首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cohesin is a protein complex originally identified for its role in sister chromatid cohesion, although increasing evidence portrays it also as a major organizer of interphase chromatin. Vertebrate cohesin consists of Smc1, Smc3, Rad21/Scc1 and either stromal antigen 1 (SA1) or SA2. To explore the functional specificity of these two versions of cohesin and their relevance for embryonic development and cancer, we generated a mouse model deficient for SA1. Complete ablation of SA1 results in embryonic lethality, while heterozygous animals have shorter lifespan and earlier onset of tumourigenesis. SA1-null mouse embryonic fibroblasts show decreased proliferation and increased aneuploidy as a result of chromosome segregation defects. These defects are not caused by impaired centromeric cohesion, which depends on cohesin-SA2. Instead, they arise from defective telomere replication, which requires cohesion mediated specifically by cohesin-SA1. We propose a novel mechanism for aneuploidy generation that involves impaired telomere replication upon loss of cohesin-SA1, with clear implications in tumourigenesis.  相似文献   

2.
Two point mutations of ABCA1 gene were found in a patient with Tangier disease (TD): i) G>C in intron 2 (IVS2 +5G>C) and ii) c.844 C>T in exon 9 (R282X). The IVS2 +5G>C mutation was also found in the brother of another deceased TD patient, but not in 78 controls and 33 subjects with low HDL. The IVS2 +5G>C mutation disrupts ABCA1 pre-mRNA splicing in fibroblasts, leading to three abnormal mRNAs: devoid of exon 2 (Ex2-/mRNA), exon 4 (Ex4-/mRNA), or both these exons (Ex2-/Ex4-/mRNA), each containing a translation initiation site. These mRNAs are expected either not to be translated or generate short peptides. To investigate the in vitro effect of IVS2 +5G>C mutation, we constructed two ABCA1 minigenes encompassing Ex1-Ex3 region, one with wild-type (WTgene) and the other with mutant (MTgene) intron 2. These minigenes were transfected into COS1 and NIH3T3, two cell lines with a different ABCA1 gene expression. In COS1 cells, WTgene pre-mRNA was spliced correctly, while the splicing of MTgene pre-mRNA resulted in Ex2-/mRNA. In NIH3T3, no splicing of MTgene pre-mRNA was observed, whereas WTgene pre-mRNA was spliced correctly. These results stress the complexity of ABCA1 pre-mRNA splicing in the presence of splice site mutations.  相似文献   

3.
The recent discovery of an ATP-binding cassette transporter, ABCA1, as an important regulator of high density lipoprotein (HDL) metabolism and reverse cholesterol transport has facilitated the identification of novel variants associated with HDL cholesterol deficiency states. We identified a subject with HDL cholesterol deficiency (4 mg/dl) who developed and died of complications related to cerebral amyloid angiopathy (CAA). The proband had a compound heterozygous mutation. One mutation was a G3295T substitution with conversion of asparagine to tyrosine (D1099Y) in ABCA1. The single-base substitution at codon 1099 resulted in the abolition of an RsaI cleavage site. The proband and affected individuals having another mutation were heterozygotes for T5966C with phenylalanine converted to serine (F2009S). The presence of the T5966C mutation was detected by restriction digestion with HinfI. These variants were not identified in over 400 chromosomes of healthy subjects. In the kindred, family members heterozygous for the ABCA1 variant exhibited low levels of HDL cholesterol. Direct sequencing of all coding regions and splice site junctions of other HDL candidate genes revealed no additional mutations, indicating that combined defective ABCA1 alleles may result in familial HDL deficiency.  相似文献   

4.
5.

Objectives

To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development.

Methods and results

Chimeras with dysfunctional macrophage ABCA5 (ABCA5−M/−M) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5−/−) mice into irradiated LDLr−/− mice. In vitro, bone marrow-derived macrophages from ABCA5−M/−M chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr−/− mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5−M/−M chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5−M/−M chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding.

Conclusions

ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr−/− mice.  相似文献   

6.
Plasma high density lipoprotein (HDL)-cholesterol levels are inversely correlated with the incidence of cardiovascular diseases. HDL is mainly assembled in the liver through the ATP-binding cassette transporter (ABCA1) pathway. In humans, plasma HDL-cholesterol levels are positively correlated with plasma adiponectin (APN) concentrations. Recently, we reported that APN enhanced apolipoprotein A-I (apoA-I) secretion and ABCA1 expression in HepG2 cells. In the present study, we investigated HDL assembly in APN-knockout (KO) mice. The apoA-I protein levels in plasma and liver were reduced in APN-KO mice compared with wild-type-mice. The ABCA1 expression in liver was also decreased in APN-KO mice. APN deficiency might cause the impaired HDL assembly by decreasing ABCA1 expression and apoA-I synthesis in the liver.  相似文献   

7.
8.
9.
10.
The genes encoding for neuregulin1 (NRG1), a growth factor, and its receptor ErbB4 are both risk factors of major depression disorder and schizophrenia (SZ). They have been implicated in neural development and synaptic plasticity. However, exactly how NRG1 variations lead to SZ remains unclear. Indeed, NRG1 levels are increased in postmortem brain tissues of patients with brain disorders. Here, we studied the effects of high-level NRG1 on dendritic spine development and function. We showed that spine density in the prefrontal cortex and hippocampus was reduced in mice (ctoNrg1) that overexpressed NRG1 in neurons. The frequency of miniature excitatory postsynaptic currents (mEPSCs) was reduced in both brain regions of ctoNrg1 mice. High expression of NRG1 activated LIMK1 and increased cofilin phosphorylation in postsynaptic densities. Spine reduction was attenuated by inhibiting LIMK1 or blocking the NRG1–LIMK1 interaction, or by restoring NRG1 protein level. These results indicate that a normal NRG1 protein level is necessary for spine homeostasis and suggest a pathophysiological mechanism of abnormal spines in relevant brain disorders.Subject terms: Molecular neuroscience, Schizophrenia  相似文献   

