首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Copper is essential for the growth and development of mammalian cells. The key role in the intracellular distribution of copper belongs to the recently discovered family of metallochaperones and to copper-transporting P-type ATPases. The mutations in the ATPase ATP7B, the Wilson's disease protein (WNDP), lead to intracellular accumulation of copper and severe hepatic and neurological abnormalities. Several of these mutations were shown to disrupt the protein-protein interactions between WNDP and the metallochaperone Atox1, suggesting that these interactions are important for normal copper homeostasis. To understand the functional consequences of the Atox1-WNDP interaction at the molecular level, we produced recombinant Atox1 and characterized its effects on WNDP. We demonstrate that Atox1 transfers copper to the purified amino-terminal domain of WNDP (N-WNDP) in a dose-dependent and saturable manner. A maximum of six copper atoms can be transferred to N-WNDP by the chaperone. Furthermore, the incubation of copper Atox1 with the full-length WNDP leads to the stimulation of the WNDP catalytic activity, providing strong evidence for the direct effect of Atox1 on the function of this transporter. Our data also suggest that Atox1 can regulate the copper occupancy of WNDP. The incubation with apo-Atox1 results in the removal of copper from the metalated N-WNDP and apparent down-regulation of WNDP activity. Interestingly, at least one copper atom remains tightly bound to N-WNDP even in the presence of excess apo-Atox1. We suggest that this incomplete reversibility reflects the functional non-equivalency of the metal-binding sites in WNDP and speculate about the intracellular consequences of the reversible Atox1-mediated copper transfer.  相似文献   

2.
Wilson's disease protein (WNDP) is a copper-transporting ATPase essential for normal distribution of copper in human cells. Recent studies demonstrate that copper regulates WNDP through several mechanisms. Six metal-binding sites (MBS) at the N terminus of WNDP are predicted to be involved in copper-dependent regulation of WNDP; however, specific roles of MBS remain poorly understood. To address this issue, we generated WNDP variants with mutations or truncation in the N-terminal region and characterized their functional properties. We show that copper cooperatively stimulates catalytic activity of WNDP and that this effect requires the presence of both MBS5 and MBS6. Mutations of MBS6 or MBS1-5 result in non-cooperative activation of the enzyme by copper, whereas the deletion of MBS1-4 does not abolish cooperativity. Our data further suggest that MBS5 and MBS6 together regulate the affinity of the intramembrane-binding site(s) for copper. Analysis of the copper-dependent stimulation of catalytic phosphorylation demonstrate that the MBS6 and MBS1-5 mutants have a 7-8-fold lower EC50 for copper activation, suggesting that their affinity for copper is increased. This conclusion is confirmed by a markedly decreased inhibition of these mutants by a copper chelator bathocuproine disulphonate. In contrast, deletion of MBS1-4 does not affect the affinity of sites important for catalytic phosphorylation. Rather, the MBS1-4 region appears to control access of copper to the functionally important metal-binding sites. The implications of these findings for intracellular regulation of WNDP are discussed.  相似文献   

3.
Wilson's disease, an autosomal disorder associated with vast accumulation of copper in tissues, is caused by mutations in a gene encoding a copper-transporting ATPase (Wilson's disease protein, WNDP). Numerous mutations have been identified throughout the WNDP sequence, particularly in the Lys(1010)-Lys(1325) segment; however, the biochemical properties and molecular mechanism of WNDP remain poorly characterized. Here, the Lys(1010)-Lys(1325) fragment of WNDP was overexpressed, purified, and shown to form an independently folded ATP-binding domain (ATP-BD). ATP-BD binds the fluorescent ATP analogue trinitrophenyl-ATP with high affinity, and ATP competes with trinitrophenyl-ATP for the binding site; ADP and AMP appear to bind to ATP-BD at the site separate from ATP. Purified ATP-BD hydrolyzes ATP and interacts specifically with the N-terminal copper-binding domain of WNDP (N-WNDP). Strikingly, copper binding to N-WNDP diminishes these interactions, suggesting that the copper-dependent change in domain-domain contact may represent the mechanism of WNDP regulation. In agreement with this hypothesis, N-WNDP induces conformational changes in ATP-BD as evidenced by the altered nucleotide binding properties of ATP-BD in the presence of N-WNDP. Significantly, the effects of copper-free and copper-bound N-WNDP on ATP-BD are not identical. The implications of these results for the WNDP function are discussed.  相似文献   

