首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The effects of local perfusion with the glutamate receptor agonist NMDA and the noncompetitive NMDA receptor antagonist dizolcipine (MK-801) on extracellular dopamine (DA), GABA, and glutamate (Glu) levels in the dorsolateral striatum were monitored using in vivo microdialysis in the halothane-anesthetized rat. In addition, the sensitivity of both the basal and NMDA-induced increases in levels of these neurotransmitter substances to perfusion with tetrodotoxin (TTX; 10?5 M) and a low Ca2+ concentration (0.1 mM) was studied. The results show that the local perfusion (10 min) with both the 10?3 and 10?4 M dose of NMDA increased striatal DA and GABA outflow, whereas only the (10?3 M) dose of NMDA was associated with a small and delayed increase in extracellular Glu levels. The NMDA-induced effects were dose-dependently counteracted by simultaneous perfusion with MK-801 (10?6 and 10?5 M). Both the basal and NMDA (10?3 M)-induced increase in extracellular striatal DA content was reduced in the presence of TTX and a low Ca2+ concentration, whereas both basal and NMDA-stimulated GABA levels were unaffected by these treatments. Both the basal and NMDA-stimulated Glu levels were enhanced following TTX treatment, whereas perfusion with a low Ca2+ concentration reduced basal Glu levels and enhanced and prolonged the NMDA-induced stimulation. These data support the view that NMDA receptor stimulation plays a role in the regulation of extracellular DA, GABA, and Glu levels in the dorsolateral neostriatum and provide evidence for a differential effect of NMDA receptor stimulation on these three striatal neurotransmitter systems, possibly reflecting direct and indirect actions mediated via striatal NMDA receptors.  相似文献   

2.
Using sodium azide (NaN3)-induced anoxia plus aglycaemia as a model of chemically-induced ischemia in the hippocampal slice, we have evaluated the effects of the novel 5-HT(1A) partial agonist/5-HT(2) receptor antagonist adatanserin and the 5-HT(1A) receptor agonist BAYx3702 on the efflux of endogenous glutamate, aspartate and GABA. BAYx3702 (10-1000 nM) produced a significant (P<0.05) dose-related attenuation of ischemic efflux of both glutamate and GABA with maximum decrease being observed at 100 nM (73 and 69%, respectively). This attenuation was completely reversed by the addition of the 5-HT(1A) antagonist, WAY-100635 (100 nM). Similarly, adatanserin (10-1000 nM) produced a significant (P<0.05) dose-related attenuation in glutamate and GABA efflux with a maximum of 72 and 81% at 100 nM, respectively. This effect was completely reversed by the 5-HT(2A/C) receptor agonist, DOI but unaffected by WAY-100635. The 5-HT(2A) receptor antagonist MDL-100907 produced a comparable attenuation of glutamate when compared to adatanserin, while the 5-HT(2C) receptor antagonist, SB-206553, had no effect on ischemic efflux. None of these compounds significantly altered aspartate efflux from this preparation. In conclusion, the 5-HT(1A) receptor partial agonist 5-HT(2) receptor antagonist, adatanserin is able to attenuate ischemic amino acid efflux in a comparable manner to the full 5-HT(1A) agonist BAYx3702. However, in contrast to BAYx3702, adatanserin appears to produce it effects via blockade of the 5-HT(2A) receptor. This suggests that adatanserin may be an effective neuroprotectant, as has been previously demonstrated for full 5-HT(1A) receptor agonists such as BAYx3702.  相似文献   

3.
Control of thermoregulatory effectors by the autonomic nervous system is a critical component of rapid cold-defense responses, which are triggered by thermal information from the skin. However, the central autonomic mechanism driving thermoregulatory effector responses to skin thermal signals remains to be determined. Here, we examined the involvement of several autonomic brain regions in sympathetic thermogenic responses in brown adipose tissue (BAT) to skin cooling in urethane-chloralose-anesthetized rats by monitoring thermogenic [BAT sympathetic nerve activity (SNA) and BAT temperature], metabolic (expired CO(2)), and cardiovascular (arterial pressure and heart rate) parameters. Acute skin cooling, which did not reduce either rectal (core) or brain temperature, evoked increases in BAT SNA, BAT temperature, expired CO(2), and heart rate. Skin cooling-evoked thermogenic, metabolic, and heart rate responses were inhibited by bilateral microinjections of bicuculline (GABA(A) receptor antagonist) into the preoptic area (POA), by bilateral microinjections of muscimol (GABA(A) receptor agonist) into the dorsomedial hypothalamic nucleus (DMH), or by microinjection of muscimol, glycine, 8-OH-DPAT (5-HT(1A) receptor agonist), or kynurenate (nonselective antagonist for ionotropic excitatory amino acid receptors) into the rostral raphe pallidus nucleus (rRPa) but not by bilateral muscimol injections into the lateral/dorsolateral part or ventrolateral part of the caudal periaqueductal gray. These results implicate the POA, DMH, and rRPa in the central efferent pathways for thermogenic, metabolic, and cardiac responses to skin cooling, and suggest that these pathways can be modulated by serotonergic inputs to the medullary raphe.  相似文献   

