首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 847 毫秒
1.
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance‐dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light‐emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS‐grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED‐grown leaves also displayed a more sun‐type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.  相似文献   

2.
Photosynthetic capacity and leaf properties of sun and shade leaves of overstorey sweetgum trees (Liquidambar styraciflua L.) were compared over the first 3 years of growth in ambient or ambient + 200 μL L?1 CO2 at the Duke Forest Free Air CO2 Enrichment (FACE) experiment. We were interested in whether photosynthetic down‐regulation to CO2 occurred in sweetgum trees growing in a forest ecosystem, whether shade leaves down‐regulated to a greater extent than sun leaves, and if there was a seasonal component to photosynthetic down‐regulation. During June and September of each year, we measured net photosynthesis (A) versus the calculated intercellular CO2 concentration (Ci) in situ and analysed these response curves using a biochemical model that described the limitations imposed by the amount and activity of ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Vcmax) and by the rate of ribulose‐1,5‐bisphosphate (RuBP) regeneration mediated by electron transport (Jmax). There was no evidence of photosynthetic down‐regulation to CO2 in either sun or shade leaves of sweetgum trees over the 3 years of measurements. Elevated CO2 did not significantly affect Vcmax or Jmax. The ratio of Vcmax to Jmax was relatively constant, averaging 2·12, and was not affected by CO2 treatment, position in the canopy, or measurement period. Furthermore, CO2 enrichment did not affect leaf nitrogen per unit leaf area (Na), chlorophyll or total non‐structural carbohydrates of sun or shade leaves. We did, however, find a strong relationship between Na and the modelled components of photosynthetic capacity, Vcmax and Jmax. Our data over the first 3 years of this experiment corroborate observations that trees rooted in the ground may not exhibit symptoms of photosynthetic down‐regulation as quickly as tree seedlings growing in pots. There was a strong sustained enhancement of photosynthesis by CO2 enrichment whereby light‐saturated net photosynthesis of sun leaves was stimulated by 63% and light‐saturated net photosynthesis of shade leaves was stimulated by 48% when averaged over the 3 years. This study suggests that this CO2 enhancement of photosynthesis will be sustained in the Duke Forest FACE experiment as long as soil N availability keeps pace with photosynthetic and growth processes.  相似文献   

3.
Seasonal drought can severely impact leaf photosynthetic capacity. This is particularly important for Mediterranean forests, where precipitation is expected to decrease as a consequence of climate change. Impacts of increased drought on the photosynthetic capacity of the evergreen Quercus ilex were studied for two years in a mature forest submitted to long‐term throughfall exclusion. Gas exchange and chlorophyll fluorescence were measured on two successive leaf cohorts in a control and a dry plot. Exclusion significantly reduced leaf water potential in the dry treatment. In both treatments, light‐saturated net assimilation rate (Amax), stomatal conductance (gs), maximum carboxylation rate (Vcmax), maximum rate of electron transport (Jmax), mesophyll conductance to CO2 (gm) and nitrogen investment in photosynthesis decreased markedly with soil water limitation during summer. The relationships between leaf photosynthetic parameters and leaf water potential remained identical in the two treatments. Leaf and canopy acclimation to progressive, long‐term drought occurred through changes in leaf area index, leaf mass per area and leaf chemical composition, but not through modifications of physiological parameters.  相似文献   

