首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phospholamban (PLB) is a sarcoplasmic reticulum (SR) protein that when phosphorylated at Ser16 by PKA and/or at Thr17 by CaMKII increases the affinity of the SR Ca2+ pump for Ca2+. PLB is therefore, a critical regulator of SR function, myocardial relaxation and myocardial contractility. The present study was undertaken to examine the status of PLB phosphorylation after ischemia and reperfusion and to provide evidence about the possible role of the phosphorylation of Thr17 PLB residue on the recovery of contractility and relaxation after a period of ischemia. Experiments were performed in Langendorff perfused hearts from Wistar rats. Hearts were submitted to a protocol of global normothermic ischemia and reperfusion. The results showed that (1) the phosphorylation of Ser16 and Thr17 residues of PLB increased at the end of the ischemia and the onset of reperfusion, respectively. The increase in Thr17 phosphorylation was associated with a recovery of relaxation to preischemic values. This recovery occurred in spite of the fact that contractility was depressed. (2) The reperfusion-induced increase in Thr17 phosphorylation was dependent on Ca2+ entry to the cardiac cell. This Ca2+ influx would mainly occur by the coupled activation of the Na+ / H+ exchanger and the Na+ / Ca2+ exchanger working in the reverse mode, since phosphorylation of Thr17 was decreased by inhibition of these exchangers and not affected by blockade of the L-type Ca2+ channels. (3) Specific inhibition of CaMKII by KN93 significantly decreased Thr17 phosphorylation. This decrease was associated with an impairment of myocardial relaxation. The present study suggests that the phosphorylation of Thr17 of PLB upon reflow, may favor the full recovery of relaxation after ischemia.  相似文献   

2.
Activation of myocardial kappa-opioid receptor-protein kinase C (PKC) pathways may improve postischemic contractile function through a myofilament reduction in ATP utilization. To test this, we first examined the effects of PKC inhibitors on kappa-opioid receptor-dependent cardioprotection. The kappa-opioid receptor agonist U50,488H (U50) increased postischemic left ventricular developed pressure and reduced postischemic end-diastolic pressure compared with controls. PKC inhibitors abolished the cardioprotective effects of U50. To determine whether kappa-opioid-PKC-dependent decreases in Ca2+-dependent actomyosin Mg2+-ATPase could account for cardioprotection, we subjected hearts to three separate actomyosin ATPase-lowering protocols. We observed that moderate decreases in myofibrillar ATPase were equally cardioprotective as kappa-opioid receptor stimulation. Immunoblot analysis and confocal microscopy revealed a kappa-opioid-induced increase in myofilament-associated PKC-epsilon, and myofibrillar Ca2+-independent PKC activity was increased after kappa-opioid stimulation. This PKC-myofilament association led to an increase in troponin I and C-protein phosphorylation. Thus we propose PKC-epsilon activation and translocation to the myofilaments causes a decrease in actomyosin ATPase, which contributes to the kappa-opioid receptor-dependent cardioprotective mechanism.  相似文献   

3.
Cardioprotection by intermittent high-altitude (IHA) hypoxia against ischemia-reperfusion (I/R) injury is associated with Ca(2+) overload reduction. Phospholamban (PLB) phosphorylation relieves cardiac sarcoplasmic reticulum (SR) Ca(2+)-pump ATPase, a critical regulator in intracellular Ca(2+) cycling, from inhibition. To test the hypothesis that IHA hypoxia increases PLB phosphorylation and that such an effect plays a role in cardioprotection, we compared the time-dependent changes in the PLB phosphorylation at Ser(16) (PKA site) and Thr(17) (CaMKII site) in perfused normoxic rat hearts with those in IHA hypoxic rat hearts submitted to 30-min ischemia (I30) followed by 30-min reperfusion (R30). IHA hypoxia improved postischemic contractile recovery, reduced the maximum extent of ischemic contracture, and attenuated I/R-induced depression in Ca(2+)-pump ATPase activity. Although the PLB protein levels remained constant during I/R in both groups, Ser(16) phosphorylation increased at I30 and 1 min of reperfusion (R1) but decreased at R30 in normoxic hearts. IHA hypoxia upregulated the increase further at I30 and R1. Thr(17) phosphorylation decreased at I30, R1, and R30 in normoxic hearts, but IHA hypoxia attenuated the depression at R1 and R30. Moreover, PKA inhibitor H89 abolished IHA hypoxia-induced increase in Ser(16) phosphorylation, Ca(2+)-pump ATPase activity, and the recovery of cardiac performance after ischemia. CaMKII inhibitor KN-93 also abolished the beneficial effects of IHA hypoxia on Thr(17) phosphorylation, Ca(2+)-pump ATPase activity, and the postischemic contractile recovery. These findings indicate that IHA hypoxia mitigates I/R-induced depression in SR Ca(2+)-pump ATPase activity by upregulating dual-site PLB phosphorylation, which may consequently contribute to IHA hypoxia-induced cardioprotection against I/R injury.  相似文献   