4.
The frontal cortex is innervated by serotonergic terminals from the raphe nuclei and it expresses diverse 5-HT receptor subtypes. We investigated the effects of 5-HT and different 5-HT receptor subtype-selective agonists on spontaneous discharges which had developed in rat cortical slices perfused with a Mg2+-free medium and the GABA(A) receptor antagonist picrotoxin. The frequency of synchronous discharges, recorded extracellularly in superficial layers (II/III) of the frontal cortex, was dose-dependently enhanced by 5-HT (2.5-40 microM). That excitatory effect was blocked by the 5-HT2 receptor selective antagonist ketanserin. The 5-HT2A/2C receptor-selective agonist DOI and the 5-HT4 receptor agonist zacopride also increased the frequency of spontaneous discharges. In the presence of ketanserin, 5-HT decreased the discharge rate; a similar effect was observed when the 5-HT1A receptor agonist 8-OH-DPAT or the 5-HT1B receptor agonist CGS-12066B was applied. The 5-HT3 receptor agonist m-CPBG was ineffective. In conclusion, 5-HT produces multiple effects on epileptiform activity in the frontal cortex via activation of various 5-HT receptor subtypes. The excitatory action of 5-HT, which predominates, is mediated mainly by 5-HT2 receptors. The inhibitory effects can be attributed to activation of 5-HT1A and 5-HT1B receptors.  相似文献   

5.
In the catfish Heteropneustes fossilis, the hypothalamus and telencephalon showed seasonal variations in gamma-aminobutyric acid (GABA) with high levels in prespawning and spawning phases and low levels in preparatory and postspawning phases. Ovariectomy for 4 and 5 weeks reduced significantly the GABA contents only in the hypothalamus. Replacement with E2 (1 microgram/g BW) restored the levels to that of sham ovariectomized or parallel control group. Treatment with GABA (i.p.; 10 or 50 micrograms/g body weight (BW) alone did not produce any significant effect on plasma gonadotropin-II (GTH-II) level in any of the seasons. Injection of GABA, but not baclofen (a GABAB agonist), stimulated GTH-II secretion in pimozide or GnRH analogue-pimozide pretreated fish at both 0.5 and 2 h in early prespawning phase except at 0.5 h in the pimozide--GABA (10 micrograms) group. This stimulatory effect was not evident in other seasons. The results of the present study suggest that Estradiol-17 beta (E2) seems to stimulate GABA which may account for its high level in the recrudescent phase. GABA seems to have a permissive role in GTH-II secretion when dopamine receptor function is inhibited.  相似文献   

6.
The paraventricular nucleus (PVN) of the hypothalamus is a central site known to modulate sympathetic outflow. Excitatory and inhibitory neurotransmitters within the PVN dictate final outflow. The goal of the present study was to examine the role of the interaction between the excitatory neurotransmitter glutamate and the inhibitory neurotransmitter GABA in the regulation of sympathetic activity. In alpha-chloralose- and urethane-anesthetized rats, microinjection of glutamate and N-methyl-D-aspartate (NMDA; 50, 100, and 200 pmol) into the PVN produced dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate. These responses were blocked by the NMDA receptor antagonist DL-2-amino-5-phosphonovaleric acid (AP-5). Microinjection of bicuculline, a GABA(A) receptor antagonist, into the PVN (50, 100, and 200 pmol) also produced significant, dose-dependent increases in renal sympathetic nerve activity, blood pressure, and heart rate; AP-5 also blocked these responses. Using microdialysis and HPLC/electrochemical detection techniques, we observed that bicuculline infusion into the PVN increased glutamate release. Using an in vitro hypothalamic slice preparation, we found that bicuculline increased the frequency of glutamate-mediated excitatory postsynaptic currents in PVN-rostral ventrolateral medullary projecting neurons, supporting a GABA(A)-mediated tonic inhibition of this excitatory input into these neurons. Together, these data indicate that 1) glutamate, via NMDA receptors, excites the presympathetic neurons within the PVN and increases sympathetic outflow and 2) this glutamate excitatory input is tonically inhibited by a GABA(A)-mediated mechanism.  相似文献   