4.
The depressions of photosynthetic CO2 uptake following O3 exposures of 200 and 400 nmol mol-1 for between 4 and 16 h were compared between Pisum sativum, Quercus robur and Triticum aestivum, and the potential causes of change identified in vivo. Photosynthetic change was examined by analysis of CO2, O2, O3 and water vapour exchanges together with chlorophyll fluorescence in controlled environments. Under identical fumigation conditions, each species showed very similar rates of O3 consumption. The light-saturated rate of CO2 uptake showed a statistically significant decrease in each species with increasing O3 dose. Although stomatal conductance declined in parallel with CO2 uptake this did not account for the observed decrease in photosynthesis. The decrease in mesophyll conductance resulted primarily from a decrease in the apparent carboxylation capacity, implying in decreased activity of ribulose 1,5-bisphosphate carboxylase/oxygenase. The maximum capacity of carboxylation was consequently reduced by over 30% and 50% after 16 h fumigation with 200 and 400 nmol mol-1 O3 respectively. Additionally, in Q. robur, a statistically significant inhibition of the CO2 saturated rate of photosynthesis occurred after 16 h with 400 nmol mol-1 O3, suggesting that the ability to regenerate ribulose 1,5-bisphosphate was also impaired. None of the species showed any significant decrease in the efficiency of light-limited photosynthesis following fumigation at 200 nmol mol-1 O3, but effects were apparent at 400 nmol mol-1 O3. The common feature in all three species was a decline in carboxylation capacity which preceded any other change in the photosynthetic apparatus.Abbreviations Asat net CO2 uptake rate per unit leaf area at light saturation - A net CO2 uptake rate per unit leaf area - Amax net CO2 uptake rate per unit leaf area at CO2 and light saturation - ci mole fraction of CO2 in the intercellular air space - gs stomatal conductance to CO2 - Fm maximum chlorophyll fluorescence - Fv variable chlorophyll fluorescence - c quantum yield of CO2 uptake for absorbed light - 0 quantum yield of oxygen evolution for incident light - PPFD photosynthetically active radiation - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - Vcmax maximum rate of carboxylation  相似文献   

5.
Information on the photosynthetic process and its limitations is essential in order to predict both the capacity of species to adapt to conditions associated with climate change and the likely changes in plant communities. Considering that high‐mountain species are especially sensitive, three species representative of subalpine forests of the Central Catalan Pyrenees: mountain pine (Pinus uncinata Mill.), birch (Betula pendula Roth) and rhododendron (Rhododendron ferrugineum L.) were studied under conditions associated with climate change, such as low precipitation, elevated atmospheric [CO2] and high solar irradiation incident at Earth's surface, in order to detect any photosynthetic limitations. Short‐term high [CO2] increased photosynthesis rates (A) and water use efficiency (WUE), especially in birch and mountain pine, whereas stomatal conductance (gs) was not altered in either species. Birch showed photosynthesis limitation through stomatal closure related to low rainfall, which induced photoinhibition and early foliar senescence. Rhododendron was especially affected by high irradiance, showing early photosynthetic saturation in low light, highest chlorophyll content, lowest gas exchange rates and least photoprotection. Mountain pine had the highest A, photosynthetic capacity (Amax) and light‐saturated rates of net CO2 assimilation (Asat), which were maintained under reduced precipitation. Furthermore, maximum quantum yield (Fv/Fm), thermal energy dissipation, PRI and SIPI radiometric index, and ascorbate content indicated improved photoprotection with respect to the other two species. However, maximum velocity of carboxylation of RuBisco (Vcmax) indicated that N availability would be the main photosynthetic limitation in this species.  相似文献   

6.
The unabated rise in atmospheric [CO2] is associated with increased air temperature. Yet, few CO2‐enrichment studies have considered pre‐industrial [CO2] or warming. Consequently, we quantified the interactive effects of growth [CO2] and temperature on photosynthesis of faster‐growing Eucalyptus saligna and slower‐growing E. sideroxylon. Well‐watered and ‐fertilized tree seedlings were grown in a glasshouse at three atmospheric [CO2] (290, 400, and 650 µL L?1), and ambient (26/18 °C, day/night) and high (ambient + 4 °C) air temperature. Despite differences in growth rate, both eucalypts responded similarly to [CO2] and temperature treatments with few interactive effects. Light‐saturated photosynthesis (Asat) and light‐ and [CO2]‐saturated photosynthesis (Amax) increased by ~50% and ~10%, respectively, with each step‐increase in growth [CO2], underpinned by a corresponding 6–11% up‐regulation of maximal electron transport rate (Jmax). Maximal carboxylation rate (Vcmax) was not affected by growth [CO2]. Thermal photosynthetic acclimation occurred such that Asat and Amax were similar in ambient‐ and high‐temperature‐grown plants. At high temperature, the thermal optimum of Asat increased by 2–7 °C across [CO2] treatments. These results are the first to suggest that photosynthesis of well‐watered and ‐fertilized eucalypt seedlings will remain strongly responsive to increasing atmospheric [CO2] in a future, warmer climate.  相似文献   

