首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have shown that SOCS-1/3 overexpression in hepatic cells abrogates signaling of type I interferons (IFN) which may contribute to the frequently observed IFN resistance of hepatitis C virus (HCV). IFN-lambdas (IL-28A/B and IL-29), a novel group of IFNs, also efficiently inhibit HCV replication in vitro with potentially less hematopoietic side effects than IFN-alpha because of limited receptor expression in hematopoietic cells. To further evaluate the potential of IFN-lambdas in chronic viral hepatitis, we examined the influence of SOCS protein expression on IFN-lambda signaling. First, we show that hepatic cell lines express the IFN-lambda receptor complex consisting of IFN-lambdaR1 (IL-28R1) and IL-10R2. Whereas in mock-transfected HepG2 cells, IL-28A and IL-29 induced STAT1 and STAT3 phosphorylation, overexpression of SOCS-1 completely abrogated IL-28A and IL-29-induced STAT1/3 phosphorylation. Similarly, IL-28A and IL-29 induced mRNA expression of the antiviral proteins 2',5'-OAS and MxA was abolished by overexpression of SOCS-1. In conclusion, we assume that despite antiviral properties of IFN-lambdas, their efficacy as antiviral agents may have similar limitations as IFN-alpha due to inhibition by SOCS proteins.  相似文献   

2.
Interferon (IFN)-lambda 1, -lambda 2, and -lambda 3 are the latest members of the class II cytokine family and were shown to have antiviral activity. Their receptor is composed of two chains, interleukin-28R/likely interleukin or cytokine or receptor 2 (IL-28R/LICR2) and IL-10R beta, and mediates the tyrosine phosphorylation of STAT1, STAT2, STAT3, and STAT5. Here, we show that activation of this receptor by IFN-lambda 1 can also inhibit cell proliferation and induce STAT4 phosphorylation, further extending functional similarities with type I IFNs. We used IL-28R/LICR2-mutated receptors to identify the tyrosines required for STAT activation, as well as antiproliferative and antiviral activities. We found that IFN-lambda 1-induced STAT2 tyrosine phosphorylation is mediated through tyrosines 343 and 517 of the receptor, which showed some similarities with tyrosines from type I IFN receptors involved in STAT2 activation. These two tyrosines were also responsible for antiviral and antiproliferative activities of IFN-lambda 1. By contrast, STAT4 phosphorylation (and to some extent STAT3 activation) was independent from IL-28R/LICR2 tyrosine residues. Taken together, these observations extend the functional similarities between IFN-lambdas and type I IFNs and shed some new light on the mechanisms of activation of STAT2 and STAT4 by these cytokines.  相似文献   

3.
4.
IL-28 and IL-29: newcomers to the interferon family   总被引:1,自引:0,他引:1  
Uzé G  Monneron D 《Biochimie》2007,89(6-7):729-734
IL-28 and IL-29 were recently described as members of a new cytokine family that shares with type I interferon (IFN) the same Jak/Stat signalling pathway driving expression of a common set of genes. Accordingly, they have been named IFN lambda. IFNs lambda exhibit several common features with type I IFNs: antiviral activity, antiproliferative activity and in vivo antitumour activity. Importantly, however, IFNs lambda bind to a distinct membrane receptor, composed of IFNLR1 and IL10R2. This specific receptor usage suggests that this cytokine family does not merely replicate the type I IFN system and justifies its designation as type III IFN by the nomenclature committee of the International Society of Interferon and Cytokine Research.  相似文献   

5.
Interferon-alpha (IFN-alpha) is used for biotherapy of neuroendocrine carcinomas. The interferon-lambdas (IL-28A/B and IL-29) are a novel group of interferons. In this study, we investigated the effects of the IFN-lambdas IL-28A and IL-29 on human neuroendocrine BON1 tumor cells. Similar to IFN-alpha, incubation of BON1 cells with IL-28A (10 ng/ml) and IL-29 (10 ng/ml) induced phosphorylation of STAT1, STAT2, and STAT3, significantly decreased cell numbers in a proliferation assay, and induced apoptosis as demonstrated by poly(ADP-ribose) polymerase (PARP)-cleavage, caspase-3-cleavage, and DNA-fragmentation. Stable overexpression of suppressor of cytokine signaling proteins (SOCS1 and SOCS3) completely abolished the aforementioned effects indicating that SOCS proteins act as negative regulators of IFN-lambda signaling in BON1 cells. In conclusion, the novel IFN-lambdas IL-28A and IL-29 potently induce STAT signaling and antiproliferative effects in neuroendocrine BON1 tumor cells. Thus, IFN-lambdas may hint a promising new approach in the antiproliferative therapy of neuroendocrine tumors.  相似文献   

