首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Seedlings of Alnus incana (L.) Moench were studied in controlled environmental conditions. Net photosynthetic capacity of four plants simultaneously as well as light, temperature, and atmospheric water pressure deficit were continuously recorded during approximately two months. The potted plants were continuously given known quantities of water. Two different effects of water stress were found in the experimental plants. When sufficient amounts of water had been available to them, photosynthetic CO2 fixation rates largely followed the variation in temperature and light. On the other hand, after prolonged water stress, higher temperatures caused a large decrease in net CO2 uptake even if the plant apparently had sufficient water during the actual measurements. Possible mechanisms for this effect are discussed. Effects of water stress on photosynthesis were studied at a constant temperature as well as in conditions where temperature, light, soil water content, and atmospheric water vapor pressure were allowed to vary in a complex pattern. Mathematical models for expressing net CO2 uptake as a function of environmental variables were constructed for both of these experimental situations. However, only the latter approach clearly demonstrated the fundamental role of temperature in controlling the photosynthesis of plants under water stress.  相似文献   

2.
3.
Ku SB  Edwards GE 《Plant physiology》1977,59(5):991-999
The response of whole leaf photosynthesis of wheat (Triticum aestivum L.) in relation to soluble CO2 available to the mesophyll cells, under low (1.5%) O2 at 25, 30, and 35 C, followed Michaelis-Menten kinetics up to saturating CO2 but deviated at high CO2 levels where the experimental Vmax is considerably less than the calculated Vmax. The affinity of the leaves for CO2 during photosynthesis was similar from 25 to 35 C with Km (CO2) values of approximately 3.5 to 5 μM.  相似文献   

4.
Wheat (Triticum aestivum L.) plants were subjected to mild water stress during grain filling at milk (early, medium, and late) and dough (early, soft, hard) stages. The grains harvested from stressed plants were subjected to low temperature stress of 10 °C for 24 h in presence or absence of 1 mM CaCl2, and embryos were examined for oxidative injury. The embryos of grains water stressed at milk and soft dough stages showed lowest contents of H2O2 and malondialdehyde and highest membrane stability index, ascorbic acid content, and activities of catalase, ascorbate peroxidase, and superoxide dismutase as compared to control embryos or water-stressed at other stages. Presence of Ca2+ in the medium reduced H2O2 and malondialdehyde content and increased ascorbic acid content, and catalase, ascorbate peroxidase and superoxide dismutase activities.  相似文献   

5.
The effects of light intensity, pH, temperature, and UV irradiation on the photosynthetic rate of Prochloron isolated from the ascidian host Lissoclinum patella, collected from Palau, were examined. Photosynthesis increased with light intensity with saturation at 500 μmol/m2 per second. It was maximum at pH 8 to 9 but almost completely suppressed below pH 7. The optimum temperature was 35° to 40°C, but the photosynthesis was absent at ≤20°C and at 45°C. It was recovered when the symbiont was transferred from 1 hour of incubation at ≤20°C to 35°C but not when transferred from incubation at 45°C. Ultraviolet irradiation severely inhibited the photosynthesis of Prochloron in isolation but not in vivo. This protection was brought about by the tunic covering the ascidian colony, which contains UV-absorbing mycosporine-like amino acids. These results indicate that the characteristic condition of the tropical marine environment largely determines the ecological distribution of Prochloron, and the ascidian tunic protects the organism from UV radiation. Received February 17, 2000; accepted August 8, 2000.  相似文献   

6.
The adaptation of apple seedlings, Pyrus malus L., to localized nutrient stress was studied by measuring nitrogen uptake. Seedlings with split root systems were grown in nutrient solution. Various proportions of the roots were subjected to nutrient stress by placing some of the roots in water. The nitrogen uptake by stressed plants was measured under constant and varied lighting. Under optimum lighting it was found that if part of the root system was deprived of nitrogen, then the remainder partially compensated for this deficiency by increasing its uptake. This adaptation, however, was substantially reduced under low levels of lighting.  相似文献   