7.
Variation in light demand is a major factor in determining the growth and survival of trees in a forest. There is strong relation between the light‐demand and the effect of growth irradiance on leaf morphology and photosynthesis in three Acer species: A. rufinerve (light‐demanding), A. mono (intermediate) and A. palmatum (shade‐tolerant). The increase in mesophyll thickness and surface area of chloroplasts facing the intercellular airspaces (Sc) with growth irradiance was highest in A. rufinerve. Although the increase in light‐saturated photosynthesis (Amax) was similar among the species, the increase in water use efficiency (WUE) was much higher in A. rufinerve than that in the other species, indicating that the response to water limitation plays an important role in leaf photosynthetic acclimation to high light in A. rufinerve. The low CO2 partial pressure at the carboxylation site (Cc) in A. rufinerve (130 µmol mol?1) at high irradiance was caused by low stomatal and internal conductance to CO2 diffusion, which minimized the increase in Amax in A. rufinerve despite its high Rubisco content. Under shade conditions, interspecific differences in leaf features were relatively small. Thus, difference in light demand related to leaf acclimation to high light rather than that to low light in the Acer species.  相似文献   

8.
Bernacchi CJ  Morgan PB  Ort DR  Long SP 《Planta》2005,220(3):434-446
Down-regulation of light-saturated photosynthesis (Asat) at elevated atmospheric CO2 concentration, [CO2], has been demonstrated for many C3 species and is often associated with inability to utilize additional photosynthate and/or nitrogen limitation. In soybean, a nitrogen-fixing species, both limitations are less likely than in crops lacking an N-fixing symbiont. Prior studies have used controlled environment or field enclosures where the artificial environment can modify responses to [CO2]. A soybean free air [CO2] enrichment (FACE) facility has provided the first opportunity to analyze the effects of elevated [CO2] on photosynthesis under fully open-air conditions. Potential ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation (Vc,max) and electron transport through photosystem II (Jmax) were determined from the responses of Asat to intercellular [CO2] (Ci) throughout two growing seasons. Mesophyll conductance to CO2 (gm) was determined from the responses of Asat and whole chain electron transport (J) to light. Elevated [CO2] increased Asat by 15–20% even though there was a small, statistically significant, decrease in Vc,max. This differs from previous studies in that Vc,max/Jmax decreased, inferring a shift in resource investment away from Rubisco. This raised the Ci at which the transition from Rubisco-limited to ribulose-1,5-bisphosphate regeneration-limited photosynthesis occurred. The decrease in Vc,max was not the result of a change in gm, which was unchanged by elevated [CO2]. This first analysis of limitations to soybean photosynthesis under fully open-air conditions reveals important differences to prior studies that have used enclosures to elevate [CO2], most significantly a smaller response of Asat and an apparent shift in resources away from Rubisco relative to capacity for electron transport.Abbreviations FACE Free air [CO2] enrichment - Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP Ribulose-1,5-bisphosphate - SoyFACE Soybean free air [CO2] enrichment - VPD Vapor pressure deficit  相似文献   