4.
Males exhibit enhanced myocardial ischemia-reperfusion injury versus females under hypercontractile conditions associated with increased sarcoplasmic reticulum (SR) Ca2+. We therefore examined whether there were gender differences in SR Ca2+. We used NMR Ca2+ indicator 1,2-bis(2-amino-5,6-difluorophenoxy)-ethane-N,N,N',N'-tetraacetic acid to measure SR Ca2+ in perfused rabbit hearts. Isoproterenol increased SR Ca2+ in males from a baseline of 1.13 +/- 0.07 to 1.52 +/- 0.24 mM (P < 0.05). Female hearts had basal SR Ca2+ that was not significantly different from males (1.04 +/- 0.03 mM), and addition of isoproterenol to females resulted in a time-averaged SR Ca2+ (0.97 +/- 0.07 mM) that was significantly less than in males. To confirm this difference, we measured caffeine-induced release of SR Ca2+ with fura-2 in isolated ventricular myocytes. Ca2+ release after caffeine in untreated male myocytes was 377 +/- 41 nM and increased to 650 +/- 55 nM in isoproterenol-treated myocytes (P < 0.05). Ca2+ release after caffeine addition in untreated females was 376 +/- 27 nM and increased to 503 +/- 49 nM with isoproterenol, significantly less than in male myocytes treated with isoproterenol (P < 0.05). Treatment of female myocytes with NG-nitro-l-arginine methyl ester, an inhibitor of nitric oxide synthase (NOS), resulted in higher SR Ca2+ release than that measured in females treated only with isoproterenol and was not significantly different from that measured in males with isoproterenol. Female myocytes also have significantly higher levels of neuronal NOS. This gender difference in SR Ca2+ handling may contribute to reduced ischemia-reperfusion injury observed in females.  相似文献   

5.
The sarcoplasmic reticulum (SR) plays a critical role in mediating cardiac contractility and its function is abnormal in the diabetic heart. However, the mechanisms underlying SR dysfunction in the diabetic heart are not clear. Because protein phosphorylation regulates SR function, this study examined the phosphorylation state of phospholamban, a key SR protein that regulates SR calcium (Ca2+) uptake in the heart. Diabetes was induced in male Sprague-Dawley rats by an injection of streptozotocin (STZ; 65 mg kg(-1) i.v.), and the animals were humanely killed after 6 weeks and cardiac SR function was examined. Depressed cardiac performance was associated with reduced SR Ca2+-uptake activity in diabetic animals. The reduction in SR Ca2+-uptake was consistent with a significant decrease in the level of SR Ca2+-pump ATPase (SERCA2a) protein. The level of phospholamban (PLB) protein was also decreased, however, the ratio of PLB to SERCA2a was increased in the diabetic heart. Depressed SR Ca2+-uptake was also due to a reduction in the phosphorylation of PLB by the Ca2+-calmodulin-dependent protein kinase (CaMK) and cAMP-dependent protein kinase (PKA). Although the activities of the SR-associated Ca2+-calmodulin-dependent protein kinase (CaMK), cAMP-dependent protein kinase (PKA) were increased in the diabetic heart, depressed phosphorylation of PLB could partly be attributed to an increase in the SR-associated protein phosphatase activities. These results suggest that there is increased inhibition of SERCA2a by PLB and this appears to be a major defect underlying SR dysfunction in the diabetic heart.  相似文献   