7.
In order to assess a role of 5-HT(1B) receptors for regulation of GABA transmission in the ventral tegmental area (VTA), VTA slices from the rat were incubated with [(3)H]GABA and beta-alanine, and superfused in the presence of nipecotic acid and aminooxyacetic acid. [(3)H]GABA release was induced by exposures to the medium containing 30 mM potassium for 2 min. The results showed that high potassium-evoked [(3)H]GABA release was sensitive to calcium withdrawal or blockade of sodium channels by tetrodotoxin, suggesting that tritium overflow induced by high potassium derived largely from neuronal stores. Administration of CP 93129 (0.15 and 0.45 microM), a 5-HT(1B) receptor agonist, or RU 24969 (0.15 and 0.45 microM), a 5-HT(1B/1A) receptor agonist, but not 8-OH-DPAT (0.45 microM), a 5-HT(1A) receptor agonist, inhibited high potassium-evoked [(3)H]GABA release in a concentration-related manner. The RU 24969-induced inhibition of [(3)H]GABA release was antagonized by either SB 216641, a 5-H(1B) receptor antagonist, or cyanopindolol, a 5-HT(1B/1A) receptor antagonist, but not by WAY 100635, a 5-HT(1A) receptor antagonist. Pre-treatment with SB 216641 also antagonized CP 93129-induced inhibition of [(3)H]GABA release. The results support the hypothesis that 5-HT(1B) receptors within the VTA can function as heteroreceptors to inhibit GABA release.  相似文献   

8.
H S Kim  Y R Son  S H Kim 《Life sciences》1999,64(26):2463-2470
The purpose of this study was to characterize behavioral interactions between nitric oxide synthase (NOS) inhibitors and serotonergic 5-HT2 receptors. In the present study, NOS inhibitors, N(G)-nitro-L-arginine, N(G)-nitro-L-arginine methylester, N(G)-monomethyl-L-arginine, 7-nitroindazole, trifluoperazine and NO scavenger, methylene blue markedly enhanced 5-hydroxytryptamine (5-HT)-induced selective serotonergic behavior, the head twitch response (HTR), in mice. However NO generators, sodium nitroprusside, 3-morpholinosydnonimine and S-nitroso-N-acetylpenicillamine as well as NO precursor, L-arginine markedly inhibited 5-HT induced HTR in mice. In the previous study, it was demonstrated that the N-methyl-D-aspartate (NMDA) receptor antagonists markedly enhanced 5-HT-induced selective serotonergic behavior, HTR, whereas NMDA itself inhibited 5-HT-induced HTR in mice. In the present study, it was demonstrated that the inhibition by a NMDA receptor agonist, NMDA of 5-HT-induced HTR was reversed by the treatment with NOS inhibitors, N(G)-nitro-L-arginine and N(G)-nitro-L-arginine methylester. The suppressive action by a NO generator, S-nitroso-N-acetylpenicillamine of 5-HT-induced HTR was also reversed by the treatment with NMDA receptor antagonists, MK-801 and dextromethorphan. These results have shown that the NO system is located down stream of NMDA receptors involved in modulation of 5-HT2-mediated HTR. Therefore, the enhanced effects of NOS inhibitors on 5-HT-induced HTR support experimental evidence for the NO/5-HT2 as well as NMDA/5-HT2 receptor interactions indicating that NO plays an important role in the glutamatergic modulation of the serotonergic function at the 5-HT2 receptor.  相似文献   