9.
We examined the photosynthetic acclimation of three tropical species of Miconia to canopy openings in a Costa Rican rainforest. The response of photosynthesis to canopy opening was very similar in Miconia affinis, M. gracilis, and M. nervosa, despite differences in growth form (trees and shrubs) and local distributions of plants (understory and gap). Four months after the canopy was opened by a treefall, photosynthetic capacity in all three species had approximately doubled from closed canopy levels. There were no obvious signs of high light damage after treefall but acclimation to the gap environment was not immediate. Two weeks after treefall, Amax, stomatal conductance, apprarent quantum efficiency, and dark respiration rates had not changed significantly from understory values. The production of new leaves appears to be an important component of light acclimation in these species. The only variables to differ significantly among species were stomatal conductance at Amax and the light level at which assimilation was saturated. M. affinis had a higher stomatal conductance which may reduce its water use efficiency in gap environments. Photosynthesis in the more shade-tolerant M. gracilis saturated at lower light levels than in the other two species. Individual plant light environments were assessed after treefall with canopy photography but they explained only a small fraction of plant variation in most measures of photosynthesis and growth. In conclusion, we speculate that species differences in local distribution and in light requirements for reproduction may be more strongly related to species differences in carbon allocation than in carbon assimilation.  相似文献   

10.
Photosynthesis is commonly stimulated in grasslands with experimental increases in atmospheric CO2 concentration ([CO2]), a physiological response that could significantly alter the future carbon cycle if it persists in the long term. Yet an acclimation of photosynthetic capacity suggested by theoretical models and short‐term experiments could completely remove this effect of CO2. Perennial ryegrass (Lolium perenne L. cv. Bastion) was grown under an elevated [CO2] of 600 µmol mol?1 for 10 years using Free Air CO2Enrichment (FACE), with two contrasting nitrogen levels and abrupt changes in the source : sink ratio following periodic harvests. More than 3000 measurements characterized the response of leaf photosynthesis and stomatal conductance to elevated [CO2] across each growing season for the duration of the experiment. Over the 10 years as a whole, growth at elevated [CO2] resulted in a 43% higher rate of light‐saturated leaf photosynthesis and a 36% increase in daily integral of leaf CO2 uptake. Photosynthetic stimulation was maintained despite a 30% decrease in stomatal conductance and significant decreases in both the apparent, maximum carboxylation velocity (Vc,max) and the maximum rate of electron transport (Jmax). Immediately prior to the periodic (every 4–8 weeks) cuts of the L. perenne stands, Vc,max and Jmax, were significantly lower in elevated than in ambient [CO2] in the low‐nitrogen treatment. This difference was smaller after the cut, suggesting a dependence upon the balance between the sources and sinks for carbon. In contrast with theoretical expectations and the results of shorter duration experiments, the present results provide no significant change in photosynthetic stimulation across a 10‐year period, nor greater acclimation in Vc,max and Jmax in the later years in either nitrogen treatment.  相似文献   

11.
Over a large part of the photoperiod, light energy absorbed by upper canopy leaves saturates photosynthesis and exceeds the energetic requirements for light‐saturated linear electron flow through photosystem II (JPSII), so that photoinhibition results. From a theoretical consideration of the response of light‐saturated photosynthesis to elevated atmospheric CO2 partial pressure (pCO2) it may be predicted that, where light‐saturated photosynthesis is Rubisco‐limited, an increase in pCO2 will stimulate JPSII. Therefore, the proportion of absorbed quanta dissipated photochemically will increase and the potential for photoinhibition of photosynthesis will decrease. This was tested by measuring modulated chlorophyll a fluorescence from Quercus myrtifolia Willd. growing in the field in open‐top chambers, at either current ambient or elevated (ambient + 35 Pa) pCO2 on Merritt Island, Florida, USA. During spring and summer, light‐saturated photosynthesis at current ambient pCO2 was Rubisco‐limited. Consistent with theoretical prediction, JPSII was increased and photoinhibition decreased by elevated pCO2 in spring. In the summer, when growth had largely ceased, an acclimatory decrease in the maximum Ribulose 1,5 bisphosphate saturated carboxylation capacity (Vc max) removed the stimulation of JPSII seen in the spring, and photoinhibition was increased in elevated pCO2. It is concluded that, for Q. myrtifolia growing in the field, the effects of elevated pCO2 on JPSII and photoinhibition will reflect seasonal differences in photosynthetic acclimation to elevated pCO2 in a predictable manner.  相似文献   