6.
IL-28A, IL-28B and IL-29 (also designated type III interferons) constitute a new subfamily within the IL-10–interferon family. They are produced by virtually any nucleated cell type, particularly dendritic cells, following viral infection or activation with bacterial components, and mediate their effects via the IL-28R1/IL-10R2 receptor complex. Although IL-28/IL-29 are closer to the IL-10-related cytokines in terms of gene structure, protein structure, and receptor usage, they display type I interferon-like anti-viral and cytostatic activities. Unlike type I interferons, the target cell populations of IL-28/IL-29 are restricted and mainly include epithelial cells and hepatocytes. These properties suggest that IL-28/IL-29 are potential therapeutic alternatives to type I interferons in terms of viral infections and tumors. This review describes the current knowledge about these cytokines.  相似文献   

7.
IL-22 is produced by activated T cells and signals through a receptor complex consisting of IL-22R1 and IL-10R2. The aim of this study was to analyze IL-22 receptor expression, signal transduction, and specific biological functions of this cytokine system in intestinal epithelial cells (IEC). Expression studies were performed by RT-PCR. Signal transduction was analyzed by Western blot experiments, cell proliferation by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay and Fas-induced apoptosis by flow cytometry. IEC migration was studied in wounding assays. The IEC lines Caco-2, DLD-1, SW480, HCT116, and HT-29 express both IL-22 receptor subunits IL-22R1 and IL-10R2. Stimulation with TNF-alpha, IL-1beta, and LPS significantly upregulated IL-22R1 without affecting IL-10R2 mRNA expression. IL-22 binding to its receptor complex activates STAT1/3, Akt, ERK1/2, and SAPK/JNK MAP kinases. IL-22 significantly increased cell proliferation (P = 0.002) and phosphatidylinsitol 3-kinase-dependent IEC cell migration (P < 0.00001) as well as mRNA expression of TNF-alpha, IL-8, and human beta-defensin-2. IL-22 had no effect on Fas-induced apoptosis. IL-22 mRNA expression was increased in inflamed colonic lesions of patients with Crohn's disease and correlated highly with the IL-8 expression in these lesions (r = 0.840). Moreover, IL-22 expression was increased in murine dextran sulfate sodium-induced colitis. IEC express functional receptors for IL-22, which increases the expression of proinflammatory cytokines and promotes the innate immune response by increased defensin expression. Moreover, our data indicate intestinal barrier functions for this cytokine-promoting IEC migration, which suggests an important function in intestinal inflammation and wound healing. IL-22 is increased in active Crohn's disease and promotes proinflammatory gene expression and IEC migration.  相似文献   

8.
We hypothesized that US28, a cytomegalovirus (CMV) CC chemokine receptor homolog, plays a role in modulating the host antiviral defense. Monocyte chemotaxis was induced by supernatants from fibroblasts infected with a US28 deletion mutant of CMV (CMV Delta US28) due to endogenously produced CC chemokines MCP-1 and RANTES. However, these chemokines were sequestered from the supernatants of CMV-infected cells that did express US28. US28 was also capable of sequestering exogenously added RANTES. Surprisingly, cells infected with CMV Delta US28 transcribed and secreted increased levels IL-8, a CXC chemokine, when compared to CMV-infected cells. Finally, because chemokines are potent mediators of immune cell migration through the endothelium, we characterized the CC chemokine binding potential of CMV-infected endothelial cells. We propose that US28 functions as a 'chemokine sink' by sequestering endogenously and exogenously produced chemokines and alters the production of the CXC chemokine IL-8, suggesting that CMV could significantly alter the inflammatory milieu surrounding infected cells.  相似文献   