6.
Abnormal release of Ca(2+) from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction in heart failure (HF). We previously demonstrated that RyR2 macromolecular complexes from HF rat were significantly more depleted of FK506 binding protein (FKBP12.6). Here we assessed expression of key Ca(2+) handling proteins and measured SR Ca(2+) content in control and HF rat myocytes. Direct measurements of SR Ca(2+) content in permeabilized cardiac myocytes demonstrated that SR luminal [Ca(2+)] is markedly lowered in HF (HF: DeltaF/F(0) = 26.4+/-1.8, n=12; control: DeltaF/F(0) = 49.2+/-2.9, n=10; P<0.01). Furthermore, we demonstrated that the expression of RyR2 associated proteins (including calmodulin, sorcin, calsequestrin, protein phosphatase 1, protein phosphatase 2A), Ca(2+) ATPase (SERCA2a), PLB phosphorylation at Ser16 (PLB-S16), PLB phosphorylation at Thr17 (PLB-T17), L-type Ca(2+) channel (Cav1.2) and Na(+)- Ca(2+) exchanger (NCX) were significantly reduced in rat HF. Our results suggest that systolic SR reduced Ca(2+) release and diastolic SR Ca(2+) leak (due to defective protein-protein interaction between RyR2 and its associated proteins) along with reduced SR Ca(2+) uptake (due to down-regulation of SERCA2a, PLB-S16 and PLB-T17), abnormal Ca(2+) extrusion (due to down-regulation of NCX) and defective Ca(2+) -induced Ca(2+) release (due to down-regulation of Cav1.2) could contribute to HF.  相似文献   

7.
We have studied the effects of C28R2, a basic peptide derived from the autoinhibitory domain of the plasma membrane Ca-ATPase, on enzyme activity, oligomeric state, and E1-E2 conformational equilibrium of the Ca-ATPase from skeletal and cardiac sarcoplasmic reticulum (SR). Time-resolved phosphorescence anisotropy (TPA) was used to determine changes in the distribution of Ca-ATPase among its different oligomeric species in SR. C28R2, at a concentration of 1-10 microM, inhibits the Ca-ATPase activity of both skeletal and cardiac SR (CSR). In skeletal SR, this inhibition by C28R2 is much greater at low (0.15 microM) than at high (10 microM) Ca2+, whereas in CSR the inhibition is the same at low and high Ca2+. The effects of the peptide on the rotational mobility of the Ca-ATPase correlated well with function, indicating that C28R2-induced protein aggregation and Ca-ATPase inhibition are much more Ca-dependent in skeletal than in CSR. In CSR at low Ca2+, phospholamban (PLB) antibody (functionally equivalent to PLB phosphorylation) increased the inhibitory effect of C28R2 slightly. Fluorescence of fluorescein 5-isothiocyanate-labeled SR suggests that C28R2 stabilizes the E1 conformation of the Ca-ATPase in skeletal SR, whereas in CSR it stabilizes E2. After the addition of PLB antibody, C28R2 still stabilizes the E2 conformational state of CSR. Therefore, we conclude that C28R2 affects Ca-ATPase activity, conformation, and self-association differently in cardiac and skeletal SR and that PLB is probably not responsible for the differences.  相似文献   