12.
Very few studies have attempted to disentangle the respective role of ontogeny and water stress on leaf photosynthetic attributes. The relative significance of both effects on photosynthetic attributes has been investigated in leaves of field‐grown almond trees [Prunus dulcis (Mill.) D. A. Webb] during four growth cycles. Leaf ontogeny resulted in enhanced leaf dry weight per unit area (Wa), greater leaf dry‐to‐fresh weight ratio and lower N content per unit of leaf dry weight (Nw). Concomitantly, area‐based maximum carboxylation rate (Vcmax), maximum electron transport rate (Jmax), mesophyll conductance to CO2 diffusion (gm)′ and light‐saturated net photosynthesis (Amax) declined in both well‐watered and water‐stressed almond leaves. Although gm and stomatal conductance (gs) seemed to be co‐ordinated, a much stronger coordination in response to ontogeny and prolonged water stress was observed between gm and the leaf photosynthetic capacity. Under unrestricted water supply, the leaf age‐related decline of Amax was equally driven by diffusional and biochemical limitations. Under restricted soil water availability, Amax was mainly limited by gs and, to a lesser extent, by photosynthetic capacity and gm. When both ontogeny and water stress effects were combined, diffusional limitations was the main determinant of photosynthesis limitation, while stomatal and biochemical limitations contributed similarly.  相似文献   

13.
Leaf surface wetness that occurs frequently in natural environments has a significant impact on leaf photosynthesis. However, the physiological mechanisms for the photosynthetic responses to wetness are not well understood. The responses of leaf CO2 assimilation rate (A) to 72 h of artificial mist of a wettable (bean; Phaseolus vulgaris) and a non‐wettable species (pea; Pisum sativum) were compared. Stomatal and non‐stomatal limitations to A were investigated. A 28% inhibition of A was observed in the bean leaves as a result of a 16% decrease in stomatal conductance and a 55% reduction in the amount of Rubisco. The decrease of Rubisco was mainly due to its partial degradation. In contrast to the bean leaves, a 22% stimulation of A was obtained in the 72 h mist‐treated pea leaves. Mist treatment increased stomatal conductance by 12.5% and had no effect on the amount of Rubisco. These results indicated that a positive photosynthetic response to wetness occurred only in non‐wettable species and is due to the change in stomatal regulation.  相似文献   

14.
Shoots of the tropical latex-producing tree Hevea brasiliensis (rubber tree) grow according to a periodic pattern, producing four to five whorls of leaves per year. All leaves in the same whorl were considered to be in the same leaf-age class, in order to assess the evolution of photosynthesis with leaf age in three clones of rubber trees, in a plantation in eastern Thailand. Light-saturated CO2 assimilation rate (A max) decreased more with leaf age than did photosynthetic capacity (maximal rate of carboxylation, V cmax , and maximum rate of electron transport, J max), which was estimated by fitting a biochemical photosynthesis model to the CO2-response curves. Nitrogen-use efficiency (A max/Na, Na is nitrogen content per leaf area) decreased also with leaf age, whereas J max and V cmax did not correlate with N a. Although measurements were performed during the rainy season, the leaf gas exchange parameter that showed the best correlation with A max was stomatal conductance (g s). An asymptotic function was fitted to the A max-g s relationship, with R 2 = 0.85. A max, V cmax, J max and g s varied more among different whorls in the same clone than among different clones in the same whorl. We concluded that leaf whorl was an appropriate parameter to characterize leaves for the purpose of modelling canopy photosynthesis in field-grown rubber trees, and that stomatal conductance was the most important variable explaining changes in A max with leaf age in rubber trees.  相似文献   