7.
Light Distribution and Photosynthesis in Field Crops   总被引:7,自引:1,他引:6  
In a new model of light distribution in field crops a parameters is the fraction of light passing through unit leaf layer withoutinterception. Radiation profiles measured with solarimetersand photocells give values of s from 0.7 for grasses to 0.4for species with prostrate leaves. Knowing s, leaf transmissionT and leaf-area index L the light distribution in a field cropmay be described by a binomial expansion of the form {s+(I-s)T)L.To calculate crop photosynthesis at given light intensity thisexpansion is combined with two parameters describing the shapeof the light-response curve of single leaves. Finally, the assumptionthat solar radiation varies sinusoidally allows daily totalphotosynthesis to be estimated from daylength and insolation. The theory predicts about the same potential photosynthesisin a cloudy temperte climate with long days as in a more sunnyequatorial climate with short days. When L < 3 photosynthesisincreases as s decreases, i.e. as leaves become more prostrate;but when L > 5, photosynthesis increases as s increases,i. e. as leaves become more erect. Assuming that respirationis proportional to leaf area, estimated dry-matter productionagrees well with field measurements on sugar-beet, sugar-cane,kale, and subterranean clover. Estimates of maximum gross photosynthesis(for sugar-cane and maize) range from 60 to 9 g m–2 day–1depending on insolation.  相似文献   

8.
We hypothesized that salinity and light interactively affect mangroves, such that net photosynthesis, growth, and survivorship rates increase more with increase in light availability at low than high salinity. Using greenhouse and field experiments, we determined that net photosynthesis, growth rates, and size increased more with light at low than high salinity. At high salinity, the ratio of leaf respiration to assimilation increased fourfold, suggesting that salinity may have contributed to declines in net photosynthesis. Stomatal conductance, leaf‐level transpiration, and internal CO2 concentrations were lower at high salinity. Ratios of root mass to leaf mass were higher at high salinity. Stomatal limitations and increased respiratory costs may explain why at high salinity, the seedlings did not respond to increased light availability with increased net photosynthesis. Increased root mass relative to leaf mass suggests that at high salinity, either water or nutrient limitations may have prevented the seedlings from increasing growth with increasing light availability. At both low‐ and high‐salinity zones in the field, seedling survivorship increased with light availability, and the effect of light was stronger at low salinity. However, at low light, survivorship was higher at high than low salinity, indicating that there may be a trade‐off between survivorship and growth. The interactive effects observed in the greenhouse were robust in the field, despite the presence of other factors in the field such as inundation and nutrient gradients and herbivory. This study provides a robust test of the hypothesis that salinity and light interactively effect mangrove seedling performance.  相似文献   

9.
Mycobacterium avium is a potential pathogen occurring in drinking water systems. It is a slowly growing bacterium producing a thick cell wall containing mycolic acids, and it is known to resist chlorine better than many other microbes. Several studies have shown that pathogenic bacteria survive better in biofilms than in water. By using Propella biofilm reactors, we studied how factors generally influencing the growth of biofilms (flow rate, phosphorus concentration, and temperature) influence the survival of M. avium in drinking water biofilms. The growth of biofilms was followed by culture and DAPI (4′,6′-diamidino-2-phenylindole) staining, and concentrations of M. avium were determined by culture and fluorescence in situ hybridization methods. The spiked M. avium survived in biofilms for the 4-week study period without a dramatic decline in concentration. The addition of phosphorus (10 μg/liter) increased the number of heterotrophic bacteria in biofilms but decreased the culturability of M. avium. The reason for this result is probably that phosphorus increased competition with other microbes. An increase in flow velocity had no effect on the survival of M. avium, although it increased the growth of biofilms. A higher temperature (20°C versus 7°C) increased both the number of heterotrophic bacteria and the survival of M. avium in biofilms. In conclusion, the results show that in terms of affecting the survival of slowly growing M. avium in biofilms, temperature is a more important factor than the availability of nutrients like phosphorus.  相似文献   

10.
Chlorophyll degradation in Cucumis leaf discs was measured at different temperatures between 1 and 25°C in the light and in darkness, and in the presence or absence of sucrose. Two different processes of chlorophyll degradation could be distinguished, a light-requiring process operating at 1 and 5°C and another, light and sucrose enhanced degradation process which was evident at 25°C. Degradation of leaf pigments at low temperatures was of a photo-oxidative nature since there was no degradation in the dark. The chlorophyll a/b ratio was decreased, carotene was degraded at a faster rate than chlorophyll, and 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and triphenyltetrazolium chloride (TTC) which prevent photo-oxidation, protected against chlorophyll degradation. The light and sucrose enhanced chlorophyll degradation at 25°C was of an enzymatic nature since it occurred in the dark as well as in the light. The chlorophyll a/b ratio was not affected, and carotene and chlorophyll degradation occurred at the same rate. Since DCMU completely inhibited the light enhancement at 25°C and experimentation in a low oxygen atmosphere also protected chlorophyll against the effect of light and sugar application, it is suggested that the enhancement of chlorophyll degradation by light and sucrose at 25°C may be due to increased sugar uptake of the chloroplasts and consequently excessive starch formation in the organelles.  相似文献   