4.
Wilson's disease protein (WNDP) is a product of a gene ATP7B that is mutated in patients with Wilson's disease, a severe genetic disorder with hepatic and neurological manifestations caused by accumulation of copper in the liver and brain. In a cell, WNDP transports copper across various cell membranes using energy of ATP-hydrolysis. Copper regulates WNDP at several levels, modulating its catalytic activity, posttranslational modification, and intracellular localization. This review summarizes recent studies on enzymatic function and copper-dependent regulation of WNDP. Specifically, we describe the molecular architecture and major biochemical properties of WNDP, discuss advantages of the recently developed functional expression of WNDP in insect cells, and summarize the results of the ligand-binding studies and molecular modeling experiments for the ATP-binding domain of WNDP. In addition, we speculate on how copper binding may regulate the activity and intracellular distribution of WNDP, and what role the human copper chaperone Atox1 may play in these processes.  相似文献   

5.
Excess copper is effluxed from mammalian cells by the Menkes or Wilson P-type ATPases (MNK and WND, respectively). MNK and WND have six metal binding sites (MBSs) containing a CXXC motif within their N-terminal cytoplasmic region. Evidence suggests that copper is delivered to the ATPases by Atox1, one of three cytoplasmic copper chaperones. Attempts to monitor a direct Atox1-MNK interaction and to determine kinetic parameters have not been successful. Here we investigated interactions of Atox1 with wild-type and mutated pairs of the MBSs of MNK using two different methods: yeast two-hybrid analysis and real-time surface plasmon resonance (SPR). A copper-dependent interaction of Atox1 with the MBSs of MNK was observed by both approaches. Cys to Ser mutations of conserved CXXC motifs affected the binding of Atox1 underlining the essentiality of Cys residues for the copper-induced interaction. Although the yeast two-hybrid assay failed to show an interaction of Atox1 with MBS5/6, SPR analysis clearly demonstrated a copper-dependent binding with all six MBSs highlighting the power and sensitivity of SPR as compared with other, more indirect methods like the yeast two-hybrid system. Binding constants for copper-dependent chaperone-MBS interactions were determined to be 10-5-10-6 m for all the MBSs representing relatively low affinity binding events. The interaction of Atox1 with pairs of the MBSs was non-cooperative. Therefore, a functional difference of the MBSs in the MNK N terminus cannot be attributed to cooperativity effects or varying affinities of the copper chaperone Atox1 with the MBSs.  相似文献   

6.
The Wilson disease protein (WND) is a transport ATPase involved in copper delivery to the secretory pathway. Mutations in WND and its homolog, the Menkes protein, lead to genetic disorders of copper metabolism. The WND and Menkes proteins are distinguished from other P-type ATPases by the presence of six soluble N-terminal metal-binding domains containing a conserved CXXC metal-binding motif. The exact roles of these domains are not well established, but possible functions include exchanging copper with the metallochaperone Atox1 and mediating copper-responsive cellular relocalization. Although all six domains can bind copper, genetic and biochemical studies indicate that the domains are not functionally equivalent. One way the domains could be tuned to perform different functions is by having different affinities for Cu(I). We have used isothermal titration calorimetry to measure the association constant (K(a)) and stoichiometry (n) values of Cu(I) binding to the WND metal-binding domains and to their metallochaperone Atox1. The association constants for both the chaperone and target domains are approximately 10(5) to 10(6) m(-1), suggesting that the handling of copper by Atox1 and copper transfer between Atox1 and WND are under kinetic rather than thermodynamic control. Although some differences in both n and K(a) values are observed for variant proteins containing less than the full complement of six metal-binding domains, the data for domains 1-6 were best fitted with a single site model. Thus, the individual functions of the six WND metal-binding domains are not conferred by different Cu(I) affinities but instead by fold and electrostatic surface properties.  相似文献   

7.
Copper is a trace element essential for normal cell homeostasis. The major physiological role of copper is to serve as a cofactor to a number of key metabolic enzymes. In humans, genetic defects of copper distribution, such as Wilson's disease, lead to severe pathologies, including neurodegeneration, liver lesions, and behavior abnormalities. Here, we demonstrate that, in addition to its role as a cofactor, copper can regulate important post-translational events such as protein phosphorylation. Specifically, in human cells copper modulates phosphorylation of a key copper transporter, the Wilson's disease protein (WNDP). Copper-induced phosphorylation of WNDP is rapid, specific, and reversible and correlates with the intracellular location of this copper transporter. WNDP is found to have at least two phosphorylation sites, a basal phosphorylation site and a site modified in response to increased copper concentration. Comparative analysis of WNDP, the WNDP pineal isoform, and WNDP C-terminal truncation mutants revealed that the basal phosphorylation site is located in the C-terminal Ser(796)-Tyr(1384) region of WNDP. The copper-induced phosphorylation appears to require the presence of the functional N-terminal domain of this protein. The novel physiological role of copper as a modulator of protein phosphorylation could be central to understanding how copper transport is regulated in mammalian cells.  相似文献   