11.
IGF-I deficiency may be primary due to defective synthesis, or secondary to GH receptor deficiency (GHRD) or defects in transduction of the GH-GHR signal. Cloning and sequencing of the GHR led to recognition that circulating GH binding protein (GHBP) was structurally identical to the extra-cellular domain of the GHR, and the identification of 33 mutations of the GHR in approximately half of the 250 patients that have been reported. This review explores the information provided about GHR function by various mutations, the population distribution of GHRD, the effects of this condition on mortality, growth, development, and metabolism, the effects of replacement therapy with recombinant human IGF-I, diagnostic issues, and the question of partial GH resistance.  相似文献   

12.
13.
Vascular abnormalities due to hyperthermia in chick embryos   总被引:1,自引:0,他引:1  
N O Nilsen 《Teratology》1984,30(2):237-251
Intraembryonic vascular abnormalities were studied in chick embryos exposed to temperatures 3 degrees C and 4 degrees C above normal temperature (38 degrees C) from the beginning of incubation. The average duration of hyperthermia was 54 and 53 hours, respectively. Immediately after exposure, the embryos were examined with FITC-Dextran microangiography in vivo. Following hyperthermia various abnormalities in the heart, ventral aortae, aortic arches, omphalomesenteric arteries, and the distal dorsal aortae frequently occurred. There were also significant microvascular changes in the head, in the lateral and caudal parts of the embryos, and in the pellucid area of the yolk sac. In another series incubation at 41 degrees C, hyperthermia of 3 degrees C during the first 3 days of development produced several extraembryonic vascular abnormalities. These included duplication and abnormal branching of the cranial vitelline vein, absence or abnormal course of the omphalomesenteric vessels, aneurysmatic dilatation or abnormal course of the caudal vitelline vein, and aneurysmatic dilatation or occlusion of the abdominal venous sinus. Most frequent findings were blind, congested, and dilated microvascular segments in the pellucid area, commonly associated with an irregular microvascular pattern and perivascular swelling. The abnormalities described are assumed to be caused by the direct effects of hyperthermia upon the developing vessels resulting in microvascular insufficiencies, pathological leakage, and perivascular oedema. Such disturbances may have serious consequences for embryonic vascular development and microcirculation, which in turn may have adverse effects on further embryonic growth and development.  相似文献   

14.
ApoE plays an important role in lipoprotein metabolism. This study investigated the effects of adenovirus-mediated human apoE overexpression (AdhApoE3) on sterol metabolism and in vivo reverse cholesterol transport (RCT). In wild-type mice, AdhApoE3 resulted in decreased HDL cholesterol levels and a shift toward larger HDL in plasma, whereas hepatic cholesterol content increased (P < 0.05). These effects were dependent on scavenger receptor class B type I (SR-BI) as confirmed using SR-BI-deficient mice. Kinetic studies demonstrated increased plasma HDL cholesteryl ester catabolic rates (P < 0.05) and higher hepatic selective uptake of HDL cholesteryl esters in AdhApoE3-injected wild-type mice (P < 0.01). However, biliary and fecal sterol output as well as in vivo macrophage-to-feces RCT studied with (3)H-cholesterol-loaded mouse macrophage foam cells remained unchanged upon human apoE overexpression. Similar results were obtained using hApoE3 overexpression in human CETP transgenic mice. However, blocking ABCA1-mediated cholesterol efflux from hepatocytes in AdhApoE3-injected mice using probucol increased biliary cholesterol secretion (P < 0.05), fecal neutral sterol excretion (P < 0.05), and in vivo RCT (P < 0.01), specifically within neutral sterols. These combined data demonstrate that systemic apoE overexpression increases i) SR-BI-mediated selective uptake into the liver and ii) ABCA1-mediated efflux of RCT-relevant cholesterol from hepatocytes back to the plasma compartment, thereby resulting in unchanged fecal mass sterol excretion and overall in vivo RCT.  相似文献   

15.
16.
17.
The effect of dietary restriction on sperm-head morphology in BDF1 mice was studied. The food intake of the ice was restricted to 2.0 or 1.5 g/day during the whole experimental period, while control animals were fed ad libitum. The average food intake of control mice was 4.2 ± 0.5 g/day. The frequencies of abnormal sperm in food-restricted mice remained at the basal level for the first 2 weeks. In week 3, the frequencies of abnormal sperm increased only in mice on the severely restricted diet (1.5 g/day). In week 5, the frequencies of abnormal sperm increased significantly in both restricted groups, and a negative correlation between the food intake and the frequency of abnormal sperm was observed. These results suggest that sperm abnormalities are not always the results of exogenous mutagen-induced damage  相似文献   

18.
The breast cancer susceptibility gene Brca1 encodes a large multi-functional protein which is implicated as a caretaker of the genome, through its role in regulation of DNA damage response pathways, including apoptosis. Here we show that in mice expressing a dominant-negative Brca1 transgene on a BALB/c background, vaginal entrance remodeling is inhibited, and that the incidence of this phenotype is increased on a p53 +/- genotype. Given that this developmental process is mediated primarily by apoptosis, we hypothesized that disruption of BRCA1 may confer a resistance to apoptosis in normal epithelial cells. Consistent with this, we show that expression of this transgene in vitro leads to resistance to ionizing radiation induced cell killing in mammary epithelial cells. This is the first time that BRCA1 has been implicated in an apoptosis-mediated normal developmental process.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号