8.
p21-Activated kinase-1 (Pak1) is a serine-threonine kinase that associates with and activates protein phosphatase 2A in adult ventricular myocytes and, thereby, induces increased Ca2+ sensitivity of skinned-fiber tension development mediated by dephosphorylation of myofilament proteins (Ke Y, Wang L, Pyle WG, de Tombe PP, Solaro RJ. Circ Res 94: 194-200, 2004). We test the hypothesis that activation of Pak1 also moderates cardiac contractility through regulation of intracellular Ca2+ fluxes. We found no difference in field-stimulated intracellular Ca2+ concentration ([Ca2+]i) transient amplitude and extent of cell shortening between myocytes expressing constitutively active Pak1 (CA-Pak1) and controls expressing LacZ; however, time to peak shortening was significantly faster and rate of [Ca2+]i decay and time of relengthening were slower. Neither caffeine-releasable sarcoplasmic reticulum (SR) Ca2+ content nor fractional release was different in CA-Pak1 myocytes compared with controls. Isoproterenol application revealed a significantly blunted increase in [Ca2+]i transient amplitude, as well as a slowed rate of [Ca2+]i decay, increased SR Ca2+ content, and increased cell shortening, in CA-Pak1 myocytes. We found no significant change in phospholamban phosphorylation at Ser16 or Thr17 in CA-Pak1 myocytes. Analysis of cardiac troponin I revealed a significant reduction in phosphorylated species that are primarily attributable to Ser(23/24) in CA-Pak1 myocytes. Nonstimulated, spontaneous SR Ca2+ release sparks were significantly smaller in amplitude in CA-Pak1 than LacZ myocytes. Propagation of spontaneous Ca2+ waves resulting from SR Ca2+ overload was significantly slower in CA-Pak1 myocytes. Our data indicate that CA-Pak1 expression has significant effects on ventricular myocyte contractility through altered myofilament Ca2+ sensitivity and modification of the [Ca2+]i transient.  相似文献   

9.
M Chiesi  R Schwaller 《FEBS letters》1989,244(1):241-244
The activity of the Ca-pumping ATPase of cardiac sarcoplasmic reticulum (SR) is controlled by the phosphorylation of the intrinsic regulatory protein phospholamban (PLB), which affects both the apparent Km(Ca) and the Vmax of the transport process. We have investigated the correlation between phosphorylation of PLB and the surface potential of the SR membrane. This latter influences the local concentration of relevant ionic species near biological membranes and thus modulates the activity of ion pumps and channels. The partitioning of the anionic probe 8-anilino-1-naphthalenesulfonate (ANS-) into the SR membrane was found to be dependent on the phosphorylation level of PLB. Changes of the surface membrane potential up to 7 mV could be obtained by phosphorylation. The increase in the apparent affinity of the Ca pump for Ca2+ induced by PLB phosphorylation was clearly reduced at high ionic strength, i.e. under conditions known to reduce the surface membrane potential and all processes dependent on it. The results show that electrostatic phenomena can account, in good part, for the modulation of the Ca pump by PLB in cardiac SR.  相似文献   

10.
Activation of cAMP-dependent protein kinase A (PKA) in ventricular myocytes by isoproterenol (Iso) causes phosphorylation of both phospholamban (PLB) and troponin I (TnI) and accelerates relaxation by up to twofold. Because PLB phosphorylation increases sarcoplasmic reticulum (SR) Ca pumping and TnI phosphorylation increases the rate of Ca dissociation from the myofilaments, both factors could contribute to the acceleration of relaxation seen with PKA activation. To compare quantitatively the role of TnI versus PLB phosphorylation, we measured relaxation rates before and after maximal Iso treatment for twitches of matched amplitudes in ventricular myocytes and muscle from wild-type (WT) mice and from mice in which the PLB gene was knocked out (PLB-KO). Because Iso increases contractions, even in the PLB-KO mouse, extracellular [Ca] or sarcomere length was adjusted to obtain matching twitch amplitudes (in the presence and absence of Iso). In PLB-KO myocytes and muscles (which were allowed to shorten), Iso did not alter the time constant (tau) of relaxation ( approximately 29 ms). However, with increasing isometric force development in the PLB-KO muscles, Iso progressively but modestly accelerated relaxation (by 17%). These results contrast with WT myocytes and muscles where Iso greatly reduced tau of cell relaxation and intracellular Ca concentration decline (by 30-50%), independent of mechanical load. The Iso treatment used produced comparable increases in phosphorylation of TnI and PLB in WT. We conclude that the effect of beta-adrenergic activation on relaxation is mediated entirely by PLB phosphorylation in the absence of external load. However, TnI phosphorylation could contribute up to 14-18% of this lusitropic effect in the WT mouse during maximal isometric contractions.  相似文献   

