge, ciprofloxacin required increased Mg(2+) concentrations to support DNA cleavage by GrlA(S81F) topoisomerase IV. The three enzymes displayed similar catalytic activities in the absence of drugs. However, the resistance mutations decreased the affinity of topoisomerase IV for ciprofloxacin and other quinolones, diminished quinolone-induced inhibition of DNA religation, and reduced the stability of the enzyme-quinolone-DNA ternary complex. Wild-type DNA cleavage levels were generated by mutant enzymes at high quinolone concentrations, suggesting that increased drug potency could overcome resistance. 8-Methyl-quinazoline-2,4-dione, which lacks the quinolone keto acid (and presumably does not require the water-Mg(2+) bridge to mediate protein interactions), was more potent than quinolones against wild-type topoisomerase IV and was equally efficacious. Moreover, it maintained high potency and efficacy against the mutant enzymes, effectively inhibited DNA religation, and formed stable ternary complexes. Our findings provide an underlying biochemical basis for the ability of quinazolinediones to overcome clinically relevant quinolone resistance mutations in bacterial type II topoisomerases.  相似文献   

7.
The set of the laboratory strain M. hominis H-34 mutants resistant to fluoroquinolones (ciprofloxacin-Cfl, lomefloxacin-Lfl, ofloxacin-Ofl) was obtained by selection in broth medium. The mutation was found in the quinolone resistance-determining region (QRDR) of A subunit of topoisomerase IV gene (parC) and new mutations were found in QRDR of genes encoding the A subunit of DNA gyrase (gyrA) in M. hominis mutants resistant to various concentrations of the Cfl, Lfl and Ofl. After multistep selection of the obtained mutants at constant concentrations of Cfl additional mutation Ser83 to Trp was revealed. No mutations in parE and gyrB were found. Mutations in parC for laboratory strain M. hominis H34 appeared at lower antibiotic concentrations than in gyrA. All mutations in gyr A were associated with mutations in parC. This confirms the previous data that topoisomerase IV is the primary target of Cfl and Ofl and suggests that it is the primary target of Lfl. Some M. hominis mutants selected at Ofl without any substitution in QRDRs were shown to be insensitive to Cfl and of Lfl. Studies of cross-resistance of the selected M. hominis mutants showed that their resistance to various fluoroquinolone concentrations could not depend on any mutations in QRDR of topoisomerase IV and DNA gyrase genes and suggests involvement of other unknown molecular mechanisms specific for Mycoplasmas.  相似文献   

8.
In Streptococcus pneumoniae, an H103Y substitution in the ATP binding site of the ParE subunit of topoisomerase IV was shown to confer quinolone resistance and hypersensitivity to novobiocin when associated with an S84F change in the A subunit of DNA gyrase. We reconstituted in vitro the wild-type topoisomerase IV and its ParE mutant. The ParE mutant enzyme showed a decreased activity for decatenation at subsaturating ATP levels and was more sensitive to inhibition by novobiocin but was as sensitive to quinolones. These results show that the ParE alteration H103Y alone is not responsible for quinolone resistance and agree with the assumption that it facilitates the open conformation of the ATP binding site that would lead to novobiocin hypersensitivity and to a higher requirement of ATP.  相似文献   

9.
Topoisomerase IV, a C(2)E(2) tetramer, is involved in the topological changes of DNA during replication. This enzyme is the target of antibacterial compounds, such as the coumarins, which target the ATP binding site in the ParE subunit, and the quinolones, which bind, outside the active site, to the quinolone resistance-determining region (QRDR). After site-directed and random mutagenesis, we found some mutations in the ATP binding site of ParE near the dimeric interface and outside the QRDR that conferred quinolone resistance to Streptococcus pneumoniae, a bacterial pathogen. Modeling of the N-terminal, 43-kDa ParE domain of S. pneumoniae revealed that the most frequent mutations affected conserved residues, among them His43 and His103, which are involved in the hydrogen bond network supporting ATP hydrolysis, and Met31, at the dimeric interface. All mutants showed a particular phenotype of resistance to fluoroquinolones and an increase in susceptibility to novobiocin. All mutations in ParE resulted in resistance only when associated with a mutation in the QRDR of the GyrA subunit. Our models of the closed and open conformations of the active site indicate that quinolones preferentially target topoisomerase IV of S. pneumoniae in its ATP-bound closed conformation.  相似文献   