9.
Evidence from electrophysiological studies suggests that 5-HT neuronal firing in the dorsal raphe nucleus (DRN) may be regulated by both GABA(A) and GABA(B) receptors. Here, we addressed the question of whether the activity of individual 5-HT neurons is regulated by both GABA(A) and GABA(B) receptors. In addition, we examined the concentration-response relationships of GABA(A) and GABA(B) receptor activation and determined if GABA receptor regulation of 5-HT neuronal firing is altered by moderate alterations in circulating corticosterone. The activity of 5-HT neurons in the DRN of the rat was examined using in vitro extracellular electrophysiology. The firing of all individual neurons tested was inhibited by both the GABA(A) receptor agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]-pyridin-3-ol hydrochloride (THIP) (25 microM) and the GABA(B) receptor agonist baclofen (1 microM). Responses to THIP (5, 10, 25 microM) and baclofen (1, 3, 10 microM) were concentration dependent and attenuated by the GABA(A) and GABA(B) receptor antagonists, bicuculline (50 microM) and phaclofen (200 microM), respectively. To examine the effects of corticosterone on the sensitivity of 5-HT neurons to GABA receptor activation, experiments were conducted on adrenalectomized animals with corticosterone maintained for two weeks at either a low or moderate level within the normal diurnal range. These changes in corticosterone levels had no significant effects on the 5-HT neuronal response to either GABA(A) or GABA(B) receptor activation. The data indicate that the control of 5-HT neuronal activity by GABA is mediated by both GABA(A) and GABA(B) receptors and that this control is insensitive to moderate changes in circulating glucocorticoid levels.  相似文献   

10.
While the roles of glutamic acid(Glu), arginine vasopressin(AVP) and their respective receptors in anxiety have been thoroughly investigated, the effects of interactions among Glu, N-methyl-D-aspartic acid(NMDA) receptor, AVP and a-amino-3-hydroxy-5-methylisoxazole-4-propionic acid(AMPA) receptor on anxiety are still unclear. In the present study, the agonist and antagonist of the NMDA receptor and AMPA receptor, as well as the antagonist of AVP V1 receptor(V1aR) were introduced into BALB/cJ mice by intracerebroventricular microinjection, and the anxiety-like behaviors of the mice were evaluated by open field and elevated plus-maze tests. Compared with C57BL/6 mice, BALB/cJ mice displayed higher levels of anxiety-like behavior. Significant anxiolytic effects were found in the NMDA receptor antagonist(MK-801) and the AMPA receptor or V1 aR antagonist(SSRI49415), as well as combinations of AVP/MK-801 and SSRI49415/DNQX. These results indicated that anxiety-like behaviors expressed in BALB/CJ mice may be due to a coordination disorder among glutamate, NMDA receptor, AMPA receptor, AVP and V1 aR, resulting in the up-regulation of the NMDA receptor and V1 aR and down-regulation of the AMPA receptor. However, because the AMPA receptor can execute its anxiolytic function by suppressing AVP and V1 aR, we cannot exclude the possibility of the NMDA receptor being activated by AVP acting on V1 aR.  相似文献   

11.
One brain region that has been implicated in the regulation of lordosis is the medial preoptic-anterior hypothalamic continuum (MPOA-AH). Previous studies have suggested that this zone may be part of the circuit mediating the effects of serotonin (5-HT) on sexual receptivity. In the present experiments, we investigated the role of 5-HT(1a/7) and 5-HT(2) receptor subtypes in the MPOA-AH in the control of lordosis. In two experiments, either 5-HT(1a/7) or 5-HT(2) agonists were injected unilaterally into the MPOA-AH of ovariectomized, hormonally primed female hamsters. In the first experiment, microinjections of the 5-HT(1a/7) agonist 8-hydroxy-2,9-(di-n-propylamino)tetralin resulted in an attenuation of the lordosis posture by causing a decrease in the mean lordosis duration and an increase in the number of lordosis episodes over the entire testing period. In the second experiment, microinjections of the 5-HT(2b/2c) agonist m-chlorophenylpiperazine did not result in any changes in sexual receptivity. However, microinjections of the 5-HT(2) agonist (2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl facilitated lordosis by increasing the mean lordosis duration and decreasing the number of lordosis episodes in the first 5 min of the testing period. These data indicate that serotonin may act in the MPOA-AH via 5-HT(1a/7) receptors to attenuate and 5-HT(2) receptors to facilitate sexual receptivity.  相似文献   