9.
An IL-4-dependent T cell clone (LD8) was isolated from the murine IL-2-dependent cytotoxic T cell line C30.1. This clone has lost the capacity to proliferate in response to IL-2 after long-term culture in IL-4. LD8 cells express the p70, but not the p55, subunit of the IL-2R on their cell surface. The number of p70 IL-2R molecules on LD8 cells is comparable with the number of high-affinity IL-2R on the parental C30.1 cell line. LD8 cells can efficiently internalize IL-2 through the p70 IL-2R subunit. Following stimulation by IL-2, LD8 cells up-regulate p70 IL-2R mRNA, but do not express p55 IL-2R mRNA. IL-2-dependent proliferation of LD8 cells was reconstituted after introduction and expression of a human p55 IL-2R cDNA. To further investigate the role of p70 IL-2R, we have measured IL-2-induced proliferation of C30.1 cells in the presence of three anti-p55 IL-2R mAb (5A2, PC61, and 7D4) that recognize different epitopes. Under the experimental conditions used, the combination of anti-p55 IL-2R mAb prevents the formation of high-affinity IL-2R, but does not affect the binding of IL-2 to p70 IL-2R or IL-2 internalization. However, these three mAb inhibit proliferation of C30.1 cells even in the presence of IL-2 concentrations sufficient to saturate p70 IL-2R. Together these results demonstrate that p70 IL-2R alone is not sufficient to transmit IL-2-induced growth signals and that formation of p55-p70 IL-2R complex is required for IL-2-dependent proliferation of murine T cells.  相似文献   

10.
Despite binding to receptors distinct from those of type I interferons (IFNs), human interleukins-28A, -28B and -29 (IL-28A, IL-28B and IL-29; alternatively named IFN lambda-2 {IFN-lambda2}, IFN-lambda3 and IFN-lambda1, respectively, or collectively, type III IFNs), a small family of three structurally-related cytokines, are, like IFNs, known to induce antiviral activity. To further biologically characterize IL-28A and IL-29, we compared their activities with those of IFNs in a range of human cell lines. We found that they induced antiviral activity in fewer cell lines and more weakly than IFNs; also IL-28A was less active than IL-29. Additionally, we showed IL-28A and IL-29 induced reporter genes--protein MxA promoter linked to luciferase, or interferon stimulated response element (ISRE) linked to secreted alkaline phosphatase (SEAP)--more weakly than IFN. Antiproliferative activity was induced by IFNs in most cell lines, but only in one human glioblastoma cell line, LN319, was dose-dependent IL-29-growth inhibition demonstrable. Polymerase chain reaction (PCR) quantification of messenger (m) RNA of IL-28/29 receptor subunits, IL-28Ralpha and IL-10Rbeta, indicated variable expression levels; although their expression was highest in the responsive LN319 cell line, lower but significant expression of both mRNAs was found in relatively unresponsive cell lines. In conclusion, we found IL-28A and IL-29 act similarly to IFNs, but are less effective generally and have activity in a more limited range of cell lines.  相似文献   

11.
This study examined mRNA levels and cell surface expression of IL-4 receptor (IL-4R) in murine T and B cells after incubation with IL-4. Northern blot analysis of mRNA levels of T cells isolated from mesenteric lymph nodes and spleen revealed that IL-4 induced a transient augmentation of IL-4R mRNA in a dose-dependent manner. Maximal levels of mRNA were detected as early as 5 h after initiation of culture. These data were complemented by studies examining the cell surface expression of IL-4R using an anti-IL-4R mAb. Resting T and B lymphocytes express IL-4R (T greater than B) and incubation of these cells with exogenous IL-4 increased IL-4R expression to a maximum after 24 h. This effect was abolished after addition of anti-IL-4 antibody. Continuous incubation of T cells in the presence of high concentrations of IL-4 resulted in a down-regulation of IL-4R expression. Addition of the protein synthesis inhibitor cycloheximide blocked the induced increases in IL-4R expression, indicating the requirement for de novo protein synthesis. Both the levels of mRNA and cell surface expression of IL-4R were not affected by addition of exogenous IL-2, and IL-4 regulation of IL-4R expression was not influenced by the immunosuppressive drug cyclosporin A. These data demonstrate that in T and B cells, IL-4 induces a transient up-regulation of IL-4 mRNA levels that is subsequently reflected in increased numbers of IL-4R displayed on the cell surface. This regulation of IL-4R expression by IL-4 provides an important mechanism for amplification of IL-4-dependent activation pathways.  相似文献   