8.
The copper-transporting ATPases are 165-175 kDa membrane proteins, composed of 8 transmembrane segments and two large cytosolic domains, the N-terminal copper-binding domain and the catalytic ATP-hydrolyzing domain. In ATP7B, the Wilson disease protein, the N-terminal domain is made up of six metal-binding sub-domains containing the MXCXXC motif which is known to coordinate copper via the two cysteine residues. We have expressed the N-terminal domain of ATP7B as a soluble C-terminal fusion with the maltose binding protein. This expression system produces a protein which can be reconstituted with copper without recourse to the harsh denaturing conditions or low pH reported by other laboratories. Here we describe the reconstitution of the metal binding domains (MBD) with Cu(I) using a number of different protocols, including copper loading via the chaperone, Atox1. X-ray absorption spectra have been obtained on all these derivatives, and their ability to bind exogenous ligands has been assessed. The results establish that the metal-binding domains bind Cu(I) predominantly in a bis cysteinate environment, and are able to bind exogenous ligands such as DTT in a similar fashion to Atox1. We have further observed that exogenous ligand binding induces the formation of a Cu-Cu interaction which may signal a conformational change of the N-terminal domain.  相似文献   

9.
The Wilson's disease protein (WNDP), a copper transporter, is a crucial mediator of copper homoeostasis in mammalian cells. We recently found that changes in copper concentration regulate the phosphorylation level of WNDP. WNDP phosphorylation was observed in several mammalian cell lines, suggesting that a common phosphorylation pathway exists in these cells. Here we demonstrate that WNDP expressed in Sf9 insect cells is also phosphorylated, as evidenced by metabolic labelling of these cells with [(32)P]P(i). Because the baculovirus system allows us to generate large amounts of protein, we are using this expression method to isolate WNDP and map the sites of WNDP phosphorylation. The identification of phosphorylation sites is the first step towards understanding the physiological role of WNDP phosphorylation.  相似文献   

10.
Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand biological activity, not only the structures of the involved proteins are important but also the energetics of the individual steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1 and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is calculated, governed by a negative net enthalpy change of ~10 kJ/mol. Thus, small variations in interaction energies, not always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.  相似文献   

11.
The copper-transporting ATPase ATP7B is essential for normal distribution of copper in human cells. Mutations in ATP7B lead to Wilson's disease, a severe disorder with neurological and hepatic manifestations. One of the most common disease mutations, a H1069Q substitution, causes intracellular mislocalization of ATP7B (the Wilson's disease protein, WNDP). His-1069 is located in the nucleotide-binding domain of WNDP and is conserved in all copper-transporting ATPases from bacteria to mammals; however, the specific role of this His in the structure and function of WNDP remains unclear. We demonstrate that substitution of His-1069 for Gln, Ala, or Cys does not significantly alter the folding of the WNDP nucleotide-binding domain or the proteolytic resistance of the full-length WNDP. In contrast, the function of WNDP is markedly affected by the mutations. The ability to form an acylphosphate intermediate in the presence of ATP is entirely lost in all three mutants, suggesting that His-1069 is important for ATP-dependent phosphorylation. Other steps of the WNDP enzymatic cycle are less dependent on His-1069. The H1069C mutant shows normal phosphorylation in the presence of inorganic phosphate; it binds an ATP analogue, beta,gamma-imidoadenosine 5'-triphosphate (AMP-PNP), and copper and undergoes nucleotide-dependent conformational transitions similar to those of the wild-type WNDP. Although binding of AMP-PNP is not disrupted by the mutation, the apparent affinity for the nucleotide is decreased by 4-fold. We conclude that His-1069 is responsible for proper orientation of ATP in the catalytic site of WNDP prior to ATP hydrolysis.  相似文献   