11.
Ding HL  Zhu HF  Dong JW  Zhu WZ  Zhou ZN 《Life sciences》2004,75(21):2587-2603
The aim of this study was to investigate whether and how protein kinase C (PKC) was involved in the protection afforded by intermittent hypoxia (IH) and the subcellular distribution of different PKC isozymes in rat left ventricle. Post-ischemic recovery of left ventricular developed pressure and +/-dP/dtmax in IH hearts were higher than those of normoxic hearts. Chelerythrine (CHE, 5 microM), a PKC antagonist, significantly inhibited the protective effects of IH, but had no influence on normoxic hearts. CHE significantly reduced the effect of IH on the time to maximal contracture (Tmc), but had no significant effect on the amplitude of maximal contracture (Amc) in IH group. In isolated normoxic cardiomyocytes, [Ca(2+)](i), measured as arbitrary units of fluorescence ratio (340 nm/380 nm) of fura-2, gradually increased during 20 min simulated ischemia and kept at high level during 30 min reperfusion. However, [Ca(2+)](i) kept at normal level during simulated ischemia and reperfusion in isolated IH cardiomyocytes. In normoxic myocytes, [Na(+)](i), indicated as actual concentration undergone calibration, gradually increased during 20 min simulated ischemia and quickly declined to almost the same level as that of pre-ischemia during 30 min simulated reperfusion. However, in IH myocytes, [Na(+)](i) increased to a level lower than the corresponding of normoxic myocytes during simulated ischemia and gradually reduced to the similar level as that of normoxic myocytes after simulated reperfusion. 5 microM CHE greatly increased the levels of [Ca(2+)](i) and [Na(+)](i) during ischemia and reperfusion in normoxic and IH myocytes. In addition, we demonstrated that IH up-regulated the baseline protein expression of particulate fraction of PKC-alpha, epsilon, delta isozymes. There is no significant difference of protein expression of PKC-alpha, epsilon, delta isozymes in cytosolic fraction between IH and normoxic group. The above results suggested that PKC contributed to the cardioprotection afforded by IH against ischemia/reperfusion (I/R) injury; the basal up-regulation of the particulate fraction of PKC-alpha, epsilon, delta isozymes in IH rat hearts and the contribution of PKC to the elimination of calcium and sodium overload might underlie the mechanisms of cardioprotection by IH.  相似文献   

12.
It is now recognized that phorbol esters are negative inotropic agents in mammalian heart which presumably act via stimulation of Ca2(+)-activated phospholipid-dependent protein kinase (PKC). The goal in the present study was to identify the underlying cellular processes. Digitonin-permeabilized cultured neonatal rat ventricular myocytes were used to study biochemical and functional effects of phorbol esters on cardiac sarcoplasmic reticulum (SR). These cells contracted spontaneously at 3 microM Ca2+. Beating was inhibited by 10 microM ryanodine and was insensitive to 1 microM nifedipine. Thus, beating behavior results from the phasic oscillation of Ca2+ transport by SR in this preparation. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA), decreased frequency by 30%, suggesting that Ca2+ transport by SR had been reduced. Whereas cAMP stimulated the rate of oxalate-supported 45Ca2+ uptake 2-fold, phorbol esters, TPA, and phorbol 12,13-dibutyrate inhibited this process by about 45%. The effects of phorbols were specific: (a) the alpha-analogues of TPA and phorbol 12,13-dibutyrate were inactive; and (b) the phorbol esters had no effect on Ca2+ transport in cells that had been depleted of PKC. TPA decreased oxalate-stimulated Ca2+ uptake over the entire range of Ca2+ concentrations, from 0.1 to 10 microM, by at least 70% without shifting the half-maximal effective Ca2+ concentration. Taken together these results indicate that the effects of phorbol ester on cardiac contraction are due to decreased Ca2+ transport by the SR and that these responses are mediated by PKC. These studies support the interpretation that the negative inotropic effects of phorbol esters are due, in part, to decreased SR function.  相似文献   