12.
It had been reported that exposure to extremely low-frequency magnetic field (ELFMF) induces anxiety in human and rodents. Anxiety mediates via the activation of N-methyl-d-aspartate (NMDA) receptor, whereas activation of γ-aminobutyric acid (GABA) receptor attenuates the same. Hence, the present study was carried out to understand the contribution of NMDA and/or GABA receptors modulation in ELFMF-induced anxiety for which Swiss albino mice were exposed to ELFMF (50?Hz, 10?G) by subjecting them to Helmholtz coils. The exposure was for 8?h/day for 7, 30, 60, 90 and 120 days. Anxiety level was assessed in elevated plus maze, open field test and social interaction test, on 7th, 30th, 60th, 90th and 120th exposure day, respectively. Moreover, the role of GABA and glutamate in ELFMF-induced anxiety was assessed by treating mice with muscimol [0.25?mg/kg intraperitoneally (i.p.)], bicuculline (1.0?mg/kg i.p.), NMDA (15?mg/kg i.p.) and MK-801 (0.03?mg/kg i.p.), as a GABAA and NMDA receptor agonist and antagonist, respectively. Glutamate receptor agonist exacerbated while inhibitor attenuated the ELFMF-induced anxiety. In addition, levels of GABA and glutamate were determined in regions of the brain viz, cortex, striatum, hippocampus and hypothalamus. Experiments demonstrated significant elevation of GABA and glutamate levels in the hippocampus and hypothalamus. However, GABA receptor modulators did not produce significant effect on ELFMF-induced anxiety and elevated levels of GABA at tested dose. Together, these findings suggest that ELFMF significantly induced anxiety behavior, and indicated the involvement of NMDA receptor in its effect.  相似文献   

13.
The mechanisms involved in the neuroprotective effect of serotonin 5-HT1A receptor agonists on brain damage induced by ischemia remain to be fully elucidated. Given that serotonergic drugs may regulate N-methyl-D-aspartate (NMDA) receptor function, which is implicated in events leading to ischemia-induced neuronal cell death, this study sought to determine the effects of the selective 5-HT1A receptor agonist, 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), on the levels of NMDA receptor NR1 subunit in gerbil hippocampus after transient global cerebral ischemia. Pretreatment with 8-OH-DPAT (1 mg/kg) prevented the neuronal loss in CA1 subfield 72 h after ischemia. NMDA receptor NR1 levels in whole hippocampus were not affected 24 h after ischemia, but the levels of the subunit phosphorylated at the protein kinase A (PKA) site, pNR1(Ser897), were significantly increased, and this increase was prevented by the same 8-OH-DPAT dose, a probable consequence of the increased phosphatase 1 (PP1) enzyme activity found in ischemic gerbils pretreated with the 5-HT1A receptor agonist. The results suggest that NR1 subunit phosphorylation plays a role in the neuroprotective effect of 8-OH-DPAT on cell damage induced by global cerebral ischemia in the gerbil hippocampus and support the potential interest of 5-HT1A receptor activation in the search for neuroprotective strategies.  相似文献   

14.
Previous studies indicate that cerebral ischemia breaks the dynamic balance between excitatory and inhibitory inputs. The neural excitotoxicity induced by ionotropic glutamate receptors gain the upper hand during ischemia-reperfusion. In this paper, we investigate whether GluR5 (glutamate receptor 5)-containing kainate receptor activation could lead to a neuroprotective effect against ischemic brain injury and the related mechanism. The results showed that (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA), a selective GluR5 agonist, could suppress Src tyrosine phosphorylation and interactions among N-methyl-D-aspartate (NMDA) receptor subunit 2A (NR2A), postsynaptic density protein 95 (PSD-95), and Src and then decrease NMDA receptor activation through attenuating tyrosine phosphorylation of NR2A and NR2B. More importantly, ATPA had a neuroprotective effect against ischemia-reperfusion-induced neuronal cell death in vivo. However, four separate drugs were found to abolish the effects of ATPA. These were selective GluR5 antagonist NS3763; GluR5 antisense oligodeoxynucleotides; CdCl(2), a broad spectrum blocker of voltage-gated calcium channels; and bicuculline, an antagonist of gamma-aminobutyric acid A (GABA(A)) receptor. GABA(A) receptor agonist muscimol could attenuate Src activation and interactions among NR2A, PSD-95 and Src, resulting the suppression of NMDA receptor tyrosine phosphorylation. Moreover, patch clamp recording proved that the activated GABA(A) receptor could inhibit NMDA receptor-mediated whole-cell currents. Taken together, the results suggest that during ischemia-reperfusion, activated GluR5 may facilitate Ca(2+)-dependent GABA release from interneurons. The released GABA can activate postsynaptic GABA(A) receptors, which then attenuates NMDA receptor tyrosine phosphorylation through inhibiting Src activation and disassembling the signaling module NR2A-PSD-95-Src. The final result of this process is that the pyramidal neurons are rescued from hyperexcitability.  相似文献   