11.
Photosynthetic rates of both C4- and C3-pathway plants grown at 25 C were measured before and during a period of chilling stress at 10 C, and then again at 25 C following various periods at 10 C. When temperatures are first lowered photosynthetic rates drop immediately, then undergo a further reduction which is quite rapid in species such as Sorghum, maize, and Pennisetum; slower in soybean; and very slow in Paspalum and ryegrass. Visible light causes progressive permanent damage to the photosynthetic capacity of leaves during this period of lowered photosynthesis. The extent of damage increases with light intensity and the length of time leaves are held at 10 C but varies greatly between species, being roughly correlated with the extent to which chilling initially and subsequently lowers photosynthesis. Three days of chilling (10 C) at 170 w·m−2 reduces the photosynthetic capacity of youngest-mature Paspalum leaves only 30 to 40% while Sorghum leaves are essentially inoperative when returned to 25 C after the same stress. Root temperature has a substantial rapid effect on photosynthesis of soybean and little immediate effect on Sorghum. Photosynthesis of stress-intolerant species (Sorghum) is reduced only slightly more than that of semitolerant species (Paspalum) when temperatures are lowered at mid-photo-period, but to a far greater extent if temperatures are reduced at the commencement of a photoperiod.  相似文献   

12.
How Plants Cope with Water Stress in the Field? Photosynthesis and Growth   总被引:47,自引:0,他引:47  
Plants are often subjected to periods of soil and atmosphericwater deficit during their life cycle. The frequency of suchphenomena is likely to increase in the future even outside today’sarid/semi-arid regions. Plant responses to water scarcity arecomplex, involving deleterious and/or adaptive changes, andunder field conditions these responses can be synergisticallyor antagonistically modified by the superimposition of otherstresses. This complexity is illustrated using examples of woodyand herbaceous species mostly from Mediterranean-type ecosystems,with strategies ranging from drought-avoidance, as in winter/springannuals or in deep-rooted perennials, to the stress resistanceof sclerophylls. Differences among species that can be tracedto different capacities for water acquisition, rather than todifferences in metabolism at a given water status, are described.Changes in the root : shoot ratio or the temporaryaccumulation of reserves in the stem are accompanied by alterationsin nitrogen and carbon metabolism, the fine regulation of whichis still largely unknown. At the leaf level, the dissipationof excitation energy through processes other than photosyntheticC-metabolism is an important defence mechanism under conditionsof water stress and is accompanied by down-regulation of photochemistryand, in the longer term, of carbon metabolism.  相似文献   

13.
The effect of different types of water stress on nitrate and nitrite reductases of wheat (Triticum vulgare L. cv. Mivhor) leaves was investigated. Water stress was applied either to leaf tissue by its incubation in mannitol or various salt solutions, or to intact plants by exposure of the root system to low temperatures or to salinity. Nitrite reductase was much less sensitive to water stress than nitrate reductase, and was not sensitive to salinity up to osmotic potentials of about — 13 bars. The decrease in nitrite reductase activity by water stress was attributed to a direct inhibition of the enzyme rather than to a repression of enzyme synthesis. This was based on the fast response of the enzyme after exposure of leaf tissue to reduced osmotic potential, on the lack of a continuous decrease in enzyme activity during a prolonged stress, and on the fact that light activation of reductase was unaffected by water stress. The inhibition of nitrate reductase under water stress was attributed to both a direct inhibition and a reduced rate in enzyme synthesis. This is concluded from the fact that a decrease in its activity was obtained already within 1 h after stress application and from the fact that light induction of the enzyme was inhibited by stress.  相似文献   

14.
Transpiration of birch seedlings in the field is largely controlled by the amount of available water in the soil. This is in contrast with the situation found in CO2 exchange, where distinct interaction between temperature and drought was observed in our previous studies. The present study indicates that no similar relationships exist as far as transpiration is concerned, and in agreement with our previous preliminary studies, separate control mechanisms thus seem to affect transpiration on the one hand and photosynthesis on the other under natural conditions.  相似文献   

15.
An experiment was conducted in SPAR systems at Florence, S.C., to obtain a data set for use in the simulation of the effect of drying soil on photosynthetic rates in cotton. The plant water status was monitored using leaf water potential and stem diameter meaurements. Reductions were noted in apparent photosynthesis rates after only 5 days of soil drying, and as anticipated, there was uniform displacement of the diurnal cycle of leaf water potential, and corresponding decreases in transpiration and CO2 uptake. The photosynthesis-light response curves indicated that an average two-fold reduction in photosynthesis rates occurred for solar radiation greater than 250 W/m2. Stem diameter change (from a nonstress pre-sunrise value) and integrated stem stress were found to be good indicators of maximum daily plant water stress. The integrated stem stress gave a measure of the duration of the stress along with its magnitude. A simulation method for predicting leaf water potential from stem diameter measurements was used to show that the magnitude and duration of plant water stress increased uniformly during the experiment. This increase was representative of the decreased rates of photosynthesis measured. These data will be used in the simulation of cotton growth and yield.  相似文献   