13.
The small G protein Ras-mediated signaling pathway has been implicated in the development of hypertrophy and diastolic dysfunction in the heart. Earlier cellular studies have suggested that the Ras pathway is responsible for reduced L-type calcium channel current and sarcoplasmic reticulum (SR) calcium uptake associated with sarcomere disorganization in neonatal cardiomyocytes. In the present study, we investigated the in vivo effects of Ras activation on cellular calcium handling and sarcomere organization in adult ventricular myocytes using a newly established transgenic mouse model with targeted expression of the H-Ras-v12 mutant. The transgenic hearts expressing activated Ras developed significant hypertrophy and postnatal lethal heart failure. In adult ventricular myocytes isolated from the transgenic hearts, the calcium transient was significantly depressed but membrane L-type calcium current was unchanged compared with control littermates. The expressions of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a and phospholamban (PLB) were significantly reduced at mRNA levels. The amount of SERCA2a protein was also modestly reduced. However, the expression of PLB protein and gross sarcomere organization remained unchanged in the hypertrophic Ras hearts, whereas Ser(16) phosphorylation of PLB was dramatically inhibited in the Ras transgenic hearts compared with controls. Hypophosphorylation of PLB was also associated with a significant induction of protein phosphatase 1 expression. Therefore, our results from this in vivo model system suggest that Ras-induced contractile defects do not involve decreased L-type calcium channel activities or disruption of sarcomere structure. Rather, suppressed SR calcium uptake due to reduced SERCA2a expression and hypophosphorylation of PLB due to changes in protein phosphatase expression may play important roles in the diastolic dysfunction of Ras-mediated hypertrophic cardiomyopathy.  相似文献   

14.
Activation of cardiac muscle sarcoplasmic reticulum Ca2+-ATPase (SERCA2a) by beta1-agonists involves cAMP- and PKA-dependent phosphorylation of phospholamban (PLB), which relieves the inhibitory effects of PLB on SERCA2a. To investigate the mechanism of SERCA2a activation, we compared the kinetic properties of SERCA2a expressed with (+) and without (-) PLB in High Five insect cell microsomes to those of SERCA1 and SERCA2a in native skeletal and cardiac muscle SR. Both native SERCA1 and expressed SERCA2a without PLB exhibited high-affinity (10-50 microM) activation of pre-steady-state catalytic site dephosphorylation by ATP, steady-state accumulation of the ADP-sensitive phosphoenzyme (E1P), and a rapid phase of EGTA-induced phosphoenzyme (E2P) hydrolysis. In contrast, SERCA2a in native cardiac SR vesicles and expressed SERCA2a with PLB lacked the high-affinity activation by ATP and the rapid phase of E2P hydrolysis, and exhibited low steady-state levels of E1P. The results indicate that the kinetic differences in Ca2+ transport between skeletal and cardiac SR are due to the presence of phospholamban in cardiac SR, and not due to isoform-dependent differences between SERCA1 and SERCA2a. Therefore, the results are discussed in terms of a model in which PLB interferes with SERCA2a oligomeric interactions, which are important for the mechanism of Ca2+ transport in skeletal muscle SERCA1 [Mahaney, J. E., Thomas, D. D., and Froehlich, J. P. (2004) Biochemistry 43, 4400-4416]. We propose that intermolecular coupling of SERCA2a molecules during catalytic cycling is obligatory for the changes in Ca2+ transport activity that accompany the relief of PLB inhibition of the cardiac SR Ca2+-ATPase.  相似文献   