15.
将L-谷氨酸钠(Glu)注入乌拉坦麻醉、箭毒化、人工呼吸大鼠的室旁核(NPV)或蓝斑内引起升压反应。蓝斑升压反应可被双侧室旁核内预先注射酚妥拉明或心得安明显衰减;双侧室旁核内预先注射酚妥拉明或荷包牡丹碱还可使Glu兴奋延髓A_1区引起的降压反应减小,但注射心得安对A_1-降压反应无明显影响。以上结果提示蓝斑-升压反应和A_1-降压反应均部分通过NPV实现,A_1降压过程中可能有NPV内GABA能抑制性中间神经元参与。  相似文献   

16.
Yang J  Yang Y  Xu HT  Chen JM  Liu WY  Lin BC 《Regulatory peptides》2007,142(1-2):29-36
Previous study has proven that microinjection of arginine vasopressin (AVP) into periaqueductal gray (PAG) raises the pain threshold, in which the antinociceptive effect of AVP can be reversed by PAG pretreatment with V2 rather than V1 or opiate receptor antagonist. The present work investigated the AVP effect on endogenous opiate peptides, oxytocin (OXT) and classical neurotransmitters in the rat PAG. The results showed that AVP elevated the concentrations of leucine-enkephalin (L-Ek), methionine-enkephalin (M-Ek) and beta-endorphin (beta-Ep), but did not change the concentrations of dynorphinA(1-13) (DynA(1-13)), OXT, classical neurotransmitters including achetylcholine (Ach), choline (Ch), serotonin (5-HT), gamma-aminobutyric acid (GABA), glutamate (Glu), dopamine (DA), norepinephrine (NE) and epinephrine (E), and their metabolic products in PAG perfusion liquid. Pain stimulation increased the concentrations of AVP, L-EK, M-Ek, beta-Ep, 5-HT and 5-HIAA (5-HT metabolic product), but did not influence the concentrations of DynA(1-13), OXT, the other classical neurotransmitters and their metabolic products. PAG pretreatment with naloxone - an opiate receptor antagonist completely attenuated the pain threshold increase induced by PAG administration of AVP, but local pretreatment of OXT or classical neurotransmitter receptor antagonist did not influence the pain threshold increase induced by PAG administration of AVP. The data suggested that AVP in PAG could induce the local release of enkephalin and endorphin rather than dynophin, OXT and classical neurotransmitters to participate in pain modulation.  相似文献   

17.
NOR1, Nur77 and Nurr1 are orphan nuclear receptors and members of the NR4A subfamily. Here, we report that the expression of hypothalamic NOR1 was remarkably decreased in mildly obese β-endorphin-deficient mice and obese db/db mice with the leptin receptor mutation, compared with age-matched wild-type mice, whereas there were no genotypic differences in the expression of hypothalamic Nur77 or Nurr1 in these animals. The injection of NOR1 siRNA oligonucleotide into the third cerebral ventricle significantly suppressed food intake and body weight in mice. On the other hand, the decreases in hypothalamic NOR1 expression were not found in non-obese 5-HT2C receptor-deficient mice. Moreover, systemic administration of m-chlorophenylpiperazine (mCPP), a 5-HT2C/1B receptor agonist, had no effect on hypothalamic NOR1 expression, while suppressing food intake in β-endorphin-deficient mice. These findings suggest that 5-HT2C receptor-independent proopiomelanocortin-derived peptides regulate the expression of hypothalamic NOR1, which is a novel modulator of feeding behavior and energy balance.  相似文献   