10.
Hiasa H 《Biochemistry》2002,41(39):11779-11785
DNA gyrase and topoisomerase IV (Topo IV) are cellular targets of quinolone antibacterial drugs. The Ser-80 and the Glu-84 of the ParC subunit have been identified as mutational hotspots for quinolone resistance. Mutant Topo IV proteins containing a quinolone resistance-conferring mutation have been constructed, and the effects of these mutations on Topo IV are assessed. Both S80L and E84K mutations abolish the ability of quinolones to trap covalent Topo IV-DNA complexes, demonstrating that both the Ser-80 and the Glu-84 of ParC are essential for Topo IV-quinolone interaction. In addition, the E84K mutation greatly reduces the catalytic activity of Topo IV. Covalent Topo IV-DNA complexes formed with Topo IV containing the E84K mutation are more stable than those formed with the wild-type protein. Interestingly, the E84P mutation confers quinolone resistance to Topo IV without affecting its catalytic activity. The E84P mutation inhibits the formation of covalent Topo IV-DNA complexes when Mg(2+), but not Ca(2+), is used as a cofactor. These results show that the Glu-84 plays an important role in Topo IV-DNA interaction. Thus, the Glu-84 of ParC is critical for the interactions of Topo IV with both the quinolone drug and the DNA in topoisomerase-quinolone-DNA ternary complexes.  相似文献   

11.
Bacterial DNA gyrase and topoisomerase IV are selective targets of fluoroquinolones. Topoisomerase IV versus gyrase and Gram-positive versus Gram-negative behavior was studied based on the different recognition of DNA sequences by topoisomerase–quinolone complexes. A careful statistical analysis of preferred bases was performed on a large number (>400) of cleavage sites. We found discrete preferred sequences that were similar when using different enzymes (i.e. gyrase and topoisomerase IV) from the same bacterial source, but in part diverse when employing enzymes from different origins (i.e. Escherichia coli and Streptococcus pneumoniae). Subsequent analysis on the wild-type and mutated consensus sequences showed that: (i) Gn/Cn-rich sequences at and around the cleavage site are hot spots for quinolone-mediated strand breaks, especially for E. coli topoisomerases: we elucidated positions required for quinolone and enzyme recognition; (ii) for S. pneumoniae enzymes only, A and T at positions −2 and +6 are discriminating cleavage determinants; (iii) symmetry of the target sequence is a key trait to promote cleavage and (iv) the consensus sequence adopts a heteronomous A/B conformation, which may trigger DNA processing by the enzyme–drug complex.  相似文献   

12.
Topoisomerase IV is the primary cellular target for most quinolones in Gram-positive bacteria; however, its interaction with these agents is poorly understood. Therefore, the effects of four clinically relevant antibacterial quinolones (ciprofloxacin, and three new generation quinolones: trovafloxacin, levofloxacin, and sparfloxacin) on the DNA cleavage/religation reaction of Staphylococcus aureus topoisomerase IV were characterized. These quinolones stimulated enzyme-mediated DNA scission to a similar extent, but their potencies varied significantly. Drug order in the absence of ATP was trovafloxacin > ciprofloxacin > levofloxacin > sparfloxacin. Potency was enhanced by ATP, but to a different extent for each drug. Under all conditions examined, trovafloxacin was the most potent quinolone and sparfloxacin was the least. The enhanced potency of trovafloxacin correlated with several properties. Trovafloxacin induced topoisomerase IV-mediated DNA scission more rapidly than other quinolones and generated more cleavage at some sites. The most striking correlation, however, was between quinolone potency and inhibition of enzyme-mediated DNA religation: the greater the potency, the stronger the inhibition. Dose-response experiments with two topoisomerase IV mutants that confer clinical resistance to quinolones (GrlA(Ser80Phe) and GrlA(Glu84Lys)) indicate that resistance is caused by a decrease in both drug affinity and efficacy. Trovafloxacin is more active against these enzymes than ciprofloxacin because it partially overcomes the effect on affinity. Finally, comparative studies on DNA cleavage and decatenation suggest that the antibacterial properties of trovafloxacin result from increased S. aureus topoisomerase IV-mediated DNA cleavage rather than inhibition of enzyme catalysis.  相似文献   

13.
脲原体对喹诺酮类抗生素的耐药性与拓扑异构酶的基因突变有关。本研究在前期提出的棋盘稀释法脲原体药敏试验的基础上,对拓扑异构酶基因进行序列分析。结合既往的文献资料,确认了ParCS83L是脲原体喹诺酮类耐药性相关突变;而GyrAE112D和ParCT125A属于菌株的多态性表现。同时,本研究还发现了一些新的可能和喹诺酮类耐药相关的基因突变,这些突变以及多个基因突变是否存在叠加效应尚需进一步研究。  相似文献   