15.
Electrically permeabilized RINm5F cells were used to assess the factors required for activation of protein kinase C (PKC) and insulin secretion. PKC was activated either by phorbol 12-myristate 13-acetate (PMA) or by the generation of endogenous diacylglycerol in response to the nonhydrolyzable guanine nucleotide analog guanosine 5'-O-(thiotriphosphate) (GTP gamma S). As shown previously, both PMA and GTP gamma S elicit Ca2+-independent insulin secretion. This effect was mimicked by guanyl-5'-yl imidodiphosphate (Gpp(NH)p) but not by guanosine 5'-O-(3-fluorotriphosphate) and guanosine 5'-O-(3-phenyltriphosphate) possessing only one negative charge in the gamma-phosphate group. The action of PMA was mediated by PKC, since the agent caused both phosphorylation of specific protein substrates and association of the enzyme with cellular membranes. This translocation was independent of the Ca2+ concentration employed. In contrast, GTP gamma S only promoted association of PKC with membranes at 10(-6) and 10(-5) M Ca2+ and failed to alter significantly protein phosphorylation in the absence of Ca2+. Neither Gpp(NH)p, which stimulates insulin release, nor the other two GTP analogs, increased the proportion of PKC associated with membranes. To verify that the Ca2+-dependent effect of GTP gamma S on PKC is due to activation of phospholipase C, we measured the generation of diacylglycerol. GTP gamma S indeed stimulated diacylglycerol production in the leaky cells by about 50% at Ca2+ concentrations between 10(-7) and 10(-5) M, an effect which was almost abolished in the absence of Ca2+. Thus, at 10(-7) M Ca2+, the concentration found in resting intact cells, the generated diacylglycerol was not sufficient to cause PKC insertion into the membrane, demonstrating that both elevated Ca2+ and diacylglycerol are necessary for translocation to occur. It is concluded that while PKC activation by PMA elicits Ca2+-independent insulin secretion, the kinase seems not to mediate the stimulatory action of GTP analogs in the absence of Ca2+.  相似文献   

16.
We examined whether the mitochondrial ATP-sensitive K channel (K(ATP)) is an effector downstream of protein kinase C-epsilon (PKC-epsilon) in the mechanism of preconditioning (PC) in isolated rabbit hearts. PC with two cycles of 5-min ischemia/5-min reperfusion before 30-min global ischemia reduced infarction from 50.3 +/- 6.8% of the left ventricle to 20.3 +/- 3.7%. PC significantly increased PKC-epsilon protein in the particulate fraction from 51 +/- 4% of the total to 60 +/- 4%, whereas no translocation was observed for PKC-delta and PKC-alpha. In mitochondria separated from the other particulate fractions, PC increased the PKC-epsilon level by 50%. Infusion of 5-hydroxydecanoate (5-HD), a mitochondrial K(ATP) blocker, after PC abolished the cardioprotection of PC, whereas PKC-epsilon translocation by PC was not interfered with 5-HD. Diazoxide, a mitochondrial K(ATP) opener, infused 10 min before ischemia limited infarct size to 5.2 +/- 1.4%, but this agent neither translocated PKC-epsilon by itself nor accelerated PKC-epsilon translocation after ischemia. Together with the results of earlier studies showing mitochondrial K(ATP) opening by PKC, the present results suggest that mitochondrial K(ATP)-mediated cardioprotection occurs subsequent to PKC-epsilon activation by PC.  相似文献   

17.
It was found that the initial rate of passive KC1-stimulated Ca2+ influx into sarcoplasmic reticulum (SR) vesicles follows the saturation kinetics at Ca2+ concentrations of 8-10 mM. The inhibitory effect of Ca2+ channel blockers (La3+, Mn2+, Co2+, Cd2+, Mg2+) on passive Ca2+ influx into SR vesicles is competitive with respect to Ca2+. These blockers also inhibit the initial fast phase of Ca2+ efflux from Ca2+-loaded SR vesicles. Verapamil (0.1-0.5 mM) added to the incubation mixture has no effect on passive Ca2+ fluxes across the SR vesicle membrane or on Ca2+ binding and ATP-dependent Ca2+ accumulation. However, preincubation of SR vesicles with verapamil (18 hours, 4 degrees C) or its introduction into the medium for SR vesicle isolation leads to the inhibition of passive Ca2+ fluxes.  相似文献   