12.
IL-13 is a Th2-derived pleiotropic cytokine that recently was shown to be a key mediator of allergic asthma. IL-13 mediates its effects via a complex receptor system, which includes the IL-4R alpha-chain, IL-4Ralpha, and at least two other cell surface proteins, IL-13Ralpha1 and IL-13Ralpha2, which specifically bind IL-13. IL-13 has been reported to have very limited effects on mouse B cells. It was unclear whether this was due to a lack of receptor expression, a disproportionate relative expression of the receptor components, or an additional subunit requirement in B cells. To determine the requirements for IL-13 signaling in murine B cells, we examined IL-13-dependent Stat6 activation and CD23 induction in the murine B cell line, A201.1. A201.1 cells responded to murine IL-4 via the type I IL-4R, but were unresponsive to IL-13, and did not express IL-13 receptor. B220(+) splenocytes also failed to signal in response to IL-13 and did not express IL-13 receptor. We transfected A201.1 cells with human IL-4Ralpha, IL-13Ralpha1, or both. Transfectants expressing either human IL-4Ralpha or human IL-13Ralpha1 alone were unable to respond or signal to IL-13. Thus, human IL-13Ralpha1 could not combine with the endogenous murine IL-4Ralpha to generate a functional IL-13R. However, cells transfected with both human IL-4Ralpha and IL-13Ralpha1 responded to IL-13. Thus, the relative lack of IL-13 responsiveness in murine B cells is due to a lack of receptor expression. Furthermore, the heterodimeric interaction between IL-4Ralpha and IL-13Ralpha1 is species specific.  相似文献   

13.
We have previously shown that in mixed cultures of PBL incubation with human rIL-2 induces the rapid expression of IL-1 alpha and IL-1 beta mRNA. Because studies have demonstrated that IL-2R can be expressed on the surface of human peripheral blood monocytes, we chose to investigate whether IL-1 beta mRNA could be directly induced in purified human monocytes by treatment with Il-2 and, if so, to analyze the second messenger pathways by which it may be controlled. Human monocytes do not spontaneously express IL-1 beta mRNA, but can express the gene as soon as 1 h after treatment with IL-2. The level of IL-1 beta mRNA induced by IL-2 at 5 h in human monocytes was about one-fourth that induced by LPS. LPS induction of IL-1 beta mRNA in human monocytes can be blocked by either an inhibitor of protein kinase C (PKc) 1-(5-isoquinolinesulfonyl)-2-methylpiperazine or an inhibitor of calcium/calmodulin (CaM) kinase N-(6-aminohexyl) 5-chloro-1-naphthalenesulfonamide, suggesting that both PKc and CaM kinase are involved in transducing signals initiated by LPS. In contrast, IL-2 induction of IL-1 beta mRNA expression is blocked only by 1-(5-isoquinolinesulfonyl)-2-methylpiperazine, suggesting that PKc, and not CaM kinase, is activated by IL-2. These data suggest that overlapping but distinct second messenger pathways are involved in the transduction of signals initiated by IL-2 and LPS.  相似文献   

14.
The role of IL-6 in the antiproliferative effect of IL-1 for tumor cell lines was investigated using IL-1-sensitive cell lines. Human recombinant IL-1 alpha and IL-6 both inhibited the growth of an IL-1-sensitive cloned human melanoma cell line (A375-C6). However, IL-1 has greater maximum growth inhibitory activity than IL-6. Conditioned medium of the tumor cells that were treated with IL-1 contained IL-6 as determined by ELISA. Northern blot analysis revealed that IL-6 mRNA expression increased in IL-1-treated cells. In addition, antibody against human IL-6 neutralized about 50% of the antiproliferative effect of IL-1. The growth of an IL-1-resistant clone of A375 cells (A375-C5), which cannot be shown to express any detectable IL-1R, was inhibited by IL-6 to the same degree as A375-C6 cells. The A375-C5 cell line did not produce IL-6 or increase IL-6 mRNA after stimulation with IL-1. These results indicate that IL-6 mediates in part the antiproliferative effect of IL-1 on A375-C6 cells by acting as an autocrine antiproliferative factor. IL-1 also inhibited the growth of a malignant human mammary cell line (MDA-MB-415). IL-6 exhibited only slight growth inhibition in this cell line. Neither IL-6 production nor IL-6 mRNA expression was induced in this cell line by IL-1. Antibody against IL-6 did not neutralize the antiproliferative effect of IL-1. Therefore, for MDA-MB-415 cells IL-6 appeared not to be involved in the antiproliferative effect of IL-1. These results indicate that the antiproliferative effect of IL-1 involves at least two pathways, one IL-6 dependent and another IL-6 independent. The contribution of IL-6 to the antiproliferative effect of TNF was also examined. IL-6 appeared not to play a role in the antiproliferative effect of TNF in these cell lines.  相似文献   