14.
解脲脲原体是一种重要的病原微生物,近年来其耐药形势十分严峻,因此寻找一种全新的有效替代治疗方案尤为重要。本研究旨在探索光动力抗微生物化学疗法对解脲脲原体体外活性的影响。选取解脲脲原体两种生物群(Parvo生物群及T960生物群)代表菌株,包括标准株及临床株,与系列稀释的2.5~0.039 062 5 mmol/L光敏剂甲苯胺蓝孵育20 min或60 min,再以(633±10)nm红光照射,设置48、102、204和408 mJ/cm2共4组能量密度,48 h后判读结果。观察不同解脲脲原体与甲苯胺蓝孵育时间、甲苯胺蓝浓度、光照能量密度对光动力抗微生物化学疗法灭活解脲脲原体效果的影响,并观察两种生物群对光动力抗微生物化学疗法敏感性的差异。结果显示,光动力抗微生物化学疗法在体外对解脲脲原体有明显灭活作用。在光照能量密度及解脲脲原体与甲苯胺蓝孵育时间固定的前提下,这种灭活作用随甲苯胺蓝浓度的增加而增强;单一633 nm红光光源在408 J/cm2及以下的能量密度对解脲脲原体的活性无明显影响。在甲苯胺蓝浓度及解脲脲原体与甲苯胺蓝孵育时间固定的条件下,光动力抗微生物化学疗法对解脲脲原体的灭活作用随光照能量密度(48~408 mJ/cm2)的增加而增强;随甲苯胺蓝孵育时间(30~60 min)延长,光动力抗微生物化学疗法对解脲脲原体的灭活作用有增强的趋势。结果提示,解脲脲原体两种生物群对光动力抗微生物化学疗法的敏感性相似。本研究证实,光动力抗微生物化学疗法在体外能有效灭活解脲脲原体,有望成为解脲脲原体感染的有效替代治疗方法。  相似文献   

15.
The ability of DNA gyrase (Gyr) to wrap the DNA strand around itself allows Gyr to introduce negative supercoils into DNA molecules. It has been demonstrated that the deletion of the C-terminal DNA-binding domain of the GyrA subunit abolishes the ability of Gyr to wrap the DNA strand and catalyze the supercoiling reaction (Kampranis, S. C., and Maxwell, A. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 14416-14421). By using this mutant Gyr, Gyr (A59), we have studied effects of Gyr-mediated wrapping of the DNA strand on its replicative function and its interaction with the quinolone antibacterial drugs. We find that Gyr (A59) can support oriC DNA replication in vitro. However, Gyr (A59)-catalyzed decatenation activity is not efficient enough to complete the decatenation of replicating daughter DNA molecules. As is the case with topoisomerase IV, the active cleavage and reunion activity of Gyr is required for the formation of the ternary complex that can arrest replication fork progression in vitro. Although the quinolone drugs stimulate the covalent Gyr (A59)-DNA complex formation, the Gyr (A59)-quinolone-DNA ternary complexes do not arrest the progression of replication forks. Thus, the quinolone-induced covalent topoisomerase-DNA complex formation is necessary but not sufficient to cause the inhibition of DNA replication. We also assess the stability of ternary complexes formed with Gyr (A59), the wild type Gyr, or topoisomerase IV. The ternary complexes formed with Gyr (A59) are more sensitive to salt than those formed with either the wild type Gyr or topoisomerase IV. Furthermore, a competition experiment demonstrates that the ternary complexes formed with Gyr (A59) readily disassociate from the DNA, whereas the ternary complexes formed with either the wild type Gyr or topoisomerase IV remain stably bound. Thus, Gyr-mediated wrapping of the DNA strand is required for the formation of the stable Gyr-quinolone-DNA ternary complex that can arrest replication fork progression.  相似文献   

16.
Quinolones are the most active oral antibacterials in clinical use and act by increasing DNA cleavage mediated by prokaryotic type II topoisomerases. Although topoisomerase IV appears to be the primary cytotoxic target for most quinolones in Gram-positive bacteria, interactions between the enzyme and these drugs are poorly understood. Therefore, the effects of ciprofloxacin on the DNA cleavage and religation reactions of Staphylococcus aureus topoisomerase IV were characterized. Ciprofloxacin doubled DNA scission at 150 nM drug and increased cleavage approximately 9-fold at 5 microM. Furthermore, it dramatically inhibited rates of DNA religation mediated by S. aureus topoisomerase IV. This inhibition of religation is in marked contrast to the effects of antineoplastic quinolones on eukaryotic topoisomerase II, and suggests that the mechanistic basis for quinolone action against type II topoisomerases has not been maintained across evolutionary boundaries. The apparent change in quinolone mechanism was not caused by an overt difference in the drug interaction domain on topoisomerase IV. Therefore, we propose that the mechanistic basis for quinolone action is regulated by subtle changes in drug orientation within the enzyme.drug.DNA ternary complex rather than gross differences in the site of drug binding.  相似文献   