15.
About 20-year-old desert plants of C4 species, Haloxylon ammodendron, growing at the southern edge of the Badain Jaran Desert in China, were selected to study the photosynthetic characteristics and changes in chlorophyll fluorescence when plants were subject to a normal arid environment (AE), moist atmospheric conditions during post-rain (PR), and the artificial supplement of soil water (SW). Results showed that under high radiation, in the AE, the species down-regulated its net assimilation rate (A) and maximum photochemical efficiency of PS II (Fv/Fm), indicating photoinhibition. However, under the PR and SW environments, A was up-regulated, with a unimodal diurnal course of A and a small diurnal change in Fv/Fm, suggesting no photoinhibition. When the air humidity or SW content was increased, the light compensation points were reduced; light saturation points were enhanced; while light saturated rate of CO2 assimilation (A max) and apparent quantum yield of CO2 assimilation (ΦC) increased. ΦC was higher while the A max was reduced under PR relative to the SW treatment. It was concluded that under high-radiation conditions drought stress causes photoinhibition of H. ammodendron. Increasing air humidity or soil moisture content can reduce photoinhibition and increase the efficiency of solar energy use.  相似文献   

16.
Predicting tropical plant physiology from leaf and canopy spectroscopy   总被引:1,自引:0,他引:1  
Doughty CE  Asner GP  Martin RE 《Oecologia》2011,165(2):289-299
A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO2 saturated photosynthesis (A max), respiration (R), leaf transmittance and reflectance spectra (400–2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r 2  = 0.74, root mean square error (RMSE) = 2.9 μmol m−2 s−1)] followed by R (r 2  = 0.48), and A max (r 2  = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m−2 s−1) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.  相似文献   

17.
The hydroxyl (OH) radical, which is generated in polluted dew water on leaf surfaces of the Japanese apricot (Prunus mume), is known to be a potent oxidant. In order to investigate the effects of the OH radical formed in polluted dew water on the photosynthesis and growth of 3-year-old seedlings of P. mume, OH radical-generating solutions simulating polluted dew water were sprayed in the early morning as a mist throughout a growing season onto the leaf surfaces of seedlings growing in experimental greenhouses. Four OH radical-generating solutions (0, 6, 18 and 54 M H2O2 with Fe(III) and an oxalate ion) were used in the mist treatment. Five months after the beginning of treatment, the leaves exposed to the mist containing 54 M H2O2 showed a significantly smaller maximum CO2 assimilation rate (Amax) and stomatal conductance (gs) as compared to the leaves exposed to the mist containing 0 M H2O2. Exposure of P. mume seedlings to the OH radical-generating mist had caused a reduction in the dry weight and relative growth rate (RGR) of the above-ground parts (stem + branch) at the end of the growing season. A significant positive correlation was shown between RGR and Amax. Thus, the effects of oxidants generated in polluted dew water on leaf surfaces can be considered to be a cause of the decrease in leaf photosynthesis and growth of P. mume.  相似文献   

18.
Summary CO2-assimilation and leaf conductance of Larix decidua Mill. were measured in the field at high (Patscherkofel, Austria) and low (Bayreuth, Germany) elevation in Europe, and outside its natural range along an altitudinal gradient in New Zealand.Phenology of leaf and stem growth showed New Zealand sites to have much longer growing seasons than in Europe, so that the timberline (1,330 m) season was almost twice as long as at the Austrian timberline (1,950 m).The maximum rates of photosynthesis, A max, were similar at all sites after completion of leaf growth, namely 3 to 3.5 mol m-2 s-1. Only the sun needles of the Bayreuth tree reached 3.5 to 5 mol m-2 s-1. Light response curves for CO2-assimilation changed during leaf ontogeny, the slope being less in young than in adult leaves. The temperature optimum for 90% of maximum photosynthesis was at all sites similar between ca. 12–28°C for much of the summer. Only at the cooler high altitude timberline sites were optima lower at ca. 10–16°C in developing needles during early summer.A linear correlation existed between A max and leaf conductance at A max, and this showed no difference between the sites except for sun needles at Bayreuth.Leaf conductance responded strongly to light intensity and this was concurrent with the light response of CO2-uptake. A short-term and a long-term effect were differentiated. With increasing age maximum rates of CO2-uptake and leaf conductance at A max increased, whereas short-term response during changes in light declined. The stomata became less responsive with increasing age and tended to remain open. The stomatal responses to light have a significant effect on the water use efficiency during diurnal courses. A higher water use efficiency was found for similar atmospheric conditions in spring than in autumn.Stomata responded with progressive closure to declining air humidity in a similar manner under dissimilar climates. Humidity response thus showed insensitivity to habitat differences.From the diurnal course of gas-exchange stomata were more closed at timberline (1,330 m) than at lower elevations but this did not lead to corresponding site differences in CO2-exchange suggesting Larix may not be operating at high water use efficiency when air is humid.The main difference between habitats studied was in the time necessary for completion of needle development. Similarity in photosynthesis and leaf conductance existed between sites when tree foliage was compared at the same stage of development. Length of growing season and time requirement for foliar development appear to be a principle factor in the carbon balance of deciduous species. The evergreen habit may be more effective in counterbalancing the effects of cool short summers.Dedicated with the greatest appreciation to the 75th birthday of Prof. Dr. M. Evenari  相似文献   