18.
An implication of 5-HT(2B) receptors in central nervous system has not yet been clearly elucidated. We studied the role of different 5-HT(2) receptor subtypes in the medullary breathing center, the pre-B?tzinger complex, and on hypoglossal motoneurons in rhythmically active transversal slice preparations of neonatal rats and mice. Local microinjection of 5-HT(2) receptor agonists revealed tonic excitation of hypoglossal motoneurons. Excitatory effects of the 5-HT(2B) receptor agonist BW723C86 could be blocked by bath application of LY272015, a highly selective 5-HT(2B) receptor antagonist. Excitatory effects of the 5-HT(2A/B/C) receptor agonist alpha-methyl 5-HT could be blocked by the preferential 5-HT(2A) receptor antagonist ketanserin. Therefore, 5-HT-induced excitation of hypoglossal motoneurons is mediated by convergent activation of 5-HT(2A) and 5-HT(2B) receptors. Local microinjection of BW723C86 in the pre-B?tzinger complex increased respiratory frequency. Bath application of LY272015 blocked respiratory activity, whereas ketanserin had no effect. Therefore, endogenous 5-HT appears to support tonic action on respiratory rhythm generation via 5-HT(2B) receptors. In preparations of 5-HT(2B) receptor-deficient mice, respiratory activity appeared unaltered. Whereas BW723C86 and LY272015 had no effects, bath application of ketanserin disturbed and blocked rhythmic activity. This demonstrates a stimulatory role of endogenous 5-HT(2B) receptor activation at the pre-B?tzinger complex and hypoglossal motoneurons that can be taken up by 5-HT(2A) receptors in the absence of 5-HT(2B) receptors. The presence of functional 5-HT(2B) receptors in the neonatal medullary breathing center indicates a potential convergent regulatory role of 5-HT(2B) and -(2A) receptors on the central respiratory network.  相似文献   

19.
家兔62只,用乌拉坦(700mg/kg)和氯醛醣(35mg/kg)静脉麻醉,三碘季铵酚制动,在人工呼吸下进行实验。用电刺激下丘脑近中线区的方法诱发室性期前收缩(HVE)。静脉注射安定(0.5mg/kg)可降低基础血压(BP),减弱刺激下丘脑引起升压反应(指收缩压峰值SBP_(max))和减少HVE。在双侧延髓腹外侧头端区(rVLM)微量注射氟安定(200μg溶于0.5μl中),γ-氨基丁酸(GABA)(6μg溶于0.5μl中)均能降低BP、SBP_(max)和减少HVE,若微量注射印防己毒素(7.5μg溶于0.5μl中)则可使BP上升并增多HVE。而于双侧延髓腹外侧尾端区(cVLM)微量注射同样剂量氟安定、GABA则无上述反应。安定降低BP、SBP_(max)和减少HVE的作用可被双侧rVLM区微量注射GABA受体拮抗剂荷包牡丹碱(3μg溶于0.5μl中)或印防己毒素所消除,但在双侧rVLM区微量注射甘氨酸受体拮抗剂士的宁(1μg溶于0.5μl中)、阿片受体拮抗剂纳洛酮(0.5μg溶于0.5μl中)、胆碱能阻断药阿托品(0.25μg溶于0.5μl中)、东莨菪碱(1.5μg溶于0.5μl中)后仍然存在。 上述结果提示,在双侧rVLM应用GABA受体拮抗剂可消除安定降低BP、SBP_(max)和减少HVE的作用,安定降低BP、SBP_(max)和减少HVE的作用可能通过GABA这一中间环节,而胆碱能受体、阿片受体、甘氨酸受体可能不起重要作用。  相似文献   

20.
In the catfish Heteropneustes fossilis, the hypothalamus and telencephalon showed seasonal variations in γ-aminobutyric acid (GABA) with high levels in prespawning and spawning phases and low levels in preparatory and postspawning phases. Ovariectomy for 4 and 5 weeks reduced significantly the GABA contents only in the hypothalamus. Replacement with E2 (1 μg/g BW) restored the levels to that of sham ovariectomized or parallel control group. Treatment with GABA (i.p.; 10 or 50 μg/g body weight (BW)) alone did not produce any significant effect on plasma gonadotropin-II (GTH-II) level in any of the seasons. Injection of GABA, but not baclofen (a GABAB agonist), stimulated GTH-II secretion in pimozide or GnRH analogue-pimozide pretreated fish at both 0.5 and 2 h in early prespawning phase except at 0.5 h in the pimozide—GABA (10 μg) group. This stimulatory effect was not evident in other seasons. The results of the present study suggest that Estradiol-17β (E2) seems to stimulate GABA which may account for its high level in the recrudescent phase. GABA seems to have a permissive role in GTH-II secretion when dopamine receptor function is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号