12.
Copper chaperones bind intracellular copper and ensure proper trafficking to downstream targets via protein–protein interactions. In contrast to the mechanisms of copper binding and transfer to downstream targets, the mechanisms of initial copper loading of the chaperones are largely unknown. Here, we demonstrate that antioxidant protein 1 (Atox1 in human cells), the principal cellular copper chaperone responsible for delivery of copper to the secretory pathway, possesses the ability to interact with negatively charged lipid headgroups via distinct surface lysine residues. Moreover, loss of these residues lowers the efficiency of copper loading of Atox1 in vivo, suggesting that the membrane may play a scaffolding role in copper distribution to Atox1. These findings complement the recent discovery that the membrane also facilitates copper loading of the copper chaperone for superoxide dismutase 1 and provide further support for the emerging paradigm that the membrane bilayer plays a central role in cellular copper acquisition and distribution.  相似文献   

13.
Copper transport by the P(1)-ATPase ATP7B, or Wilson disease protein (WNDP),1 is essential for human metabolism. Perturbation of WNDP function causes intracellular copper accumulation and severe pathology, known as Wilson disease (WD). Several WD mutations are clustered within the WNDP nucleotide-binding domain (N-domain), where they are predicted to disrupt ATP binding. The mechanism by which the N-domain coordinates ATP is presently unknown, because residues important for nucleotide binding in the better characterized P(2)-ATPases are not conserved within the P(1)-ATPase subfamily. To gain insight into nucleotide binding under normal and disease conditions, we generated the recombinant WNDP N-domain and several WD mutants. Using isothermal titration calorimetry, we demonstrate that the N-domain binds ATP in a Mg(2+)-independent manner with a relatively high affinity of 75 microm, compared with millimolar affinities observed for the P(2)-ATPase N-domains. The WNDP N-domain shows minimal discrimination between ATP, ADP, and AMP, yet discriminates well between ATP and GTP. Similar results were obtained for the N-domain of ATP7A, another P(1)-ATPase. Mutations of the invariant WNDP residues E1064A and H1069Q drastically reduce nucleotide affinities, pointing to the likely role of these residues in nucleotide coordination. In contrast, the R1151H mutant exhibits only a 1.3-fold reduction in affinity for ATP. The C1104F mutation significantly alters protein folding, whereas C1104A does not affect the structure or function of the N-domain. Together, the results directly demonstrate the phenotypic diversity of WD mutations within the N-domain and indicate that the nucleotide-binding properties of the P(1)-ATPases are distinct from those of the P(2)-ATPases.  相似文献   

14.
15.
The P-type ATPase affected in Wilson disease, ATP7B, is a key liver protein required to regulate and maintain copper homeostasis. When hepatocytes are exposed to elevated copper levels, ATP7B traffics from the trans-Golgi network toward the biliary canalicular membrane to excrete excess copper into bile. The N-terminal region of ATP7B contains six metal-binding sites (MBS), each with the copper-binding motif MXCXXC. These sites are required for the activity and copper-regulated intracellular redistribution of ATP7B. Two proteins are known to interact with the ATP7B N-terminal region: the copper chaperone ATOX1 that delivers copper to ATP7B, and COMMD1 (MURR1) that is potentially involved in vesicular copper sequestration. To identify additional proteins that interact with ATP7B and hence are involved in copper homeostasis, a yeast two-hybrid approach was employed to screen a human liver cDNA library. The dynactin subunit p62 (dynactin 4; DCTN4) was identified as an interacting partner, and this interaction was confirmed by co-immunoprecipitation from mammalian cells. The dynactin complex binds cargo, such as vesicles and organelles, to cytoplasmic dynein for retrograde microtubule-mediated trafficking and could feasibly be involved in the copper-regulated trafficking of ATP7B. The ATP7B/p62 interaction required copper, the metal-binding CXXC motifs, and the region between MBS 4 and MBS 6 of ATP7B. The p62 subunit did not interact with the related copper ATPase, ATP7A. We propose that the ATP7B interaction with p62 is a key component of the copper-induced trafficking pathway that delivers ATP7B to subapical vesicles of hepatocytes for the removal of excess copper into bile.  相似文献   

16.
Portmann R  Solioz M 《FEBS letters》2005,579(17):3589-3595
Wilson disease is a disorder of copper metabolism, due to inherited mutations in the Wilson copper ATPase gene ATP7B. To purify and study the function of the ATPase, the enzyme was truncated by five of the six metal binding domains and endowed with an N-terminal histidine-tag for affinity purification. This construct, delta1-5WNDP, was able to functionally complement a yeast strain defective in its native copper ATPase CCC2. Delta1-5WNDP was purified by Ni-affinity chromatography and reconstituted into proteoliposomes. This allowed, for the first time, the functional study of the Wilson ATPase in a purified, reconstituted system.  相似文献   