18.
The present study aimed to investigate the role of hydrogen sulphide (H2S) in the cardioprotection induced by ischemic postconditioning and to examine the underlying mechanisms. Cardiodynamics and myocardial infarction were measured in isolated rat hearts. Postconditioning with six episodes of 10-s ischemia (IPostC) significantly improved cardiodynamic function, which was attenuated by the blockade of endogenous H2S production with d-l-propargylglycine. Moreover, IPostC significantly stimulated H2S synthesis enzyme activity during the early period of reperfusion. However, d-l-propargylglycine only attenuated the IPostC-induced activation of PKC-alpha and PKC-epsilon but not that of PKC-delta, Akt, and endothelial nitric oxide synthase (eNOS). These data suggest that endogenous H2S contributes partially to the cardioprotection of IPostC via stimulating PKC-alpha and PKC-epsilon. Postconditioning with six episodes of a 10-s infusion of NaHS (SPostC) or 2 min continuous NaHS infusion (SPostC2) stimulated activities of Akt and PKC, improved the cardiodynamic performances, and reduced myocardial infarct size. The blockade of Akt with LY-294002 (15 microM) or PKC with chelerythrine (10 microM) abolished the cardioprotection induced by H2S postconditioning. SPostC2, but not SPostC, also additionally stimulated eNOS. We conclude that endogenous H2S contributes to IPostC-induced cardioprotection. H2S postconditioning confers the protective effects against ischemia-reperfusion injury through the activation of Akt, PKC, and eNOS pathways.  相似文献   

19.
Cardiac sarcoplasmic reticulum (SR) Ca2+ ATPase (SERCA2a) promotes Ca2+ uptake in the SR. Dephosphorylated phospholamban (PLB) inhibits SERCA2a activity. We found a distinct dephosphorylation of PLB at Thr17 and Ser16 after 20-30 min of ischemia produced by coronary artery occlusion in rats. The aim of the study was to investigate how PLB is dephosphorylated in ischemia and to determine whether PLB dephosphorylation causes myocardial hypercontraction and calpain activation through Ca2+ overload in reperfusion. Protein inhibitor-1 (I-1) specifically inhibits protein phosphatase 1 (PP1), the predominant PLB phosphatase in heart. A Ca2+-dependent phosphatase calcineurin may also induce PLB dephosphorylation. Ischemia for 30 min induced PKC-α translocation, resulting in inactivation of I-1 through PKC-α-dependent phosphorylation at Ser67. The PP1 activation following I-1 inactivation was thought to induce PLB dephosphorylation in ischemia. Ischemia for 30 min activated calcineurin, and pre-treatment with a calcineurin inhibitor, cyclosporine A (CsA), inhibited PKC-α translocation, I-1 phosphorylation at Ser67, and PLB dephosphorylation in ischemia. Reperfusion for 5 min following 30 min of ischemia induced spreading of contraction bands (CBs) and proteolysis of fodrin by calpain. Both CsA and an anti-PLB antibody that inhibits binding of PLB to SERCA2a reduced the CB area and fodrin breakdown after reperfusion. These results reveal a novel pathway via which ischemia induces calcineurin-dependent activation of PKC-α, inactivation of I-1 through PKC-α-dependent phosphorylation at Ser67, and PP1-dependent PLB dephosphorylation. The pathway contributes to the spreading of CBs and calpain activation through Ca2+ overload in early reperfusion.  相似文献   

20.
Using the fluorescent probes, Quin 2 and chlortetracycline, a comparative study of the Ca2+ and inositol-1.4.5-triphosphate (IP3)-induced Ca2+ release from rabbit skeletal muscle sarcoplasmic reticulum (SR) terminal cisterns and rat brain microsomal vesicles was carried out. It was shown that Ca2+ release from rat brain microsomal vesicles is induced both by IP3 and Ca2+, whereas that in SR terminal cisterns is induced only by Ca2+. Data from chlorotetracycline fluorescence analysis revealed that CaCl2 (50 microM) causes the release of 15-20% and 40-50% of the total Ca2+ pool accumulated in rat brain microsomal vesicles and rabbit SR terminal cisterns, respectively. Using Quin 2, it was found that IP3 used at the optimal concentration (1.5 mM) caused the release of 0.4-0.6 nmol of Ca2+ per mg microsomal protein, which makes up to 10-15% of the total Ca2+ pool. IP3 does not induce Ca2+ release in SR. Preliminary release of Ca2+ from brain microsomes induced by IP3 diminishes the liberation of this cation induced by Ca2+. It is suggested that brain microsomes contain a Ca2+ pool which is exhausted under the action of the both effectors, Ca2+ and IP3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号