19.
Fumigation of leaves with SO2 can reduce the capacity for photosynthetic CO2 uptake even in the absence of visible symptoms of damage. In vitro studies suggest that this invisible injury to intact leaves could be affected by damage to each of the main stages in the photosynthetic process. Reduced stomatal apertures may also reduce photosynthesis following SO2 fumigation. The responses of CO2 uptake by leaves to intercellular CO2 concentration and to absorbed light provide information for quantitative separation of the in vivo contribution of the different stages of photosynthesis to reduction in overall rate. This study uses these techniques to examine the basis of reduction in CO2 uptake in Zea mays cv. LG11 leaves following short-term fumigation with SO2. Fumigation with 33 μmol m–3 SO2 for 30 min reduced light saturated CO2 uptake by about one-third. An even greater reduction in light limited CO2 uptake was observed and with no significant change in light absorptance this was attributed to a reduced quantum yield of photosynthesis. The light saturated CO2 uptake rate and the stomatal conductance decreased in parallel. However, the relationship of CO2 uptake to the intercellular CO2 concentration suggested that the reduced stomatal conductance did not account for the reduced rate of CO2 uptake following fumigation. Both the initial slope and plateau of this relationship were significantly reduced, suggesting that both carboxylation efficiency and capacity for regeneration of CO2 acceptor were diminished by SO2 fumigation. The operating intercellular CO2 concentration indicated that both processes were co-limiting, before and after fumigation. The time required for induction of photosynthetic CO2 uptake on illumination was approximately doubled following SO2 fumigation, showing that fumigation impairs the ability of the photosynthetic apparatus to adapt to fluctuations in light level.  相似文献   

20.
The qualitative influence of patchy stomatal conductance distributions on the values of photosynthesis (A) and intercellular CO2 concentration (ci) as determined by gas-exchange measurements were investigated using computer modelling. Gas-exchange measurements were simulated for different conductance distributions by modelling photosynthesis explicitly for each patch, summing these rates, and inferring ci from a diffusion equation. Qualitative relationships are presented between conductance distribution features and the difference between assimilation rates measured for patchy and homogeneous leaves at the same ci (Ap and Ah, respectively). These data show that, although most conductance distributions have little effect on the value of A measured for a given ci, some distribution features (which we have termed ‘bimodality’, ‘position’, ‘skewness’ and ‘range’) play a key role in controlling the magnitude of these effects. Distributions that are more nearly bimodal, span regions of lower conductance, are right-skewed, or have broader conductance ranges are associated with larger effects on the A(ci) relationship. To clarify our mathematical analysis and illustrate some of the trends it predicts, we present conductance distributions and gas-exchange data from leaves of Malus dolgo var. Spring Snow Dial were treated with ABA. The results are discussed in the light of recent controversy over the effect of patchy stomatal conductance on gas-exchange data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号