17.
反相斑点杂交法对解脲脲原体分型的研究   总被引:1,自引:0,他引:1  
目的研究以聚合酶链反应为基础的快速检测与鉴定解脲脲原体基因型的方法。方法选择2003年11月至2005年11月在中山大学附属第二医院门诊就诊的有外阴阴道炎症状和体征的患者601例,设为病例组,同期无自觉症状的正常体检人群306例,设为对照组,分别取宫颈分泌物待检测。将解脲脲原体不同基因型的特异探针固定在硝酸纤维素膜上,临床标本按常规方法提取解脲脲原体DNA,采用生物素标记的解脲脲原体特异通用引物PCR扩增DNA,然后分别与解脲脲原体不同基因型特异探针杂交、显色。结果病例组解脲脲原体阳性421例占70.0%,对照组解脲脲原体阳性126例占41.2%。病例组中单型别感染的U.parvum占65.4%,其中1型、3型、6型和14型分别占28.8%、43.3%、26.0%和1.9%,U.urealyticum占18.4%;对照组中单型别感染的U.parvum占79.3%,其中1型、3型、6型和14型分别占63.2%、21.1%、15.7%和0.0%,U.urealyticum占13.8%。18例阳性标本随机DNA测序鉴定,均为相应的解脲脲原体基因型。结论U.parvum群,尤其是其中的1、3、6型别是正常人群携带的可能性较大,U.urealyticum则有可能和1型起协同作用或独自导致疾病。用反相斑点杂交进行解脲脲原体基因分型,方法简单、实用,适用于临床。  相似文献   

18.
Susceptibility to antibiotics of Ureaplasma urealyticum strains isolated in Primorye Region and its changes were evaluated. Among the sexually transmited diseases urogenital ureaplasmosis has the leading position in combination with gonorrhoea, trichomoniasis and infections caused by opportunistic pathogens. The spectrum of investigated antibacterial agents included gentamycin, clarithromycin, roxythromycin, azithromycin, doxycycline, three fluoroquinolones of II generation and for cephalosporins of the I and III generations. The most potent activity against U. urealyticum was demonstrated for pefloxacin (67 per cent of susceptible strains), ofloxacin (63 per cent) and roxythmycin (54 per cent). It is concluded that at Primorye Region the drugs of first choice for the urogenital infections therapy are fluoroquinolones.  相似文献   

19.
Food-borne infections due to Salmonella spp. seldom require antimicrobial therapy, but this is compulsory in systemic salmonellosis. Salmonella resistance to a large panel of antibiotics has been described worldwide. Since the introduction of nalidixic acid in therapy, Salmonella spp. have steadily developed resistance, especially over the last three decades. The source of quinolone resistance is thought to be the selective pressure determined by the use of quinolones in both human and veterinary practices. Resistance acquisition of Salmonella strains is a stepwise process. Several mechanisms are described, which can lead to the development of quinolone resistance. The main mechanism is considered to be linked with mutations in the quinolone-resistance determining region (QRDR) of the target genes (gyrA and gyrB encoding DNA gyrase, and parC and parE encoding topoisomerase IV). This first step in mutational resistance usually determines a rise in the nalidixic acid minimal inhibitory concentration (MIC). The most common amino acid substitutions in the GyrA subunit, resulting in varied degrees of quinolone resistance, occur at codons Ser83 and Asp87. Higher levels of resistance may occur by further mutational steps, with amino acid changes in the same or a different target enzyme. Other mechanisms are as well involved, like increased efflux or plasmid-mediated resistance. Acknowledgement of the epidemiology and the onset mechanisms of quinolone resistance in Salmonella spp. is compulsory, and surveillance for resistant bacteria among human, animal and food sources remains critical.  相似文献   

20.
Patients with typhoid fever presenting to the Tokyo Metropolitan Komagome Hospital during the period 1975-1998 were retrospectively investigated. All cases were diagnosed by a positive culture for Salmonella typhi in either of their clinical specimens. Of the total number of 130 patients, 57% contracted the disease abroad; this population increased in later years as the total numbers of cases decreased. The period from disease onset to diagnosis averaged 14 days with 20% of the cases requiring over three weeks to establish a diagnosis. As for symptomatology relative bradycardia was seen in less than half of the cases, and rose spots or splenomegaly in less than one third. A positive blood culture was the most frequent test establishing the diagnosis followed by a positive stool culture. Intestinal bleeding was recognized in as many as 35 cases (27%) and even intestinal perforation occurred in two cases (1.5%). Chloramphenicol was most commonly employed during the early study period, however, during the late period it was replaced by fluoroquinolones. The clinical cure rate was 98% with regimens that include fluoroquinolones/quinolone; however it was 87% with the other antimicrobial regimens. Bacteriological relapse occurred in 25% of the non-fluoroquinolone group while only in 2.0% in the fluoroquinolone/quinolone group. Four strains of Salmonella typhi that were multi-resistant to chloramphenicol, ampicillin and cotrimoxazole were isolated in travelers from Asia. Early diagnosis by appropriate bacteriological examination regardless of classical symptomatology should be stressed and the use of fluoroquinolones is warranted in the treatment of typhoid fever.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号