16.
17.
Photosynthesis and dark-CO2-fixation were measured in vacuum-infiltratedleaf slices from the mesophyte Spinacia oleracea and the Mediterraneanxerophyte Arbutus unedo under hypertonic stress as a functionof light-intensity, CO2-concentration and temperature, in theabsence of stomatal control. Under hypertonic stress, photosynthesis and dark-CO2-fixationwere inhibited in leaf tissue from both plants. 50% inhibitionof photosynthesis in spinach occurred at about –3.0 MPa,and of dark-CO2-fixation at about –3.5 MPa. 50% inhibitionof photosynthesis in Arbutus unedo was reached at about –4.0MPa (sorbitol as osmoticum). In both plants, osmotic dehydration decreased the slope andthe maximum of the CO2- and light-response curves. The slopeof the CO2-response curve of dark-CO2-fixation was also decreasedunder hypertonic stress, but the inhibition of the maximal fixationrate was less obvious than for photosynthesis. Photosynthesis and dark-CO2-fixation differed significantlyin their response to high temperature: under light- and CO2-saturation,photosynthesis of spinach leaf slices had a temperature optimumat about 37 °C, and it was nearly completely inhibited at45 °C. The rate of dark-CO2-fixation, however, increasedcontinuously up to 45 °C. Osmotic dehydration increasedthe resistance of photosynthesis to high temperatures. Key words: CO2 response, Heat stress, Light response, Photosynthesis, Water stress  相似文献   

18.
Changes in photosynthesis and transpiration of a potted birch seedling were simultaneously followed in the field using two infrared gas analyzers. Wet and dry temperature measurements alone explained 81% of the variation in the transpiration rate when the plant was not suffering from water deficit. During drought and the period after the water balance had been restored, net photosynthesis decreased more distinctly than transpiration. This result was in accordance with our previous results on the after-effects of water deficit on photosynthesis, and it was also interpreted as evidence for at least partly separate control mechanisms for photosynthesis and transpiration.  相似文献   

19.
Leaf Photosynthesis of the Mangrove Avicennia Germinans as Affected by NaCl   总被引:2,自引:0,他引:2  
In leaves of the mangrove species Avicennia germinans (L.) L. grown in salinities from 0 to 40 ‰, fluorescence, gas exchange, and δ13C analyses were done. Predawn values of Fv/Fm were about 0.75 in all the treatments suggesting that leaves did not suffer chronic photoinhibition. Conversely, midday Fv/Fm values decreased to about 0.55-0.60 which indicated strong down-regulation of photosynthesis in all treatments. Maximum photosynthetic rate (P max) was 14.58 ± 0.22 μmol m-2 s-1 at 0 ‰ it decreased by 21 and 37 % in plants at salinities of 10 and 40 ‰, respectively. Stomatal conductance (g s) was profoundly responsive in comparison to P max which resulted in a high water use efficiency. This was further confirmed by δ13C values, which increased with salinity. From day 3, after salt was removed from the soil solution, P max and g s increased up to 13 and 30 %, respectively. However, the values were still considerably lower than those measured in plants grown without salt addition. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Sobrado  M.A. 《Photosynthetica》2000,36(4):547-555
In leaves of the mangrove species Avicennia germinans (L.) L. grown in salinities from 0 to 40 ‰, fluorescence, gas exchange, and δ13C analyses were done. Predawn values of Fv/Fm were about 0.75 in all the treatments suggesting that leaves did not suffer chronic photoinhibition. Conversely, midday Fv/Fm values decreased to about 0.55-0.60 which indicated strong down-regulation of photosynthesis in all treatments. Maximum photosynthetic rate (P max) was 14.58 ± 0.22 µmol m-2 s-1 at 0 ‰ it decreased by 21 and 37 % in plants at salinities of 10 and 40 ‰, respectively. Stomatal conductance (g s) was profoundly responsive in comparison to P max which resulted in a high water use efficiency. This was further confirmed by δ13C values, which increased with salinity. From day 3, after salt was removed from the soil solution, P max and g s increased up to 13 and 30 %, respectively. However, the values were still considerably lower than those measured in plants grown without salt addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号