15.
16.
Expanded genomic information has driven the discovery of new members of the human Class II family of cytokine receptors (CRF2), which now includes 12 proteins. The corresponding cytokines have been identified, paired with their receptors and initially characterized for function. These cytokines include: a new human Type I IFN, IFN-kappa; molecules related to IL-10 (IL-19, IL-20, IL-22, IL-24, IL-26); and IFN-lambdas (IL-28/29), which have antiviral and cell stimulatory activities reminiscent of Type I IFNs, but act through a distinct receptor. In response to ligand binding, the CRF2 proteins form heterodimers, leading to cytokine-specific cellular responses; these diverse physiological functions are just beginning to be explored. Progress in structural and mutational analysis of ligand-receptor interactions now presents a more reliable framework for understanding receptor-ligand interactions, and for predicting key regions in less well studied members of the CRF2 family. The relationships between the CRF2 proteins will be summarized, as will the progress in identifying patterns of receptor interactions with ligands.  相似文献   

17.
18.
Type III interferons (IFNs), also called lambda interferons (IFN-λ), comprise three isoforms, IFN-λ1 (interleukin-29 [IL-29]), IFN-λ2 (IL-28A), and IFN-λ3 (IL-28B). Only limited information is available on their expression and biological functions in humans. Type I and type II IFNs protect human pancreatic islets against coxsackievirus infection, and this is important since such viruses have been proposed to play a role in the development of human type 1 diabetes. Here we investigated whether type III IFN is expressed during infection of human islet cells with coxsackievirus and if type III IFN regulates permissiveness to such infections. We show that human islets respond to a coxsackievirus serotype B3 (CVB3) infection by inducing the expression of type III IFNs. We also demonstrate that islet endocrine cells from nondiabetic individuals express the type III IFN receptor subunits IFN-λR1 and IL-10R2. Pancreatic alpha cells express both receptor subunits, while pancreatic beta cells express only IL-10R2. Type III IFN stimulation elicited a biological response in human islets as indicated by the upregulated expression of antiviral genes as well as pattern recognition receptors. We also show that type III IFN significantly reduces CVB3 replication. Our studies reveal that type III IFNs are expressed during CVB3 infection and that the expression of the type III IFN receptor by the human pancreatic islet allows this group of IFNs to regulate the islets'' permissiveness to infection. Our novel observations suggest that type III IFNs may regulate viral replication and thereby contribute to reduced tissue damage and promote islet cell survival during coxsackievirus infection.  相似文献   

19.
Interleukin-15 (IL-15) is a novel cytokine of the four-helix bundle family which shares many biological activities with IL-2, probably due to its interaction with the IL-2 receptor beta and gamma (IL-2R beta and gamma c) chains. We report here the characterization and molecular cloning of a distinct murine IL-15R alpha chain. IL-15R alpha alone displays an affinity of binding for IL-15 equivalent to that of the heterotrimeric IL-2R for IL-2. A biologically functional heteromeric IL-15 receptor complex capable of mediating IL-15 responses was generated through reconstruction experiments in a murine myeloid cell line. IL-15R alpha is structurally similar to IL-2R alpha; together they define a new cytokine receptor family. The distribution of IL-15 and IL-15R alpha mRNA suggests that IL-15 may have biological activities distinct from IL-2.  相似文献   

20.
In patients with impaired cell-mediated immune responses (e.g., lung transplant recipients and AIDS patients), cytomegalovirus (CMV) infection causes severe disease such as pneumonitis. However, although immunocompetency in the host can protect from CMV disease, the virus persists by evading the host immune defenses. A model of CMV infection of the endothelium has been developed in which inflammatory stimuli, such as the CC chemokine RANTES, bind to the endothelial cell surface, stimulating calcium flux during late times of CMV infection. At 96 h postinfection, CMV-infected cells express mRNA of the CMV-encoded CC chemokine receptor US28 but do not express mRNA of other CC chemokine receptors that bind RANTES (CCR1, CCR4, CCR5). Cloning and stable expression of the receptor CMV US28 in human kidney epithelial cells (293 cells) with and without the heterotrimeric G protein α16 indicated that CMV US28 couples to both Gαi and Gα16 proteins to activate calcium flux in response to the chemokines RANTES and MCP-3. Furthermore, cells that coexpress US28 and Gα16 responded to RANTES stimulation with activation of extracellular signal-regulated kinase, which could be attributed, in part, to specific Gα16 coupling. Thus, through expression of the CC chemokine receptor US28, CMV may utilize resident G proteins of the infected cell to manipulate cellular responses stimulated by chemokines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号