17.
Copper-transporting ATPase ATP7B is essential for normal distribution of copper in human cells. Mutations in the ATP7B gene lead to copper accumulation in a number of tissues and to a severe multisystem disorder, known as Wilson's disease. Primary sequence analysis suggests that the copper-transporting ATPase ATP7B or the Wilson's disease protein (WNDP) belongs to the large family of cation-transporting P-type ATPases, however, the detailed characterization of its enzymatic properties has been lacking. Here, we developed a baculovirus-mediated expression system for WNDP, which permits direct and quantitative analysis of catalytic properties of this protein. Using this system, we provide experimental evidence that WNDP has functional properties characteristic of a P-type ATPase. It forms a phosphorylated intermediate, which is sensitive to hydroxylamine, basic pH, and treatments with ATP or ADP. ATP stimulates phosphorylation with an apparent K(m) of 0.95 +/- 0.25 microm; ADP promotes dephosphorylation with an apparent K(m) of 3.2 +/- 0.7 microm. Replacement of Asp(1027) with Ala in a conserved sequence motif DKTG abolishes phosphorylation in agreement with the proposed role of this residue as an acceptor of phosphate during the catalytic cycle. Catalytic phosphorylation of WNDP is inhibited by the copper chelator bathocuproine; copper reactivates the bathocuproine-treated WNDP in a specific and cooperative fashion confirming that copper is required for formation of the acylphosphate intermediate. These studies establish the key catalytic properties of the ATP7B copper-transporting ATPase and provide a foundation for quantitative analysis of its function in normal and diseased cells.  相似文献   

18.
Cisplatin (CisPt) is an anticancer agent that has been used for decades to treat a variety of cancers. CisPt treatment causes many side effects due to interactions with proteins that detoxify the drug before reaching the DNA. One key player in CisPt resistance is the cellular copper-transport system involving the uptake protein Ctr1, the cytoplasmic chaperone Atox1 and the secretory path ATP7A/B proteins. CisPt has been shown to bind to ATP7B, resulting in vesicle sequestering of the drug. In addition, we and others showed that the apo-form of Atox1 could interact with CisPt in vitro and in vivo. Since the function of Atox1 is to transport copper (Cu) ions, it is important to assess how CisPt binding depends on Cu-loading of Atox1. Surprisingly, we recently found that CisPt interacted with Cu-loaded Atox1 in vitro at a position near the Cu site such that unique spectroscopic features appeared. Here, we identify the binding site for CisPt in the Cu-loaded form of Atox1 using strategic variants and a combination of spectroscopic and chromatographic methods. We directly prove that both metals can bind simultaneously and that the unique spectroscopic signals originate from an Atox1 monomer species. Both Cys in the Cu-site (Cys12, Cys15) are needed to form the di-metal complex, but not Cys41. Removing Met10 in the conserved metal-binding motif makes the loop more floppy and, despite metal binding, there are no metal-metal electronic transitions. In silico geometry minimizations provide an energetically favorable model of a tentative ternary Cu-Pt-Atox1 complex. Finally, we demonstrate that Atox1 can deliver CisPt to the fourth metal binding domain 4 of ATP7B (WD4), indicative of a possible drug detoxification mechanism.  相似文献   

19.
20.
The copper transport protein Atox1 promotes neuronal survival   总被引:5,自引:0,他引:5  
Atox1, a copper transport protein, was recently identified as a copper-dependent suppressor of oxidative damage in yeast lacking superoxide dismutase. We have previously reported that Atox1 in the rat brain is primarily expressed in neurons, with the highest levels in distinct neuronal subtypes that are characterized by their high levels of metal, like copper, iron, and zinc. In this report, we have transfected the Atox1 gene into several neuronal cell lines to increase the endogenous level of Atox1 expression and have demonstrated that, under conditions of serum starvation and oxidative injury, the transfected neurons are significantly protected against this stress. This level of protection is comparable with the level of protection seen with copper/zinc superoxide dismutase and the anti-apoptotic gene bcl-2 that had been similarly transfected. Furthermore, neuronal cell lines transfected with a mutant Atox1 gene, where the copper binding domain has been modified to prevent metal binding, do not afford protection against serum starvation resulting in apoptosis. Therefore, Atox1 is a component of the cellular pathways used for protection against oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号